Abstract

Custom high-resolution high-speed anterior segment spectral domain Optical Coherence Tomography (OCT) provided with automatic quantification and distortion correction algorithms was used to characterize three-dimensionally (3-D) the human crystalline lens in vivo in four subjects, for accommodative demands between 0 to 6 D in 1 D steps. Anterior and posterior lens radii of curvature decreased with accommodative demand at rates of 0.73 and 0.20 mm/D, resulting in an increase of the estimated optical power of the eye of 0.62 D per diopter of accommodative demand. Dynamic fluctuations in crystalline lens radii of curvature, anterior chamber depth and lens thickness were also estimated from dynamic 2-D OCT images (14 Hz), acquired during 5-s of steady fixation, for different accommodative demands. Estimates of the eye power from dynamical geometrical measurements revealed an increase of the fluctuations of the accommodative response from 0.07 D to 0.47 D between 0 and 6 D (0.044 D per D of accommodative demand). A sensitivity analysis showed that the fluctuations of accommodation were driven by dynamic changes in the lens surfaces, particularly in the posterior lens surface.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. C. Locke and W. Somers, “A comparison study of dynamic retinoscopy techniques,” Optom. Vis. Sci.66(8), 540–544 (1989).
    [CrossRef] [PubMed]
  2. E. A. H. Mallen, J. S. Wolffsohn, B. Gilmartin, and S. Tsujimura, “Clinical evaluation of the Shin-Nippon SRW-5000 autorefractor in adults,” Ophthalmic Physiol. Opt.21(2), 101–107 (2001).
    [CrossRef] [PubMed]
  3. J. C. He, S. A. Burns, and S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res.40(1), 41–48 (2000).
    [CrossRef] [PubMed]
  4. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A18(3), 497–506 (2001).
    [CrossRef] [PubMed]
  5. S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis.5(5), 466–477 (2005), http://www.journalofvision.org/5/5/7 .
    [CrossRef] [PubMed]
  6. K. M. Hampson, C. Paterson, C. Dainty, and E. A. Mallen, “Adaptive optics system for investigation of the effect of the aberration dynamics of the human eye on steady-state accommodation control,” J. Opt. Soc. Am. A23(5), 1082–1088 (2006).
    [CrossRef] [PubMed]
  7. E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vis.9(6), 1–15 (2009), http://www.journalofvision.org/9/6/4 .
    [CrossRef] [PubMed]
  8. W. N. Charman and G. Heron, “Fluctuations in accommodation: A review,” Ophthalmic Physiol. Opt.8(2), 153–164 (1988).
    [CrossRef] [PubMed]
  9. L. S. Gray, B. Winn, and B. Gilmartin, “Accommodative microfluctuations and pupil diameter,” Vision Res.33(15), 2083–2090 (1993).
    [CrossRef] [PubMed]
  10. J. C. Kotulak and C. M. Schor, “A computational model of the error detector of human visual accommodation,” Biol. Cybern.54(3), 189–194 (1986a).
    [CrossRef] [PubMed]
  11. C. Miege and P. Denieul, “Mean response and oscillations of accommodation for various stimulus vergences in relation to accommodation feedback control,” Ophthalmic Physiol. Opt.8(2), 165–171 (1988).
    [CrossRef] [PubMed]
  12. L. F. Garner and M. K. Yap, “Changes in ocular dimensions and refraction with accommodation,” Ophthalmic Physiol. Opt.17(1), 12–17 (1997).
    [CrossRef] [PubMed]
  13. P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis.6(10), 1057–1067 (2006), http://www.journalofvision.org/6/10/5 .
    [CrossRef] [PubMed]
  14. N. Brown, “The change in shape and internal form of the lens of the eye on accommodation,” Exp. Eye Res.15(4), 441–459 (1973).
    [CrossRef] [PubMed]
  15. J. F. Koretz, C. A. Cook, and P. L. Kaufman, “Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus,” Invest. Ophthalmol. Vis. Sci.38(3), 569–578 (1997).
    [PubMed]
  16. J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A21(3), 346–354 (2004).
    [CrossRef] [PubMed]
  17. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res.45(1), 117–132 (2005).
    [CrossRef] [PubMed]
  18. P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg.25(5), 421–428 (2009).
    [CrossRef] [PubMed]
  19. S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis.11(3), 19 (2011), http://www.journalofvision.org/11/3/19 .
    [CrossRef] [PubMed]
  20. A. S. Vilupuru and A. Glasser, “Dynamic accommodative changes in rhesus monkey eyes assessed with A-scan ultrasound biometry,” Optom. Vis. Sci.80(5), 383–394 (2003).
    [CrossRef] [PubMed]
  21. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  22. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009).
    [CrossRef] [PubMed]
  23. M. C. M. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt.12(6), 064023 (2007).
    [CrossRef] [PubMed]
  24. R. Yadav, K. Ahmad, and G. Yoon, “Scanning system design for large scan depth anterior segment optical coherence tomography,” Opt. Lett.35(11), 1774–1776 (2010).
    [CrossRef] [PubMed]
  25. M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010).
    [CrossRef] [PubMed]
  26. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt.48(35), 6708–6715 (2009).
    [CrossRef] [PubMed]
  27. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express18(3), 2782–2796 (2010).
    [CrossRef] [PubMed]
  28. S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express2(12), 3232–3247 (2011).
    [CrossRef] [PubMed]
  29. K. Karnowski, B. J. Kaluzny, M. Szkulmowski, M. Gora, and M. Wojtkowski, “Corneal topography with high-speed swept source OCT in clinical examination,” Biomed. Opt. Express2(9), 2709–2720 (2011).
    [CrossRef] [PubMed]
  30. S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express3(10), 2471–2488 (2012).
    [CrossRef] [PubMed]
  31. S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express4(3), 387–396 (2013).
    [CrossRef] [PubMed]
  32. H. Furukawa, H. Hiro-Oka, N. Satoh, R. Yoshimura, D. Choi, M. Nakanishi, A. Igarashi, H. Ishikawa, K. Ohbayashi, and K. Shimizu, “Full-range imaging of eye accommodation by high-speed long-depth range optical frequency domain imaging,” Biomed. Opt. Express1(5), 1491–1501 (2010).
    [CrossRef] [PubMed]
  33. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009).
    [CrossRef] [PubMed]
  34. C. Zhou, J. Wang, and S. Jiao, “Dual channel dual focus optical coherence tomography for imaging accommodation of the eye,” Opt. Express17(11), 8947–8955 (2009).
    [CrossRef] [PubMed]
  35. C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express20(6), 6109–6115 (2012).
    [CrossRef] [PubMed]
  36. Y. Shao, A. Tao, H. Jiang, M. Shen, J. Zhong, F. Lu, and J. Wang, “Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation,” Biomed. Opt. Express4(3), 466–480 (2013).
    [CrossRef] [PubMed]
  37. M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using Spectral-Domain OCT with an optical switch,” Biomed. Opt. Express3(7), 1506–1520 (2012).
    [CrossRef] [PubMed]
  38. C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology119(12), 2479–2485 (2012).
    [CrossRef] [PubMed]
  39. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express3(11), 2733–2751 (2012).
    [CrossRef] [PubMed]
  40. N. Satoh, K. Shimizu, A. Goto, A. Igarashi, K. Kamiya, and K. Ohbayashi, “Accommodative changes in human eye observed by Kitasato anterior segment optical coherence tomography,” Jpn. J. Ophthalmol.57(1), 113–119 (2013).
    [CrossRef] [PubMed]
  41. S. Ortiz, P. Pérez-Merino, N. Alejandre, E. Gambra, I. Jimenez-Alfaro, and S. Marcos, “Quantitative OCT-based corneal topography in keratoconus with intracorneal ring segments,” Biomed. Opt. Express3(5), 814–824 (2012).
    [CrossRef] [PubMed]
  42. S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
    [CrossRef] [PubMed]
  43. E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci.85(12), 1179–1184 (2008).
    [CrossRef] [PubMed]
  44. A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and Gradient Refractive Index in the accommodative changes of spherical aberration in non-human primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci.in press.
  45. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001).
    [CrossRef] [PubMed]
  46. W. N. Charman and J. Tucker, “Dependence of accommodation response on the spatial frequency spectrum of the observed object,” Vision Res.17(1), 129–139 (1977).
    [CrossRef] [PubMed]
  47. J. F. McClelland and K. J. Saunders, “The repeatability and validity of dynamic retinoscopy in assessing the accommodative response,” Ophthalmic Physiol. Opt.23(3), 243–250 (2003).
    [CrossRef] [PubMed]
  48. W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci.39(11), 2140–2147 (1998).
    [PubMed]
  49. G. L. van der Heijde, A. P. A. Beers, and M. Dubbelman, “Microfluctuations of steady-state accommodation measured with ultrasonography,” Ophthalmic Physiol. Opt.16(3), 216–221 (1996).
    [CrossRef] [PubMed]
  50. J. C. Kotulak and C. M. Schor, “Temporal variations in accommodation during steady-state conditions,” J. Opt. Soc. Am. A3(2), 223–227 (1986).
    [CrossRef] [PubMed]

2013 (3)

2012 (6)

2011 (3)

2010 (4)

2009 (6)

2008 (2)

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci.85(12), 1179–1184 (2008).
[CrossRef] [PubMed]

2007 (1)

M. C. M. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt.12(6), 064023 (2007).
[CrossRef] [PubMed]

2006 (2)

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis.6(10), 1057–1067 (2006), http://www.journalofvision.org/6/10/5 .
[CrossRef] [PubMed]

K. M. Hampson, C. Paterson, C. Dainty, and E. A. Mallen, “Adaptive optics system for investigation of the effect of the aberration dynamics of the human eye on steady-state accommodation control,” J. Opt. Soc. Am. A23(5), 1082–1088 (2006).
[CrossRef] [PubMed]

2005 (2)

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res.45(1), 117–132 (2005).
[CrossRef] [PubMed]

S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis.5(5), 466–477 (2005), http://www.journalofvision.org/5/5/7 .
[CrossRef] [PubMed]

2004 (1)

2003 (2)

J. F. McClelland and K. J. Saunders, “The repeatability and validity of dynamic retinoscopy in assessing the accommodative response,” Ophthalmic Physiol. Opt.23(3), 243–250 (2003).
[CrossRef] [PubMed]

A. S. Vilupuru and A. Glasser, “Dynamic accommodative changes in rhesus monkey eyes assessed with A-scan ultrasound biometry,” Optom. Vis. Sci.80(5), 383–394 (2003).
[CrossRef] [PubMed]

2001 (3)

E. A. H. Mallen, J. S. Wolffsohn, B. Gilmartin, and S. Tsujimura, “Clinical evaluation of the Shin-Nippon SRW-5000 autorefractor in adults,” Ophthalmic Physiol. Opt.21(2), 101–107 (2001).
[CrossRef] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A18(3), 497–506 (2001).
[CrossRef] [PubMed]

2000 (1)

J. C. He, S. A. Burns, and S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res.40(1), 41–48 (2000).
[CrossRef] [PubMed]

1998 (1)

W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci.39(11), 2140–2147 (1998).
[PubMed]

1997 (2)

J. F. Koretz, C. A. Cook, and P. L. Kaufman, “Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus,” Invest. Ophthalmol. Vis. Sci.38(3), 569–578 (1997).
[PubMed]

L. F. Garner and M. K. Yap, “Changes in ocular dimensions and refraction with accommodation,” Ophthalmic Physiol. Opt.17(1), 12–17 (1997).
[CrossRef] [PubMed]

1996 (1)

G. L. van der Heijde, A. P. A. Beers, and M. Dubbelman, “Microfluctuations of steady-state accommodation measured with ultrasonography,” Ophthalmic Physiol. Opt.16(3), 216–221 (1996).
[CrossRef] [PubMed]

1993 (1)

L. S. Gray, B. Winn, and B. Gilmartin, “Accommodative microfluctuations and pupil diameter,” Vision Res.33(15), 2083–2090 (1993).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1989 (1)

L. C. Locke and W. Somers, “A comparison study of dynamic retinoscopy techniques,” Optom. Vis. Sci.66(8), 540–544 (1989).
[CrossRef] [PubMed]

1988 (2)

W. N. Charman and G. Heron, “Fluctuations in accommodation: A review,” Ophthalmic Physiol. Opt.8(2), 153–164 (1988).
[CrossRef] [PubMed]

C. Miege and P. Denieul, “Mean response and oscillations of accommodation for various stimulus vergences in relation to accommodation feedback control,” Ophthalmic Physiol. Opt.8(2), 165–171 (1988).
[CrossRef] [PubMed]

1986 (2)

J. C. Kotulak and C. M. Schor, “A computational model of the error detector of human visual accommodation,” Biol. Cybern.54(3), 189–194 (1986a).
[CrossRef] [PubMed]

J. C. Kotulak and C. M. Schor, “Temporal variations in accommodation during steady-state conditions,” J. Opt. Soc. Am. A3(2), 223–227 (1986).
[CrossRef] [PubMed]

1977 (1)

W. N. Charman and J. Tucker, “Dependence of accommodation response on the spatial frequency spectrum of the observed object,” Vision Res.17(1), 129–139 (1977).
[CrossRef] [PubMed]

1973 (1)

N. Brown, “The change in shape and internal form of the lens of the eye on accommodation,” Exp. Eye Res.15(4), 441–459 (1973).
[CrossRef] [PubMed]

Ahmad, K.

Alejandre, N.

Aragón, J. L.

Arrieta, E.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and Gradient Refractive Index in the accommodative changes of spherical aberration in non-human primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci.in press.

Artal, P.

Atchison, D. A.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis.11(3), 19 (2011), http://www.journalofvision.org/11/3/19 .
[CrossRef] [PubMed]

Beers, A. P. A.

G. L. van der Heijde, A. P. A. Beers, and M. Dubbelman, “Microfluctuations of steady-state accommodation measured with ultrasonography,” Ophthalmic Physiol. Opt.16(3), 216–221 (1996).
[CrossRef] [PubMed]

Birkenfeld, J.

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express4(3), 387–396 (2013).
[CrossRef] [PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and Gradient Refractive Index in the accommodative changes of spherical aberration in non-human primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci.in press.

Borja, D.

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

Brown, N.

N. Brown, “The change in shape and internal form of the lens of the eye on accommodation,” Exp. Eye Res.15(4), 441–459 (1973).
[CrossRef] [PubMed]

Burns, S. A.

J. C. He, S. A. Burns, and S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res.40(1), 41–48 (2000).
[CrossRef] [PubMed]

Cable, A. E.

Chai, X.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Charman, W. N.

W. N. Charman and G. Heron, “Fluctuations in accommodation: A review,” Ophthalmic Physiol. Opt.8(2), 153–164 (1988).
[CrossRef] [PubMed]

W. N. Charman and J. Tucker, “Dependence of accommodation response on the spatial frequency spectrum of the observed object,” Vision Res.17(1), 129–139 (1977).
[CrossRef] [PubMed]

Chen, F.

M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010).
[CrossRef] [PubMed]

Chen, Z.

Chia, N.

Choi, D.

Cook, C. A.

J. F. Koretz, C. A. Cook, and P. L. Kaufman, “Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus,” Invest. Ophthalmol. Vis. Sci.38(3), 569–578 (1997).
[PubMed]

Dai, C.

Dainty, C.

Davies, L. N.

M. C. M. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt.12(6), 064023 (2007).
[CrossRef] [PubMed]

de Castro, A.

De Freitas, C.

Denieul, P.

C. Miege and P. Denieul, “Mean response and oscillations of accommodation for various stimulus vergences in relation to accommodation feedback control,” Ophthalmic Physiol. Opt.8(2), 165–171 (1988).
[CrossRef] [PubMed]

Dorronsoro, C.

E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vis.9(6), 1–15 (2009), http://www.journalofvision.org/9/6/4 .
[CrossRef] [PubMed]

Drexler, W.

W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci.39(11), 2140–2147 (1998).
[PubMed]

Du, C.

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology119(12), 2479–2485 (2012).
[CrossRef] [PubMed]

Dubbelman, M.

E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci.85(12), 1179–1184 (2008).
[CrossRef] [PubMed]

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis.6(10), 1057–1067 (2006), http://www.journalofvision.org/6/10/5 .
[CrossRef] [PubMed]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res.45(1), 117–132 (2005).
[CrossRef] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

G. L. van der Heijde, A. P. A. Beers, and M. Dubbelman, “Microfluctuations of steady-state accommodation measured with ultrasonography,” Ophthalmic Physiol. Opt.16(3), 216–221 (1996).
[CrossRef] [PubMed]

Duker, J. S.

Dunne, M. C. M.

M. C. M. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt.12(6), 064023 (2007).
[CrossRef] [PubMed]

Durán, S.

Fan, S.

Fercher, A. F.

W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci.39(11), 2140–2147 (1998).
[PubMed]

Findl, O.

W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci.39(11), 2140–2147 (1998).
[PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

Furukawa, H.

Gambra, E.

Garner, L. F.

L. F. Garner and M. K. Yap, “Changes in ocular dimensions and refraction with accommodation,” Ophthalmic Physiol. Opt.17(1), 12–17 (1997).
[CrossRef] [PubMed]

Gilmartin, B.

E. A. H. Mallen, J. S. Wolffsohn, B. Gilmartin, and S. Tsujimura, “Clinical evaluation of the Shin-Nippon SRW-5000 autorefractor in adults,” Ophthalmic Physiol. Opt.21(2), 101–107 (2001).
[CrossRef] [PubMed]

L. S. Gray, B. Winn, and B. Gilmartin, “Accommodative microfluctuations and pupil diameter,” Vision Res.33(15), 2083–2090 (1993).
[CrossRef] [PubMed]

Ginis, H. S.

S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis.5(5), 466–477 (2005), http://www.journalofvision.org/5/5/7 .
[CrossRef] [PubMed]

Glasser, A.

A. S. Vilupuru and A. Glasser, “Dynamic accommodative changes in rhesus monkey eyes assessed with A-scan ultrasound biometry,” Optom. Vis. Sci.80(5), 383–394 (2003).
[CrossRef] [PubMed]

Gora, M.

Gorczynska, I.

Goto, A.

N. Satoh, K. Shimizu, A. Goto, A. Igarashi, K. Kamiya, and K. Ohbayashi, “Accommodative changes in human eye observed by Kitasato anterior segment optical coherence tomography,” Jpn. J. Ophthalmol.57(1), 113–119 (2013).
[CrossRef] [PubMed]

Gray, L. S.

L. S. Gray, B. Winn, and B. Gilmartin, “Accommodative microfluctuations and pupil diameter,” Vision Res.33(15), 2083–2090 (1993).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Grulkowski, I.

Hampson, K. M.

He, J. C.

J. C. He, S. A. Burns, and S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res.40(1), 41–48 (2000).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Heethaar, R. M.

E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci.85(12), 1179–1184 (2008).
[CrossRef] [PubMed]

Hermans, E. A.

E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci.85(12), 1179–1184 (2008).
[CrossRef] [PubMed]

Heron, G.

W. N. Charman and G. Heron, “Fluctuations in accommodation: A review,” Ophthalmic Physiol. Opt.8(2), 153–164 (1988).
[CrossRef] [PubMed]

Hiro-Oka, H.

Hitzenberger, C. K.

W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci.39(11), 2140–2147 (1998).
[PubMed]

Ho, A.

Hofer, H.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huber, R.

Igarashi, A.

N. Satoh, K. Shimizu, A. Goto, A. Igarashi, K. Kamiya, and K. Ohbayashi, “Accommodative changes in human eye observed by Kitasato anterior segment optical coherence tomography,” Jpn. J. Ophthalmol.57(1), 113–119 (2013).
[CrossRef] [PubMed]

H. Furukawa, H. Hiro-Oka, N. Satoh, R. Yoshimura, D. Choi, M. Nakanishi, A. Igarashi, H. Ishikawa, K. Ohbayashi, and K. Shimizu, “Full-range imaging of eye accommodation by high-speed long-depth range optical frequency domain imaging,” Biomed. Opt. Express1(5), 1491–1501 (2010).
[CrossRef] [PubMed]

Ishikawa, H.

Jayaraman, V.

Jiang, H.

Jiang, J.

Jiao, S.

Jimenez-Alfaro, I.

Jiménez-Alfaro, I.

Kaluzny, B. J.

Kamiya, K.

N. Satoh, K. Shimizu, A. Goto, A. Igarashi, K. Kamiya, and K. Ohbayashi, “Accommodative changes in human eye observed by Kitasato anterior segment optical coherence tomography,” Jpn. J. Ophthalmol.57(1), 113–119 (2013).
[CrossRef] [PubMed]

Karnowski, K.

Karp, C. L.

M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010).
[CrossRef] [PubMed]

Kasthurirangan, S.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis.11(3), 19 (2011), http://www.journalofvision.org/11/3/19 .
[CrossRef] [PubMed]

Kaufman, P. L.

J. F. Koretz, C. A. Cook, and P. L. Kaufman, “Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus,” Invest. Ophthalmol. Vis. Sci.38(3), 569–578 (1997).
[PubMed]

Koretz, J. E.

Koretz, J. F.

J. F. Koretz, C. A. Cook, and P. L. Kaufman, “Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus,” Invest. Ophthalmol. Vis. Sci.38(3), 569–578 (1997).
[PubMed]

Kotulak, J. C.

J. C. Kotulak and C. M. Schor, “Temporal variations in accommodation during steady-state conditions,” J. Opt. Soc. Am. A3(2), 223–227 (1986).
[CrossRef] [PubMed]

J. C. Kotulak and C. M. Schor, “A computational model of the error detector of human visual accommodation,” Biol. Cybern.54(3), 189–194 (1986a).
[CrossRef] [PubMed]

Kowalczyk, A.

Li, M.

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology119(12), 2479–2485 (2012).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, J. J.

Locke, L. C.

L. C. Locke and W. Somers, “A comparison study of dynamic retinoscopy techniques,” Optom. Vis. Sci.66(8), 540–544 (1989).
[CrossRef] [PubMed]

Lu, C. D.

Lu, F.

Maceo, B.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and Gradient Refractive Index in the accommodative changes of spherical aberration in non-human primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci.in press.

Mallen, E. A.

Mallen, E. A. H.

E. A. H. Mallen, J. S. Wolffsohn, B. Gilmartin, and S. Tsujimura, “Clinical evaluation of the Shin-Nippon SRW-5000 autorefractor in adults,” Ophthalmic Physiol. Opt.21(2), 101–107 (2001).
[CrossRef] [PubMed]

Manns, F.

M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using Spectral-Domain OCT with an optical switch,” Biomed. Opt. Express3(7), 1506–1520 (2012).
[CrossRef] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and Gradient Refractive Index in the accommodative changes of spherical aberration in non-human primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci.in press.

Marcos, S.

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express4(3), 387–396 (2013).
[CrossRef] [PubMed]

S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express3(10), 2471–2488 (2012).
[CrossRef] [PubMed]

S. Ortiz, P. Pérez-Merino, N. Alejandre, E. Gambra, I. Jimenez-Alfaro, and S. Marcos, “Quantitative OCT-based corneal topography in keratoconus with intracorneal ring segments,” Biomed. Opt. Express3(5), 814–824 (2012).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express2(12), 3232–3247 (2011).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express18(3), 2782–2796 (2010).
[CrossRef] [PubMed]

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg.25(5), 421–428 (2009).
[CrossRef] [PubMed]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt.48(35), 6708–6715 (2009).
[CrossRef] [PubMed]

E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vis.9(6), 1–15 (2009), http://www.journalofvision.org/9/6/4 .
[CrossRef] [PubMed]

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis.6(10), 1057–1067 (2006), http://www.journalofvision.org/6/10/5 .
[CrossRef] [PubMed]

J. C. He, S. A. Burns, and S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res.40(1), 41–48 (2000).
[CrossRef] [PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and Gradient Refractive Index in the accommodative changes of spherical aberration in non-human primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci.in press.

Markwell, E. L.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis.11(3), 19 (2011), http://www.journalofvision.org/11/3/19 .
[CrossRef] [PubMed]

McClelland, J. F.

J. F. McClelland and K. J. Saunders, “The repeatability and validity of dynamic retinoscopy in assessing the accommodative response,” Ophthalmic Physiol. Opt.23(3), 243–250 (2003).
[CrossRef] [PubMed]

Miege, C.

C. Miege and P. Denieul, “Mean response and oscillations of accommodation for various stimulus vergences in relation to accommodation feedback control,” Ophthalmic Physiol. Opt.8(2), 165–171 (1988).
[CrossRef] [PubMed]

Nakanishi, M.

Ohbayashi, K.

N. Satoh, K. Shimizu, A. Goto, A. Igarashi, K. Kamiya, and K. Ohbayashi, “Accommodative changes in human eye observed by Kitasato anterior segment optical coherence tomography,” Jpn. J. Ophthalmol.57(1), 113–119 (2013).
[CrossRef] [PubMed]

H. Furukawa, H. Hiro-Oka, N. Satoh, R. Yoshimura, D. Choi, M. Nakanishi, A. Igarashi, H. Ishikawa, K. Ohbayashi, and K. Shimizu, “Full-range imaging of eye accommodation by high-speed long-depth range optical frequency domain imaging,” Biomed. Opt. Express1(5), 1491–1501 (2010).
[CrossRef] [PubMed]

Ortiz, S.

Pallikaris, A.

S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis.5(5), 466–477 (2005), http://www.journalofvision.org/5/5/7 .
[CrossRef] [PubMed]

Parel, J. M.

M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using Spectral-Domain OCT with an optical switch,” Biomed. Opt. Express3(7), 1506–1520 (2012).
[CrossRef] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and Gradient Refractive Index in the accommodative changes of spherical aberration in non-human primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci.in press.

Pascual, D.

Paterson, C.

Pérez-Merino, P.

Plainis, S.

S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis.5(5), 466–477 (2005), http://www.journalofvision.org/5/5/7 .
[CrossRef] [PubMed]

Pope, J. M.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis.11(3), 19 (2011), http://www.journalofvision.org/11/3/19 .
[CrossRef] [PubMed]

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Remon, L.

Ren, Q.

Rosales, P.

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg.25(5), 421–428 (2009).
[CrossRef] [PubMed]

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis.6(10), 1057–1067 (2006), http://www.journalofvision.org/6/10/5 .
[CrossRef] [PubMed]

Ruggeri, M.

Satoh, N.

N. Satoh, K. Shimizu, A. Goto, A. Igarashi, K. Kamiya, and K. Ohbayashi, “Accommodative changes in human eye observed by Kitasato anterior segment optical coherence tomography,” Jpn. J. Ophthalmol.57(1), 113–119 (2013).
[CrossRef] [PubMed]

H. Furukawa, H. Hiro-Oka, N. Satoh, R. Yoshimura, D. Choi, M. Nakanishi, A. Igarashi, H. Ishikawa, K. Ohbayashi, and K. Shimizu, “Full-range imaging of eye accommodation by high-speed long-depth range optical frequency domain imaging,” Biomed. Opt. Express1(5), 1491–1501 (2010).
[CrossRef] [PubMed]

Saunders, K. J.

J. F. McClelland and K. J. Saunders, “The repeatability and validity of dynamic retinoscopy in assessing the accommodative response,” Ophthalmic Physiol. Opt.23(3), 243–250 (2003).
[CrossRef] [PubMed]

Sawides, L.

E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vis.9(6), 1–15 (2009), http://www.journalofvision.org/9/6/4 .
[CrossRef] [PubMed]

Schmetterer, L.

W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci.39(11), 2140–2147 (1998).
[PubMed]

Schor, C. M.

J. C. Kotulak and C. M. Schor, “A computational model of the error detector of human visual accommodation,” Biol. Cybern.54(3), 189–194 (1986a).
[CrossRef] [PubMed]

J. C. Kotulak and C. M. Schor, “Temporal variations in accommodation during steady-state conditions,” J. Opt. Soc. Am. A3(2), 223–227 (1986).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Semmlow, J. L.

Shao, Y.

Shen, M.

Y. Shao, A. Tao, H. Jiang, M. Shen, J. Zhong, F. Lu, and J. Wang, “Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation,” Biomed. Opt. Express4(3), 466–480 (2013).
[CrossRef] [PubMed]

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology119(12), 2479–2485 (2012).
[CrossRef] [PubMed]

M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010).
[CrossRef] [PubMed]

Shimizu, K.

N. Satoh, K. Shimizu, A. Goto, A. Igarashi, K. Kamiya, and K. Ohbayashi, “Accommodative changes in human eye observed by Kitasato anterior segment optical coherence tomography,” Jpn. J. Ophthalmol.57(1), 113–119 (2013).
[CrossRef] [PubMed]

H. Furukawa, H. Hiro-Oka, N. Satoh, R. Yoshimura, D. Choi, M. Nakanishi, A. Igarashi, H. Ishikawa, K. Ohbayashi, and K. Shimizu, “Full-range imaging of eye accommodation by high-speed long-depth range optical frequency domain imaging,” Biomed. Opt. Express1(5), 1491–1501 (2010).
[CrossRef] [PubMed]

Siedlecki, D.

Singer, B.

Somers, W.

L. C. Locke and W. Somers, “A comparison study of dynamic retinoscopy techniques,” Optom. Vis. Sci.66(8), 540–544 (1989).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Strenk, L. M.

Strenk, S. A.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Szkulmowski, M.

Szlag, D.

Tao, A.

Tsujimura, S.

E. A. H. Mallen, J. S. Wolffsohn, B. Gilmartin, and S. Tsujimura, “Clinical evaluation of the Shin-Nippon SRW-5000 autorefractor in adults,” Ophthalmic Physiol. Opt.21(2), 101–107 (2001).
[CrossRef] [PubMed]

Tucker, J.

W. N. Charman and J. Tucker, “Dependence of accommodation response on the spatial frequency spectrum of the observed object,” Vision Res.17(1), 129–139 (1977).
[CrossRef] [PubMed]

Uhlhorn, S. R.

M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using Spectral-Domain OCT with an optical switch,” Biomed. Opt. Express3(7), 1506–1520 (2012).
[CrossRef] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

Van der Heijde, G. L.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res.45(1), 117–132 (2005).
[CrossRef] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

G. L. van der Heijde, A. P. A. Beers, and M. Dubbelman, “Microfluctuations of steady-state accommodation measured with ultrasonography,” Ophthalmic Physiol. Opt.16(3), 216–221 (1996).
[CrossRef] [PubMed]

Van der Heijde, R.

E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci.85(12), 1179–1184 (2008).
[CrossRef] [PubMed]

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis.6(10), 1057–1067 (2006), http://www.journalofvision.org/6/10/5 .
[CrossRef] [PubMed]

Velasco-Ocana, M.

Vilupuru, A. S.

A. S. Vilupuru and A. Glasser, “Dynamic accommodative changes in rhesus monkey eyes assessed with A-scan ultrasound biometry,” Optom. Vis. Sci.80(5), 383–394 (2003).
[CrossRef] [PubMed]

Wang, J.

Y. Shao, A. Tao, H. Jiang, M. Shen, J. Zhong, F. Lu, and J. Wang, “Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation,” Biomed. Opt. Express4(3), 466–480 (2013).
[CrossRef] [PubMed]

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology119(12), 2479–2485 (2012).
[CrossRef] [PubMed]

M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010).
[CrossRef] [PubMed]

C. Zhou, J. Wang, and S. Jiao, “Dual channel dual focus optical coherence tomography for imaging accommodation of the eye,” Opt. Express17(11), 8947–8955 (2009).
[CrossRef] [PubMed]

Wang, M. R.

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology119(12), 2479–2485 (2012).
[CrossRef] [PubMed]

M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010).
[CrossRef] [PubMed]

Weeber, H. A.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res.45(1), 117–132 (2005).
[CrossRef] [PubMed]

Williams, D. R.

Winn, B.

L. S. Gray, B. Winn, and B. Gilmartin, “Accommodative microfluctuations and pupil diameter,” Vision Res.33(15), 2083–2090 (1993).
[CrossRef] [PubMed]

Wojtkowski, M.

Wolffsohn, J. S.

M. C. M. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt.12(6), 064023 (2007).
[CrossRef] [PubMed]

E. A. H. Mallen, J. S. Wolffsohn, B. Gilmartin, and S. Tsujimura, “Clinical evaluation of the Shin-Nippon SRW-5000 autorefractor in adults,” Ophthalmic Physiol. Opt.21(2), 101–107 (2001).
[CrossRef] [PubMed]

Yadav, R.

Yap, M. K.

L. F. Garner and M. K. Yap, “Changes in ocular dimensions and refraction with accommodation,” Ophthalmic Physiol. Opt.17(1), 12–17 (1997).
[CrossRef] [PubMed]

Yoo, S. H.

M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010).
[CrossRef] [PubMed]

Yoon, G.

Yoshimura, R.

Yuan, Y.

M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010).
[CrossRef] [PubMed]

Zhong, J.

Zhou, C.

Zhu, D.

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology119(12), 2479–2485 (2012).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biol. Cybern. (1)

J. C. Kotulak and C. M. Schor, “A computational model of the error detector of human visual accommodation,” Biol. Cybern.54(3), 189–194 (1986a).
[CrossRef] [PubMed]

Biomed. Opt. Express (9)

H. Furukawa, H. Hiro-Oka, N. Satoh, R. Yoshimura, D. Choi, M. Nakanishi, A. Igarashi, H. Ishikawa, K. Ohbayashi, and K. Shimizu, “Full-range imaging of eye accommodation by high-speed long-depth range optical frequency domain imaging,” Biomed. Opt. Express1(5), 1491–1501 (2010).
[CrossRef] [PubMed]

K. Karnowski, B. J. Kaluzny, M. Szkulmowski, M. Gora, and M. Wojtkowski, “Corneal topography with high-speed swept source OCT in clinical examination,” Biomed. Opt. Express2(9), 2709–2720 (2011).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express2(12), 3232–3247 (2011).
[CrossRef] [PubMed]

S. Ortiz, P. Pérez-Merino, N. Alejandre, E. Gambra, I. Jimenez-Alfaro, and S. Marcos, “Quantitative OCT-based corneal topography in keratoconus with intracorneal ring segments,” Biomed. Opt. Express3(5), 814–824 (2012).
[CrossRef] [PubMed]

M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using Spectral-Domain OCT with an optical switch,” Biomed. Opt. Express3(7), 1506–1520 (2012).
[CrossRef] [PubMed]

S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express3(10), 2471–2488 (2012).
[CrossRef] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express3(11), 2733–2751 (2012).
[CrossRef] [PubMed]

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express4(3), 387–396 (2013).
[CrossRef] [PubMed]

Y. Shao, A. Tao, H. Jiang, M. Shen, J. Zhong, F. Lu, and J. Wang, “Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation,” Biomed. Opt. Express4(3), 466–480 (2013).
[CrossRef] [PubMed]

Exp. Eye Res. (1)

N. Brown, “The change in shape and internal form of the lens of the eye on accommodation,” Exp. Eye Res.15(4), 441–459 (1973).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (3)

J. F. Koretz, C. A. Cook, and P. L. Kaufman, “Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus,” Invest. Ophthalmol. Vis. Sci.38(3), 569–578 (1997).
[PubMed]

W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci.39(11), 2140–2147 (1998).
[PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and Gradient Refractive Index in the accommodative changes of spherical aberration in non-human primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci.in press.

J. Biomed. Opt. (1)

M. C. M. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt.12(6), 064023 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (4)

J. Refract. Surg. (1)

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg.25(5), 421–428 (2009).
[CrossRef] [PubMed]

J. Vis. (4)

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis.11(3), 19 (2011), http://www.journalofvision.org/11/3/19 .
[CrossRef] [PubMed]

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis.6(10), 1057–1067 (2006), http://www.journalofvision.org/6/10/5 .
[CrossRef] [PubMed]

S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis.5(5), 466–477 (2005), http://www.journalofvision.org/5/5/7 .
[CrossRef] [PubMed]

E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vis.9(6), 1–15 (2009), http://www.journalofvision.org/9/6/4 .
[CrossRef] [PubMed]

Jpn. J. Ophthalmol. (1)

N. Satoh, K. Shimizu, A. Goto, A. Igarashi, K. Kamiya, and K. Ohbayashi, “Accommodative changes in human eye observed by Kitasato anterior segment optical coherence tomography,” Jpn. J. Ophthalmol.57(1), 113–119 (2013).
[CrossRef] [PubMed]

Ophthalmic Physiol. Opt. (6)

W. N. Charman and G. Heron, “Fluctuations in accommodation: A review,” Ophthalmic Physiol. Opt.8(2), 153–164 (1988).
[CrossRef] [PubMed]

C. Miege and P. Denieul, “Mean response and oscillations of accommodation for various stimulus vergences in relation to accommodation feedback control,” Ophthalmic Physiol. Opt.8(2), 165–171 (1988).
[CrossRef] [PubMed]

L. F. Garner and M. K. Yap, “Changes in ocular dimensions and refraction with accommodation,” Ophthalmic Physiol. Opt.17(1), 12–17 (1997).
[CrossRef] [PubMed]

E. A. H. Mallen, J. S. Wolffsohn, B. Gilmartin, and S. Tsujimura, “Clinical evaluation of the Shin-Nippon SRW-5000 autorefractor in adults,” Ophthalmic Physiol. Opt.21(2), 101–107 (2001).
[CrossRef] [PubMed]

J. F. McClelland and K. J. Saunders, “The repeatability and validity of dynamic retinoscopy in assessing the accommodative response,” Ophthalmic Physiol. Opt.23(3), 243–250 (2003).
[CrossRef] [PubMed]

G. L. van der Heijde, A. P. A. Beers, and M. Dubbelman, “Microfluctuations of steady-state accommodation measured with ultrasonography,” Ophthalmic Physiol. Opt.16(3), 216–221 (1996).
[CrossRef] [PubMed]

Ophthalmic Surg. Lasers Imaging (1)

M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010).
[CrossRef] [PubMed]

Ophthalmology (1)

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology119(12), 2479–2485 (2012).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Optom. Vis. Sci. (3)

E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci.85(12), 1179–1184 (2008).
[CrossRef] [PubMed]

A. S. Vilupuru and A. Glasser, “Dynamic accommodative changes in rhesus monkey eyes assessed with A-scan ultrasound biometry,” Optom. Vis. Sci.80(5), 383–394 (2003).
[CrossRef] [PubMed]

L. C. Locke and W. Somers, “A comparison study of dynamic retinoscopy techniques,” Optom. Vis. Sci.66(8), 540–544 (1989).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Vision Res. (6)

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

J. C. He, S. A. Burns, and S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res.40(1), 41–48 (2000).
[CrossRef] [PubMed]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res.45(1), 117–132 (2005).
[CrossRef] [PubMed]

L. S. Gray, B. Winn, and B. Gilmartin, “Accommodative microfluctuations and pupil diameter,” Vision Res.33(15), 2083–2090 (1993).
[CrossRef] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

W. N. Charman and J. Tucker, “Dependence of accommodation response on the spatial frequency spectrum of the observed object,” Vision Res.17(1), 129–139 (1977).
[CrossRef] [PubMed]

Supplementary Material (2)

» Media 1: AVI (920 KB)     
» Media 2: MOV (7321 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Typical raw sOCT images: (a) cornea; (b) anterior crystalline lens surface; (c) posterior crystalline lens surface, imaged separately in the 3-D protocol; (d) entire crystalline lens, imaged simultaneously using the complex conjugate images removal technique, in the dynamic 2-D image acquisition. After the unfolding procedure, a mirror image of some elements of the eye can still be seen.

Fig. 2
Fig. 2

(Media 1): Distortion-corrected lateral view of the 3-D rendering of the crystalline lens, from data images acquired at accommodative demands ranging from 0 to 6 D in 1-D steps.

Fig. 3
Fig. 3

Radii of curvature of the anterior (squares) and posterior (circles) surfaces of the lens for the individual subjects (color symbols with dashed lines) and the average across subjects (black symbols with solid lines). Data for each subject are average of 5 repeated measurements. Error bars stand for standard deviation of repeated measurements. The radius of curvature of the posterior surface of the lens is negative, but has been depicted positive for illustration purposes.

Fig. 4
Fig. 4

Change in the optical power of the eye with accommodative demand, with respect to the value obtained for the unaccommodated condition (0D). Data are average of 5 repeated measurements for each subject. Solid line corresponds to the ideal response. Error bars stand for half of the standard deviation of repeated measurements (for clarity).

Fig. 5
Fig. 5

Anterior segment geometry as a function of accommodative demand: (a) Pupil diameter, (b) anterior chamber depth, (c) lens thickness, and (d) lens radii of curvature. Error bars stand for the standard deviation of data from 58 to 70 images acquired during 5 seconds of sustained accommodation (at each accommodative demand).

Fig. 6
Fig. 6

(Media 2): Dynamic fluctuations of the horizontal section of the anterior segment (5-second sequences for each accommodative stimulus, ranging from 0 to 6 D). Data are following image processing, including merging and distortion corrections. The superimposed lines are circumference section fittings to the anterior and posterior cornea and lens.

Fig. 7
Fig. 7

Optical power of the eye during 5 seconds of sustained accommodation, for different accommodative demands.

Fig. 8
Fig. 8

(a) Fluctuations of the optical power of the lens and of the entire eye calculated as the standard deviation of the power estimates during 5-seconds of sustained accommodation, as a function of the accommodative demand. (b) Area under the power spectrum density curve of the optical power of the eye in two different frequency bands (0-0.6 Hz and 0.9-2.5 Hz), as a function of accommodative demand.

Fig. 9
Fig. 9

Relative contribution of the anterior chamber depth (ACD), lens thickness (LT) and anterior and posterior lens radii to the fluctuations of the optical power of the eye.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P= P C + P L ACD P C P L n h + ( n l n h )LT P C n h 2 R p
P C = n h 1 n h R C P L = n l n h n h ( 1 R a 1 R p )+ ( n l n h ) 2 LT n l n h R a R p

Metrics