Abstract

Fluorescence correlation spectroscopy (FCS) is one of the most sensitive methods for enumerating low concentration nanoparticles in a suspension. However, biological nanoparticles such as viruses often exist at a concentration much lower than the FCS detection limit. While optically generated trapping potentials are shown to effectively enhance the concentration of nanoparticles, feasibility of FCS for enumerating field-enriched nanoparticles requires understanding of the nanoparticle behavior in the external field. This paper reports an experimental study that combines optical trapping and FCS to examine existing theoretical predictions of particle concentration. Colloidal suspensions of polystyrene (PS) nanospheres and HIV-1 virus-like particles are used as model systems. Optical trapping energies and statistical analysis are used to discuss the applicability of FCS for enumerating nanoparticles in a potential well produced by a force field.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Magde, E. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett.29, 705–708 (1972).
    [CrossRef]
  2. E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. conceptual basis and theory,” Biopolymers13, 1–27 (1974).
    [CrossRef]
  3. S. T. Hess, S. Huang, A. A. Heikal, and W. W. Webb, “Biological and chemical applications of fluorescence correlation spectroscopy: A review,” Biochemistry41, 697–705 (2002).
    [CrossRef] [PubMed]
  4. F. Grom, J. Kentsch, T. Muller, T. Schnelle, and M. Stelzle, “Accumulation and trapping of hepatitis a virus particles by electrohydrodynamic flow and dielectrophoresis,” Electrophoresis27, 1386–1393 (2006).
    [CrossRef] [PubMed]
  5. K. T. Liao and C. F. Chou, “Nanoscale molecular traps and dams for ultrafast protein enrichment in high-conductivity buffers,” J. Am. Chem. Soc.134, 8742–8745 (2012).
    [CrossRef] [PubMed]
  6. J. Junio, S. Park, M.-W. Kim, and H. D. Ou-Yang, “Optical bottles: A quantitative analysis of optically confined nanoparticle ensembles in suspension,” Solid State Commun.150, 1003–1008 (2010).
    [CrossRef]
  7. J. Junio, J. Ng, J. A. Cohen, Z. Lin, and H. D. Ou-Yang, “Ensemble method to measure the potential energy of nanoparticles in an optical trap,” Opt. Lett.36, 1497–1499 (2011).
    [CrossRef] [PubMed]
  8. M. A. Osborne, S. Balasubramanian, W. S. Furey, and D. Klenerman, “Optically biased diffusion of single molecules studied by confocal fluorescence microscopy,” J. Phys. Chem. B102, 3160–3167 (1998).
    [CrossRef]
  9. C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy,” Phys. Rev. E72, 021408 (2005).
    [CrossRef]
  10. J. Wang, Z. Li, C. P. Yao, F. Xue, Z. X. Zhang, and G. Huttmann, “Brownian diffusion of gold nanoparticles in an optical trap studied by fluorescence correlation spectroscopy,” Laser Phys.21, 130–136 (2011).
    [CrossRef]
  11. S. Ito, N. Toitani, H. Yamauchi, and H. Miyasaka, “Evaluation of radiation force acting on macromolecules by combination of brownian dynamics simulation with fluorescence correlation spectroscopy,” Phys. Rev. E81, 061402 (2010).
    [CrossRef]
  12. F. Meng and H. Ma, “Fluorescence correlation spectroscopy analysis of diffusion in a laser gradient field: A numerical approach,” J. Phys. Chem. B109, 5580–5585 (2005).
    [CrossRef]
  13. B. Wu, Y. Chen, and J. D. Muller, “Fluorescence correlation spectroscopy of finite-sized particles,” Biophys. J.94, 2800–2808 (2008).
    [CrossRef]
  14. Assuming the trapping potential has an isotropic Gaussian distribution U(r) = U(0)exp(−2r2/R2), where R is the beam waist of the 1064nm trapping laser, estimated to be 0.97 μm. The experimentally determined trapping potential Utrap is the integration of U(r) in the illumination volume with beam waist 0.23 μm. Therefore, Utrap= 0.978U(0).
  15. C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Optical assembling dynamics of individual polymer nanospheres investigated by single-particle fluorescence detection,” Phys. Rev. E70, 061410 (2004).
    [CrossRef]
  16. A. I. Shevchuk, P. Hobson, M. J. Lab, D. Klenerman, N. Krauzewicz, and Y. E. Korchev, “Imaging single virus particles on the surface of cell membranes by high-resolution scanning surface confocal microscopy,” Biophys. J.94, 4089–4094 (2008).
    [CrossRef] [PubMed]
  17. Y. Chen, B. Wu, K. Musier-Forsyth, L. M. Mansky, and J. D. Mueller, “Fluorescence fluctuation spectroscopy on viral-like particles reveals variable gag stoichiometry,” Biophys. J.96, 1961–1969 (2009).
    [CrossRef] [PubMed]
  18. L. Ling, F. Zhou, L. Huang, and Z.-Y. Li, “Optical forces on arbitrary shaped particles in optical tweezers,” J. Appl. Phys.108, 073110–8 (2010).
    [CrossRef]
  19. S. D. Fuller, T. Wilk, B. E. Gowen, H.-G. Krausslich, and V. M. Vogt, “Cryo-electron microscopy reveals ordered domains in the immature HIV-1 particle,” Curr. Biol.7, 729–738 (1997).
    [CrossRef] [PubMed]

2012

K. T. Liao and C. F. Chou, “Nanoscale molecular traps and dams for ultrafast protein enrichment in high-conductivity buffers,” J. Am. Chem. Soc.134, 8742–8745 (2012).
[CrossRef] [PubMed]

2011

J. Junio, J. Ng, J. A. Cohen, Z. Lin, and H. D. Ou-Yang, “Ensemble method to measure the potential energy of nanoparticles in an optical trap,” Opt. Lett.36, 1497–1499 (2011).
[CrossRef] [PubMed]

J. Wang, Z. Li, C. P. Yao, F. Xue, Z. X. Zhang, and G. Huttmann, “Brownian diffusion of gold nanoparticles in an optical trap studied by fluorescence correlation spectroscopy,” Laser Phys.21, 130–136 (2011).
[CrossRef]

2010

S. Ito, N. Toitani, H. Yamauchi, and H. Miyasaka, “Evaluation of radiation force acting on macromolecules by combination of brownian dynamics simulation with fluorescence correlation spectroscopy,” Phys. Rev. E81, 061402 (2010).
[CrossRef]

L. Ling, F. Zhou, L. Huang, and Z.-Y. Li, “Optical forces on arbitrary shaped particles in optical tweezers,” J. Appl. Phys.108, 073110–8 (2010).
[CrossRef]

J. Junio, S. Park, M.-W. Kim, and H. D. Ou-Yang, “Optical bottles: A quantitative analysis of optically confined nanoparticle ensembles in suspension,” Solid State Commun.150, 1003–1008 (2010).
[CrossRef]

2009

Y. Chen, B. Wu, K. Musier-Forsyth, L. M. Mansky, and J. D. Mueller, “Fluorescence fluctuation spectroscopy on viral-like particles reveals variable gag stoichiometry,” Biophys. J.96, 1961–1969 (2009).
[CrossRef] [PubMed]

2008

A. I. Shevchuk, P. Hobson, M. J. Lab, D. Klenerman, N. Krauzewicz, and Y. E. Korchev, “Imaging single virus particles on the surface of cell membranes by high-resolution scanning surface confocal microscopy,” Biophys. J.94, 4089–4094 (2008).
[CrossRef] [PubMed]

B. Wu, Y. Chen, and J. D. Muller, “Fluorescence correlation spectroscopy of finite-sized particles,” Biophys. J.94, 2800–2808 (2008).
[CrossRef]

2006

F. Grom, J. Kentsch, T. Muller, T. Schnelle, and M. Stelzle, “Accumulation and trapping of hepatitis a virus particles by electrohydrodynamic flow and dielectrophoresis,” Electrophoresis27, 1386–1393 (2006).
[CrossRef] [PubMed]

2005

F. Meng and H. Ma, “Fluorescence correlation spectroscopy analysis of diffusion in a laser gradient field: A numerical approach,” J. Phys. Chem. B109, 5580–5585 (2005).
[CrossRef]

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy,” Phys. Rev. E72, 021408 (2005).
[CrossRef]

2004

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Optical assembling dynamics of individual polymer nanospheres investigated by single-particle fluorescence detection,” Phys. Rev. E70, 061410 (2004).
[CrossRef]

2002

S. T. Hess, S. Huang, A. A. Heikal, and W. W. Webb, “Biological and chemical applications of fluorescence correlation spectroscopy: A review,” Biochemistry41, 697–705 (2002).
[CrossRef] [PubMed]

1998

M. A. Osborne, S. Balasubramanian, W. S. Furey, and D. Klenerman, “Optically biased diffusion of single molecules studied by confocal fluorescence microscopy,” J. Phys. Chem. B102, 3160–3167 (1998).
[CrossRef]

1997

S. D. Fuller, T. Wilk, B. E. Gowen, H.-G. Krausslich, and V. M. Vogt, “Cryo-electron microscopy reveals ordered domains in the immature HIV-1 particle,” Curr. Biol.7, 729–738 (1997).
[CrossRef] [PubMed]

1974

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. conceptual basis and theory,” Biopolymers13, 1–27 (1974).
[CrossRef]

1972

D. Magde, E. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett.29, 705–708 (1972).
[CrossRef]

Balasubramanian, S.

M. A. Osborne, S. Balasubramanian, W. S. Furey, and D. Klenerman, “Optically biased diffusion of single molecules studied by confocal fluorescence microscopy,” J. Phys. Chem. B102, 3160–3167 (1998).
[CrossRef]

Chen, Y.

Y. Chen, B. Wu, K. Musier-Forsyth, L. M. Mansky, and J. D. Mueller, “Fluorescence fluctuation spectroscopy on viral-like particles reveals variable gag stoichiometry,” Biophys. J.96, 1961–1969 (2009).
[CrossRef] [PubMed]

B. Wu, Y. Chen, and J. D. Muller, “Fluorescence correlation spectroscopy of finite-sized particles,” Biophys. J.94, 2800–2808 (2008).
[CrossRef]

Chou, C. F.

K. T. Liao and C. F. Chou, “Nanoscale molecular traps and dams for ultrafast protein enrichment in high-conductivity buffers,” J. Am. Chem. Soc.134, 8742–8745 (2012).
[CrossRef] [PubMed]

Cohen, J. A.

Elson, E.

D. Magde, E. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett.29, 705–708 (1972).
[CrossRef]

Elson, E. L.

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. conceptual basis and theory,” Biopolymers13, 1–27 (1974).
[CrossRef]

Fuller, S. D.

S. D. Fuller, T. Wilk, B. E. Gowen, H.-G. Krausslich, and V. M. Vogt, “Cryo-electron microscopy reveals ordered domains in the immature HIV-1 particle,” Curr. Biol.7, 729–738 (1997).
[CrossRef] [PubMed]

Furey, W. S.

M. A. Osborne, S. Balasubramanian, W. S. Furey, and D. Klenerman, “Optically biased diffusion of single molecules studied by confocal fluorescence microscopy,” J. Phys. Chem. B102, 3160–3167 (1998).
[CrossRef]

Gowen, B. E.

S. D. Fuller, T. Wilk, B. E. Gowen, H.-G. Krausslich, and V. M. Vogt, “Cryo-electron microscopy reveals ordered domains in the immature HIV-1 particle,” Curr. Biol.7, 729–738 (1997).
[CrossRef] [PubMed]

Grom, F.

F. Grom, J. Kentsch, T. Muller, T. Schnelle, and M. Stelzle, “Accumulation and trapping of hepatitis a virus particles by electrohydrodynamic flow and dielectrophoresis,” Electrophoresis27, 1386–1393 (2006).
[CrossRef] [PubMed]

Heikal, A. A.

S. T. Hess, S. Huang, A. A. Heikal, and W. W. Webb, “Biological and chemical applications of fluorescence correlation spectroscopy: A review,” Biochemistry41, 697–705 (2002).
[CrossRef] [PubMed]

Hess, S. T.

S. T. Hess, S. Huang, A. A. Heikal, and W. W. Webb, “Biological and chemical applications of fluorescence correlation spectroscopy: A review,” Biochemistry41, 697–705 (2002).
[CrossRef] [PubMed]

Hobson, P.

A. I. Shevchuk, P. Hobson, M. J. Lab, D. Klenerman, N. Krauzewicz, and Y. E. Korchev, “Imaging single virus particles on the surface of cell membranes by high-resolution scanning surface confocal microscopy,” Biophys. J.94, 4089–4094 (2008).
[CrossRef] [PubMed]

Hosokawa, C.

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy,” Phys. Rev. E72, 021408 (2005).
[CrossRef]

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Optical assembling dynamics of individual polymer nanospheres investigated by single-particle fluorescence detection,” Phys. Rev. E70, 061410 (2004).
[CrossRef]

Huang, L.

L. Ling, F. Zhou, L. Huang, and Z.-Y. Li, “Optical forces on arbitrary shaped particles in optical tweezers,” J. Appl. Phys.108, 073110–8 (2010).
[CrossRef]

Huang, S.

S. T. Hess, S. Huang, A. A. Heikal, and W. W. Webb, “Biological and chemical applications of fluorescence correlation spectroscopy: A review,” Biochemistry41, 697–705 (2002).
[CrossRef] [PubMed]

Huttmann, G.

J. Wang, Z. Li, C. P. Yao, F. Xue, Z. X. Zhang, and G. Huttmann, “Brownian diffusion of gold nanoparticles in an optical trap studied by fluorescence correlation spectroscopy,” Laser Phys.21, 130–136 (2011).
[CrossRef]

Ito, S.

S. Ito, N. Toitani, H. Yamauchi, and H. Miyasaka, “Evaluation of radiation force acting on macromolecules by combination of brownian dynamics simulation with fluorescence correlation spectroscopy,” Phys. Rev. E81, 061402 (2010).
[CrossRef]

Junio, J.

J. Junio, J. Ng, J. A. Cohen, Z. Lin, and H. D. Ou-Yang, “Ensemble method to measure the potential energy of nanoparticles in an optical trap,” Opt. Lett.36, 1497–1499 (2011).
[CrossRef] [PubMed]

J. Junio, S. Park, M.-W. Kim, and H. D. Ou-Yang, “Optical bottles: A quantitative analysis of optically confined nanoparticle ensembles in suspension,” Solid State Commun.150, 1003–1008 (2010).
[CrossRef]

Kentsch, J.

F. Grom, J. Kentsch, T. Muller, T. Schnelle, and M. Stelzle, “Accumulation and trapping of hepatitis a virus particles by electrohydrodynamic flow and dielectrophoresis,” Electrophoresis27, 1386–1393 (2006).
[CrossRef] [PubMed]

Kim, M.-W.

J. Junio, S. Park, M.-W. Kim, and H. D. Ou-Yang, “Optical bottles: A quantitative analysis of optically confined nanoparticle ensembles in suspension,” Solid State Commun.150, 1003–1008 (2010).
[CrossRef]

Klenerman, D.

A. I. Shevchuk, P. Hobson, M. J. Lab, D. Klenerman, N. Krauzewicz, and Y. E. Korchev, “Imaging single virus particles on the surface of cell membranes by high-resolution scanning surface confocal microscopy,” Biophys. J.94, 4089–4094 (2008).
[CrossRef] [PubMed]

M. A. Osborne, S. Balasubramanian, W. S. Furey, and D. Klenerman, “Optically biased diffusion of single molecules studied by confocal fluorescence microscopy,” J. Phys. Chem. B102, 3160–3167 (1998).
[CrossRef]

Korchev, Y. E.

A. I. Shevchuk, P. Hobson, M. J. Lab, D. Klenerman, N. Krauzewicz, and Y. E. Korchev, “Imaging single virus particles on the surface of cell membranes by high-resolution scanning surface confocal microscopy,” Biophys. J.94, 4089–4094 (2008).
[CrossRef] [PubMed]

Krausslich, H.-G.

S. D. Fuller, T. Wilk, B. E. Gowen, H.-G. Krausslich, and V. M. Vogt, “Cryo-electron microscopy reveals ordered domains in the immature HIV-1 particle,” Curr. Biol.7, 729–738 (1997).
[CrossRef] [PubMed]

Krauzewicz, N.

A. I. Shevchuk, P. Hobson, M. J. Lab, D. Klenerman, N. Krauzewicz, and Y. E. Korchev, “Imaging single virus particles on the surface of cell membranes by high-resolution scanning surface confocal microscopy,” Biophys. J.94, 4089–4094 (2008).
[CrossRef] [PubMed]

Lab, M. J.

A. I. Shevchuk, P. Hobson, M. J. Lab, D. Klenerman, N. Krauzewicz, and Y. E. Korchev, “Imaging single virus particles on the surface of cell membranes by high-resolution scanning surface confocal microscopy,” Biophys. J.94, 4089–4094 (2008).
[CrossRef] [PubMed]

Li, Z.

J. Wang, Z. Li, C. P. Yao, F. Xue, Z. X. Zhang, and G. Huttmann, “Brownian diffusion of gold nanoparticles in an optical trap studied by fluorescence correlation spectroscopy,” Laser Phys.21, 130–136 (2011).
[CrossRef]

Li, Z.-Y.

L. Ling, F. Zhou, L. Huang, and Z.-Y. Li, “Optical forces on arbitrary shaped particles in optical tweezers,” J. Appl. Phys.108, 073110–8 (2010).
[CrossRef]

Liao, K. T.

K. T. Liao and C. F. Chou, “Nanoscale molecular traps and dams for ultrafast protein enrichment in high-conductivity buffers,” J. Am. Chem. Soc.134, 8742–8745 (2012).
[CrossRef] [PubMed]

Lin, Z.

Ling, L.

L. Ling, F. Zhou, L. Huang, and Z.-Y. Li, “Optical forces on arbitrary shaped particles in optical tweezers,” J. Appl. Phys.108, 073110–8 (2010).
[CrossRef]

Ma, H.

F. Meng and H. Ma, “Fluorescence correlation spectroscopy analysis of diffusion in a laser gradient field: A numerical approach,” J. Phys. Chem. B109, 5580–5585 (2005).
[CrossRef]

Magde, D.

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. conceptual basis and theory,” Biopolymers13, 1–27 (1974).
[CrossRef]

D. Magde, E. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett.29, 705–708 (1972).
[CrossRef]

Mansky, L. M.

Y. Chen, B. Wu, K. Musier-Forsyth, L. M. Mansky, and J. D. Mueller, “Fluorescence fluctuation spectroscopy on viral-like particles reveals variable gag stoichiometry,” Biophys. J.96, 1961–1969 (2009).
[CrossRef] [PubMed]

Masuhara, H.

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy,” Phys. Rev. E72, 021408 (2005).
[CrossRef]

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Optical assembling dynamics of individual polymer nanospheres investigated by single-particle fluorescence detection,” Phys. Rev. E70, 061410 (2004).
[CrossRef]

Meng, F.

F. Meng and H. Ma, “Fluorescence correlation spectroscopy analysis of diffusion in a laser gradient field: A numerical approach,” J. Phys. Chem. B109, 5580–5585 (2005).
[CrossRef]

Miyasaka, H.

S. Ito, N. Toitani, H. Yamauchi, and H. Miyasaka, “Evaluation of radiation force acting on macromolecules by combination of brownian dynamics simulation with fluorescence correlation spectroscopy,” Phys. Rev. E81, 061402 (2010).
[CrossRef]

Mueller, J. D.

Y. Chen, B. Wu, K. Musier-Forsyth, L. M. Mansky, and J. D. Mueller, “Fluorescence fluctuation spectroscopy on viral-like particles reveals variable gag stoichiometry,” Biophys. J.96, 1961–1969 (2009).
[CrossRef] [PubMed]

Muller, J. D.

B. Wu, Y. Chen, and J. D. Muller, “Fluorescence correlation spectroscopy of finite-sized particles,” Biophys. J.94, 2800–2808 (2008).
[CrossRef]

Muller, T.

F. Grom, J. Kentsch, T. Muller, T. Schnelle, and M. Stelzle, “Accumulation and trapping of hepatitis a virus particles by electrohydrodynamic flow and dielectrophoresis,” Electrophoresis27, 1386–1393 (2006).
[CrossRef] [PubMed]

Musier-Forsyth, K.

Y. Chen, B. Wu, K. Musier-Forsyth, L. M. Mansky, and J. D. Mueller, “Fluorescence fluctuation spectroscopy on viral-like particles reveals variable gag stoichiometry,” Biophys. J.96, 1961–1969 (2009).
[CrossRef] [PubMed]

Ng, J.

Osborne, M. A.

M. A. Osborne, S. Balasubramanian, W. S. Furey, and D. Klenerman, “Optically biased diffusion of single molecules studied by confocal fluorescence microscopy,” J. Phys. Chem. B102, 3160–3167 (1998).
[CrossRef]

Ou-Yang, H. D.

J. Junio, J. Ng, J. A. Cohen, Z. Lin, and H. D. Ou-Yang, “Ensemble method to measure the potential energy of nanoparticles in an optical trap,” Opt. Lett.36, 1497–1499 (2011).
[CrossRef] [PubMed]

J. Junio, S. Park, M.-W. Kim, and H. D. Ou-Yang, “Optical bottles: A quantitative analysis of optically confined nanoparticle ensembles in suspension,” Solid State Commun.150, 1003–1008 (2010).
[CrossRef]

Park, S.

J. Junio, S. Park, M.-W. Kim, and H. D. Ou-Yang, “Optical bottles: A quantitative analysis of optically confined nanoparticle ensembles in suspension,” Solid State Commun.150, 1003–1008 (2010).
[CrossRef]

Schnelle, T.

F. Grom, J. Kentsch, T. Muller, T. Schnelle, and M. Stelzle, “Accumulation and trapping of hepatitis a virus particles by electrohydrodynamic flow and dielectrophoresis,” Electrophoresis27, 1386–1393 (2006).
[CrossRef] [PubMed]

Shevchuk, A. I.

A. I. Shevchuk, P. Hobson, M. J. Lab, D. Klenerman, N. Krauzewicz, and Y. E. Korchev, “Imaging single virus particles on the surface of cell membranes by high-resolution scanning surface confocal microscopy,” Biophys. J.94, 4089–4094 (2008).
[CrossRef] [PubMed]

Stelzle, M.

F. Grom, J. Kentsch, T. Muller, T. Schnelle, and M. Stelzle, “Accumulation and trapping of hepatitis a virus particles by electrohydrodynamic flow and dielectrophoresis,” Electrophoresis27, 1386–1393 (2006).
[CrossRef] [PubMed]

Toitani, N.

S. Ito, N. Toitani, H. Yamauchi, and H. Miyasaka, “Evaluation of radiation force acting on macromolecules by combination of brownian dynamics simulation with fluorescence correlation spectroscopy,” Phys. Rev. E81, 061402 (2010).
[CrossRef]

Vogt, V. M.

S. D. Fuller, T. Wilk, B. E. Gowen, H.-G. Krausslich, and V. M. Vogt, “Cryo-electron microscopy reveals ordered domains in the immature HIV-1 particle,” Curr. Biol.7, 729–738 (1997).
[CrossRef] [PubMed]

Wang, J.

J. Wang, Z. Li, C. P. Yao, F. Xue, Z. X. Zhang, and G. Huttmann, “Brownian diffusion of gold nanoparticles in an optical trap studied by fluorescence correlation spectroscopy,” Laser Phys.21, 130–136 (2011).
[CrossRef]

Webb, W. W.

S. T. Hess, S. Huang, A. A. Heikal, and W. W. Webb, “Biological and chemical applications of fluorescence correlation spectroscopy: A review,” Biochemistry41, 697–705 (2002).
[CrossRef] [PubMed]

D. Magde, E. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett.29, 705–708 (1972).
[CrossRef]

Wilk, T.

S. D. Fuller, T. Wilk, B. E. Gowen, H.-G. Krausslich, and V. M. Vogt, “Cryo-electron microscopy reveals ordered domains in the immature HIV-1 particle,” Curr. Biol.7, 729–738 (1997).
[CrossRef] [PubMed]

Wu, B.

Y. Chen, B. Wu, K. Musier-Forsyth, L. M. Mansky, and J. D. Mueller, “Fluorescence fluctuation spectroscopy on viral-like particles reveals variable gag stoichiometry,” Biophys. J.96, 1961–1969 (2009).
[CrossRef] [PubMed]

B. Wu, Y. Chen, and J. D. Muller, “Fluorescence correlation spectroscopy of finite-sized particles,” Biophys. J.94, 2800–2808 (2008).
[CrossRef]

Xue, F.

J. Wang, Z. Li, C. P. Yao, F. Xue, Z. X. Zhang, and G. Huttmann, “Brownian diffusion of gold nanoparticles in an optical trap studied by fluorescence correlation spectroscopy,” Laser Phys.21, 130–136 (2011).
[CrossRef]

Yamauchi, H.

S. Ito, N. Toitani, H. Yamauchi, and H. Miyasaka, “Evaluation of radiation force acting on macromolecules by combination of brownian dynamics simulation with fluorescence correlation spectroscopy,” Phys. Rev. E81, 061402 (2010).
[CrossRef]

Yao, C. P.

J. Wang, Z. Li, C. P. Yao, F. Xue, Z. X. Zhang, and G. Huttmann, “Brownian diffusion of gold nanoparticles in an optical trap studied by fluorescence correlation spectroscopy,” Laser Phys.21, 130–136 (2011).
[CrossRef]

Yoshikawa, H.

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy,” Phys. Rev. E72, 021408 (2005).
[CrossRef]

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Optical assembling dynamics of individual polymer nanospheres investigated by single-particle fluorescence detection,” Phys. Rev. E70, 061410 (2004).
[CrossRef]

Zhang, Z. X.

J. Wang, Z. Li, C. P. Yao, F. Xue, Z. X. Zhang, and G. Huttmann, “Brownian diffusion of gold nanoparticles in an optical trap studied by fluorescence correlation spectroscopy,” Laser Phys.21, 130–136 (2011).
[CrossRef]

Zhou, F.

L. Ling, F. Zhou, L. Huang, and Z.-Y. Li, “Optical forces on arbitrary shaped particles in optical tweezers,” J. Appl. Phys.108, 073110–8 (2010).
[CrossRef]

Biochemistry

S. T. Hess, S. Huang, A. A. Heikal, and W. W. Webb, “Biological and chemical applications of fluorescence correlation spectroscopy: A review,” Biochemistry41, 697–705 (2002).
[CrossRef] [PubMed]

Biophys. J.

B. Wu, Y. Chen, and J. D. Muller, “Fluorescence correlation spectroscopy of finite-sized particles,” Biophys. J.94, 2800–2808 (2008).
[CrossRef]

A. I. Shevchuk, P. Hobson, M. J. Lab, D. Klenerman, N. Krauzewicz, and Y. E. Korchev, “Imaging single virus particles on the surface of cell membranes by high-resolution scanning surface confocal microscopy,” Biophys. J.94, 4089–4094 (2008).
[CrossRef] [PubMed]

Y. Chen, B. Wu, K. Musier-Forsyth, L. M. Mansky, and J. D. Mueller, “Fluorescence fluctuation spectroscopy on viral-like particles reveals variable gag stoichiometry,” Biophys. J.96, 1961–1969 (2009).
[CrossRef] [PubMed]

Biopolymers

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. conceptual basis and theory,” Biopolymers13, 1–27 (1974).
[CrossRef]

Curr. Biol.

S. D. Fuller, T. Wilk, B. E. Gowen, H.-G. Krausslich, and V. M. Vogt, “Cryo-electron microscopy reveals ordered domains in the immature HIV-1 particle,” Curr. Biol.7, 729–738 (1997).
[CrossRef] [PubMed]

Electrophoresis

F. Grom, J. Kentsch, T. Muller, T. Schnelle, and M. Stelzle, “Accumulation and trapping of hepatitis a virus particles by electrohydrodynamic flow and dielectrophoresis,” Electrophoresis27, 1386–1393 (2006).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

K. T. Liao and C. F. Chou, “Nanoscale molecular traps and dams for ultrafast protein enrichment in high-conductivity buffers,” J. Am. Chem. Soc.134, 8742–8745 (2012).
[CrossRef] [PubMed]

J. Appl. Phys.

L. Ling, F. Zhou, L. Huang, and Z.-Y. Li, “Optical forces on arbitrary shaped particles in optical tweezers,” J. Appl. Phys.108, 073110–8 (2010).
[CrossRef]

J. Phys. Chem. B

F. Meng and H. Ma, “Fluorescence correlation spectroscopy analysis of diffusion in a laser gradient field: A numerical approach,” J. Phys. Chem. B109, 5580–5585 (2005).
[CrossRef]

M. A. Osborne, S. Balasubramanian, W. S. Furey, and D. Klenerman, “Optically biased diffusion of single molecules studied by confocal fluorescence microscopy,” J. Phys. Chem. B102, 3160–3167 (1998).
[CrossRef]

Laser Phys.

J. Wang, Z. Li, C. P. Yao, F. Xue, Z. X. Zhang, and G. Huttmann, “Brownian diffusion of gold nanoparticles in an optical trap studied by fluorescence correlation spectroscopy,” Laser Phys.21, 130–136 (2011).
[CrossRef]

Opt. Lett.

Phys. Rev. E

S. Ito, N. Toitani, H. Yamauchi, and H. Miyasaka, “Evaluation of radiation force acting on macromolecules by combination of brownian dynamics simulation with fluorescence correlation spectroscopy,” Phys. Rev. E81, 061402 (2010).
[CrossRef]

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy,” Phys. Rev. E72, 021408 (2005).
[CrossRef]

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Optical assembling dynamics of individual polymer nanospheres investigated by single-particle fluorescence detection,” Phys. Rev. E70, 061410 (2004).
[CrossRef]

Phys. Rev. Lett.

D. Magde, E. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett.29, 705–708 (1972).
[CrossRef]

Solid State Commun.

J. Junio, S. Park, M.-W. Kim, and H. D. Ou-Yang, “Optical bottles: A quantitative analysis of optically confined nanoparticle ensembles in suspension,” Solid State Commun.150, 1003–1008 (2010).
[CrossRef]

Other

Assuming the trapping potential has an isotropic Gaussian distribution U(r) = U(0)exp(−2r2/R2), where R is the beam waist of the 1064nm trapping laser, estimated to be 0.97 μm. The experimentally determined trapping potential Utrap is the integration of U(r) in the illumination volume with beam waist 0.23 μm. Therefore, Utrap= 0.978U(0).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Illustration of the experiment apparatus.

Fig. 2
Fig. 2

FCS autocorrelation functions of 0.01% (v/v) 110nm PS particle suspensions at selected trapping laser powers. Each curve represents an average of 10 measurements.

Fig. 3
Fig. 3

The experimental ACFs (black) are fitted using Eq. (2) (red) for trapping laser powers of (a) 0mW ; (b) 6mW ; (c) 12mW ; (d) 18mW.

Fig. 4
Fig. 4

(a) G ( 0 ) trap 1 from 3(a) is found to increase linearly with 〈Ntrap〉 measured by 〈Ftrap〉/ε; the dashed line is a fit with slope = 1 and intercept = 0. (b) Semi-natural log plot of G ( 0 ) trap 1 / G ( 0 ) 0 1 vs. the trapping power suggests the average number of particles in the optical trap follows a Boltzmann distribution. (c) G ( 0 ) trap 1 / N trap = 1 for trapping energies up to 1.8kBT. (d) The decay time τ = w 0 2 / 4 D decreases with increasing trapping laser power.

Fig. 5
Fig. 5

(a) A SEM image of one VLP. Diameter of the particles is 110 ± 11nm. (b) A fluorescent image of VLPs under 100X objective. (c) Autocorrelation curve of VLPs in culture medium, from which a hydrodynamic size of 115 ± 14nm is obtained. All standard deviation represents 10 independent measurements.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

G ( τ ) = δ F ( t ) δ F ( t + τ ) F ( t ) 2 ,
G ( τ ) = Δ N 2 N 2 ( 1 + 4 D τ w 0 2 ) 1 ( 1 + 4 D τ z 0 2 ) 1 / 2
G ( 0 ) = N 1
N trap = N 0 exp ( U trap / k B T )

Metrics