Abstract

Multi-scale multimodal microscopy is a very useful technique by providing multiple imaging contrasts with adjustable field of views and spatial resolutions. Here, we present a tri-modal microscope combining multiphoton microscopy (MPM), optical coherence microscopy (OCM) and optical coherence tomography (OCT) for subsurface visualization of biological tissues. The advantages of the tri-modal system are demonstrated on various biological samples. It enables the visualization of multiple intrinsic contrasts including scattering, two-photon excitation fluorescence (TPEF), and second harmonic generation (SHG). It also enables a rapid scanning over a large tissue area and a high resolution zoom-in for cellular-level structures on regions of interest. The tri-modal microscope can be important for label-free imaging to obtain a sufficient set of parameters for reliable sample analysis.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
    [CrossRef] [PubMed]
  2. J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods2(12), 920–931 (2005).
    [CrossRef] [PubMed]
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  4. C. E. Miller, R. P. Thompson, M. R. Bigelow, G. Gittinger, T. C. Trusk, and D. Sedmera, “Confocal imaging of the embryonic heart: how deep?” Microsc. Microanal.11(3), 216–223 (2005).
    [CrossRef] [PubMed]
  5. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005).
    [CrossRef] [PubMed]
  6. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol.21(11), 1361–1367 (2003).
    [CrossRef] [PubMed]
  7. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004).
    [CrossRef] [PubMed]
  8. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett.19(8), 590–592 (1994).
    [CrossRef] [PubMed]
  9. A. D. Aguirre, P. Hsiung, T. H. Ko, I. Hartl, and J. G. Fujimoto, “High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging,” Opt. Lett.28(21), 2064–2066 (2003).
    [CrossRef] [PubMed]
  10. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003).
    [CrossRef] [PubMed]
  11. M. C. Pierce, D. J. Javier, and R. Richards-Kortum, “Optical contrast agents and imaging systems for detection and diagnosis of cancer,” Int. J. Cancer123(9), 1979–1990 (2008).
    [CrossRef] [PubMed]
  12. Y. Zhao, B. W. Graf, E. J. Chaney, Z. Mahmassani, E. Antoniadou, R. Devolder, H. Kong, M. D. Boppart, and S. A. Boppart, “Integrated multimodal optical microscopy for structural and functional imaging of engineered and natural skin,” J Biophotonics5(5-6), 437–448 (2012).
    [CrossRef] [PubMed]
  13. E. Beaurepaire, L. Moreaux, F. Amblard, and J. Mertz, “Combined scanning optical coherence and two-photon-excited fluorescence microscopy,” Opt. Lett.24(14), 969–971 (1999).
    [CrossRef] [PubMed]
  14. S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt.11(2), 020502 (2006).
    [CrossRef] [PubMed]
  15. B. W. Graf and S. A. Boppart, “Multimodal in vivo skin imaging with integrated optical coherence and multiphoton microscopy,” IEEE J. Sel. Top. Quantum Electron.18(4), 1280–1286 (2012).
    [CrossRef]
  16. G. J. Liu and Z. P. Chen, “Fiber-based combined optical coherence and multiphoton endomicroscopy,” J. Biomed. Opt.16(3), 036010 (2011).
    [CrossRef] [PubMed]
  17. B. Jeong, B. Lee, M. S. Jang, H. Nam, S. J. Yoon, T. Wang, J. Doh, B. G. Yang, M. H. Jang, and K. H. Kim, “Combined two-photon microscopy and optical coherence tomography using individually optimized sources,” Opt. Express19(14), 13089–13096 (2011).
    [CrossRef] [PubMed]
  18. S. Tang, Y. Zhou, K. K. Chan, and T. Lai, “Multiscale multimodal imaging with multiphoton microscopy and optical coherence tomography,” Opt. Lett.36(24), 4800–4802 (2011).
    [CrossRef] [PubMed]
  19. S. Tang, Y. Zhou, and M. J. Ju, “Multimodal optical imaging with multiphoton microscopy and optical coherence tomography,” J Biophotonics5(5-6), 396–403 (2012).
    [CrossRef] [PubMed]
  20. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
    [CrossRef]
  21. K. K. H. Chan and S. Tang, “High-speed spectral domain optical coherence tomography using non-uniform fast Fourier transform,” Biomed. Opt. Express1(5), 1309–1319 (2010).
    [CrossRef] [PubMed]

2012 (3)

Y. Zhao, B. W. Graf, E. J. Chaney, Z. Mahmassani, E. Antoniadou, R. Devolder, H. Kong, M. D. Boppart, and S. A. Boppart, “Integrated multimodal optical microscopy for structural and functional imaging of engineered and natural skin,” J Biophotonics5(5-6), 437–448 (2012).
[CrossRef] [PubMed]

B. W. Graf and S. A. Boppart, “Multimodal in vivo skin imaging with integrated optical coherence and multiphoton microscopy,” IEEE J. Sel. Top. Quantum Electron.18(4), 1280–1286 (2012).
[CrossRef]

S. Tang, Y. Zhou, and M. J. Ju, “Multimodal optical imaging with multiphoton microscopy and optical coherence tomography,” J Biophotonics5(5-6), 396–403 (2012).
[CrossRef] [PubMed]

2011 (3)

2010 (1)

2008 (1)

M. C. Pierce, D. J. Javier, and R. Richards-Kortum, “Optical contrast agents and imaging systems for detection and diagnosis of cancer,” Int. J. Cancer123(9), 1979–1990 (2008).
[CrossRef] [PubMed]

2006 (1)

S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt.11(2), 020502 (2006).
[CrossRef] [PubMed]

2005 (4)

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
[CrossRef]

J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods2(12), 920–931 (2005).
[CrossRef] [PubMed]

C. E. Miller, R. P. Thompson, M. R. Bigelow, G. Gittinger, T. C. Trusk, and D. Sedmera, “Confocal imaging of the embryonic heart: how deep?” Microsc. Microanal.11(3), 216–223 (2005).
[CrossRef] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (4)

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol.21(11), 1361–1367 (2003).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

A. D. Aguirre, P. Hsiung, T. H. Ko, I. Hartl, and J. G. Fujimoto, “High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging,” Opt. Lett.28(21), 2064–2066 (2003).
[CrossRef] [PubMed]

1999 (1)

1994 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Aguirre, A. D.

Amblard, F.

Antoniadou, E.

Y. Zhao, B. W. Graf, E. J. Chaney, Z. Mahmassani, E. Antoniadou, R. Devolder, H. Kong, M. D. Boppart, and S. A. Boppart, “Integrated multimodal optical microscopy for structural and functional imaging of engineered and natural skin,” J Biophotonics5(5-6), 437–448 (2012).
[CrossRef] [PubMed]

Beaurepaire, E.

Bigelow, M. R.

C. E. Miller, R. P. Thompson, M. R. Bigelow, G. Gittinger, T. C. Trusk, and D. Sedmera, “Confocal imaging of the embryonic heart: how deep?” Microsc. Microanal.11(3), 216–223 (2005).
[CrossRef] [PubMed]

Boppart, M. D.

Y. Zhao, B. W. Graf, E. J. Chaney, Z. Mahmassani, E. Antoniadou, R. Devolder, H. Kong, M. D. Boppart, and S. A. Boppart, “Integrated multimodal optical microscopy for structural and functional imaging of engineered and natural skin,” J Biophotonics5(5-6), 437–448 (2012).
[CrossRef] [PubMed]

Boppart, S. A.

Y. Zhao, B. W. Graf, E. J. Chaney, Z. Mahmassani, E. Antoniadou, R. Devolder, H. Kong, M. D. Boppart, and S. A. Boppart, “Integrated multimodal optical microscopy for structural and functional imaging of engineered and natural skin,” J Biophotonics5(5-6), 437–448 (2012).
[CrossRef] [PubMed]

B. W. Graf and S. A. Boppart, “Multimodal in vivo skin imaging with integrated optical coherence and multiphoton microscopy,” IEEE J. Sel. Top. Quantum Electron.18(4), 1280–1286 (2012).
[CrossRef]

Chan, K. K.

Chan, K. K. H.

Chaney, E. J.

Y. Zhao, B. W. Graf, E. J. Chaney, Z. Mahmassani, E. Antoniadou, R. Devolder, H. Kong, M. D. Boppart, and S. A. Boppart, “Integrated multimodal optical microscopy for structural and functional imaging of engineered and natural skin,” J Biophotonics5(5-6), 437–448 (2012).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, Z.

S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt.11(2), 020502 (2006).
[CrossRef] [PubMed]

Chen, Z. P.

G. J. Liu and Z. P. Chen, “Fiber-based combined optical coherence and multiphoton endomicroscopy,” J. Biomed. Opt.16(3), 036010 (2011).
[CrossRef] [PubMed]

Christie, R.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Conchello, J. A.

J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods2(12), 920–931 (2005).
[CrossRef] [PubMed]

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005).
[CrossRef] [PubMed]

Devolder, R.

Y. Zhao, B. W. Graf, E. J. Chaney, Z. Mahmassani, E. Antoniadou, R. Devolder, H. Kong, M. D. Boppart, and S. A. Boppart, “Integrated multimodal optical microscopy for structural and functional imaging of engineered and natural skin,” J Biophotonics5(5-6), 437–448 (2012).
[CrossRef] [PubMed]

Doh, J.

Duker, J.

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J.

Fujimoto, J. G.

Gittinger, G.

C. E. Miller, R. P. Thompson, M. R. Bigelow, G. Gittinger, T. C. Trusk, and D. Sedmera, “Confocal imaging of the embryonic heart: how deep?” Microsc. Microanal.11(3), 216–223 (2005).
[CrossRef] [PubMed]

Graf, B. W.

Y. Zhao, B. W. Graf, E. J. Chaney, Z. Mahmassani, E. Antoniadou, R. Devolder, H. Kong, M. D. Boppart, and S. A. Boppart, “Integrated multimodal optical microscopy for structural and functional imaging of engineered and natural skin,” J Biophotonics5(5-6), 437–448 (2012).
[CrossRef] [PubMed]

B. W. Graf and S. A. Boppart, “Multimodal in vivo skin imaging with integrated optical coherence and multiphoton microscopy,” IEEE J. Sel. Top. Quantum Electron.18(4), 1280–1286 (2012).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hartl, I.

Hee, M. R.

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett.19(8), 590–592 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005).
[CrossRef] [PubMed]

Hsiung, P.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hyman, B. T.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Izatt, J. A.

Jang, M. H.

Jang, M. S.

Javier, D. J.

M. C. Pierce, D. J. Javier, and R. Richards-Kortum, “Optical contrast agents and imaging systems for detection and diagnosis of cancer,” Int. J. Cancer123(9), 1979–1990 (2008).
[CrossRef] [PubMed]

Jeong, B.

Ju, M. J.

S. Tang, Y. Zhou, and M. J. Ju, “Multimodal optical imaging with multiphoton microscopy and optical coherence tomography,” J Biophotonics5(5-6), 396–403 (2012).
[CrossRef] [PubMed]

Kim, K. H.

Ko, T.

Ko, T. H.

Kong, H.

Y. Zhao, B. W. Graf, E. J. Chaney, Z. Mahmassani, E. Antoniadou, R. Devolder, H. Kong, M. D. Boppart, and S. A. Boppart, “Integrated multimodal optical microscopy for structural and functional imaging of engineered and natural skin,” J Biophotonics5(5-6), 437–448 (2012).
[CrossRef] [PubMed]

Kowalczyk, A.

Krasieva, T. B.

S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt.11(2), 020502 (2006).
[CrossRef] [PubMed]

Lai, T.

Lee, B.

Lichtman, J. W.

J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods2(12), 920–931 (2005).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, G. J.

G. J. Liu and Z. P. Chen, “Fiber-based combined optical coherence and multiphoton endomicroscopy,” J. Biomed. Opt.16(3), 036010 (2011).
[CrossRef] [PubMed]

Mahmassani, Z.

Y. Zhao, B. W. Graf, E. J. Chaney, Z. Mahmassani, E. Antoniadou, R. Devolder, H. Kong, M. D. Boppart, and S. A. Boppart, “Integrated multimodal optical microscopy for structural and functional imaging of engineered and natural skin,” J Biophotonics5(5-6), 437–448 (2012).
[CrossRef] [PubMed]

Mertz, J.

Miller, C. E.

C. E. Miller, R. P. Thompson, M. R. Bigelow, G. Gittinger, T. C. Trusk, and D. Sedmera, “Confocal imaging of the embryonic heart: how deep?” Microsc. Microanal.11(3), 216–223 (2005).
[CrossRef] [PubMed]

Moreaux, L.

Nam, H.

Nikitin, A. Y.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Owen, G. M.

Pierce, M. C.

M. C. Pierce, D. J. Javier, and R. Richards-Kortum, “Optical contrast agents and imaging systems for detection and diagnosis of cancer,” Int. J. Cancer123(9), 1979–1990 (2008).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Richards-Kortum, R.

M. C. Pierce, D. J. Javier, and R. Richards-Kortum, “Optical contrast agents and imaging systems for detection and diagnosis of cancer,” Int. J. Cancer123(9), 1979–1990 (2008).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sedmera, D.

C. E. Miller, R. P. Thompson, M. R. Bigelow, G. Gittinger, T. C. Trusk, and D. Sedmera, “Confocal imaging of the embryonic heart: how deep?” Microsc. Microanal.11(3), 216–223 (2005).
[CrossRef] [PubMed]

Srinivasan, V.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett.19(8), 590–592 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tang, S.

S. Tang, Y. Zhou, and M. J. Ju, “Multimodal optical imaging with multiphoton microscopy and optical coherence tomography,” J Biophotonics5(5-6), 396–403 (2012).
[CrossRef] [PubMed]

S. Tang, Y. Zhou, K. K. Chan, and T. Lai, “Multiscale multimodal imaging with multiphoton microscopy and optical coherence tomography,” Opt. Lett.36(24), 4800–4802 (2011).
[CrossRef] [PubMed]

K. K. H. Chan and S. Tang, “High-speed spectral domain optical coherence tomography using non-uniform fast Fourier transform,” Biomed. Opt. Express1(5), 1309–1319 (2010).
[CrossRef] [PubMed]

S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt.11(2), 020502 (2006).
[CrossRef] [PubMed]

Thompson, R. P.

C. E. Miller, R. P. Thompson, M. R. Bigelow, G. Gittinger, T. C. Trusk, and D. Sedmera, “Confocal imaging of the embryonic heart: how deep?” Microsc. Microanal.11(3), 216–223 (2005).
[CrossRef] [PubMed]

Tomlins, P. H.

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
[CrossRef]

Tromberg, B. J.

S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt.11(2), 020502 (2006).
[CrossRef] [PubMed]

Trusk, T. C.

C. E. Miller, R. P. Thompson, M. R. Bigelow, G. Gittinger, T. C. Trusk, and D. Sedmera, “Confocal imaging of the embryonic heart: how deep?” Microsc. Microanal.11(3), 216–223 (2005).
[CrossRef] [PubMed]

Wang, R. K.

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
[CrossRef]

Wang, T.

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Wojtkowski, M.

Yang, B. G.

Yoon, S. J.

Zhao, Y.

Y. Zhao, B. W. Graf, E. J. Chaney, Z. Mahmassani, E. Antoniadou, R. Devolder, H. Kong, M. D. Boppart, and S. A. Boppart, “Integrated multimodal optical microscopy for structural and functional imaging of engineered and natural skin,” J Biophotonics5(5-6), 437–448 (2012).
[CrossRef] [PubMed]

Zhou, Y.

S. Tang, Y. Zhou, and M. J. Ju, “Multimodal optical imaging with multiphoton microscopy and optical coherence tomography,” J Biophotonics5(5-6), 396–403 (2012).
[CrossRef] [PubMed]

S. Tang, Y. Zhou, K. K. Chan, and T. Lai, “Multiscale multimodal imaging with multiphoton microscopy and optical coherence tomography,” Opt. Lett.36(24), 4800–4802 (2011).
[CrossRef] [PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (1)

B. W. Graf and S. A. Boppart, “Multimodal in vivo skin imaging with integrated optical coherence and multiphoton microscopy,” IEEE J. Sel. Top. Quantum Electron.18(4), 1280–1286 (2012).
[CrossRef]

Int. J. Cancer (1)

M. C. Pierce, D. J. Javier, and R. Richards-Kortum, “Optical contrast agents and imaging systems for detection and diagnosis of cancer,” Int. J. Cancer123(9), 1979–1990 (2008).
[CrossRef] [PubMed]

J Biophotonics (2)

Y. Zhao, B. W. Graf, E. J. Chaney, Z. Mahmassani, E. Antoniadou, R. Devolder, H. Kong, M. D. Boppart, and S. A. Boppart, “Integrated multimodal optical microscopy for structural and functional imaging of engineered and natural skin,” J Biophotonics5(5-6), 437–448 (2012).
[CrossRef] [PubMed]

S. Tang, Y. Zhou, and M. J. Ju, “Multimodal optical imaging with multiphoton microscopy and optical coherence tomography,” J Biophotonics5(5-6), 396–403 (2012).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

G. J. Liu and Z. P. Chen, “Fiber-based combined optical coherence and multiphoton endomicroscopy,” J. Biomed. Opt.16(3), 036010 (2011).
[CrossRef] [PubMed]

S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt.11(2), 020502 (2006).
[CrossRef] [PubMed]

J. Phys. D Appl. Phys. (1)

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
[CrossRef]

Microsc. Microanal. (1)

C. E. Miller, R. P. Thompson, M. R. Bigelow, G. Gittinger, T. C. Trusk, and D. Sedmera, “Confocal imaging of the embryonic heart: how deep?” Microsc. Microanal.11(3), 216–223 (2005).
[CrossRef] [PubMed]

Nat. Biotechnol. (2)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol.21(11), 1361–1367 (2003).
[CrossRef] [PubMed]

Nat. Methods (2)

J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods2(12), 920–931 (2005).
[CrossRef] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (4)

Proc. Natl. Acad. Sci. U.S.A. (1)

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the MPM/OCM/OCT system. Ti: S, Ti:sapphire pulsed laser; BS, beam splitter; M, mirror; L, lens, PP, prism pair; NDF, neutral density filter; DG, diffraction grating; DM, dichroic mirror; F, filter; CCD, line-scan camera; PMT, photomultiplier tube. Dashed line represents the optical path for incident beam into the prism-based dispersion precompensation unit. Diagram not drawn in exact scale.

Fig. 2
Fig. 2

(a) MPM and (b) OCM images of 6 micron fluorescent microspheres. The overlay of MPM and OCM images is shown in Fig. 2(c) with color-coding of red and green respectively. Good co-registration is achieved with the overlapping of green and red to result in yellow. Scale bar represents 50 μm.

Fig. 3
Fig. 3

OCT, MPM and OCM images from leaf sample. Figure 3(a) shows the OCT cross-sectional image of the leaf; with the cuticle (C), lower epidermis (LE) and mesophyll spongy (MS) clearly visible. Dashed line shows the region where the MPM/OCM is performed. Figures 3(b)-3(c) show the MPM and OCM images of the leaf sample respectively. Structures visible are likely stomata (S) and papillae (P) of the cuticle. Figure 3(d) is the overlay of the (b) MPM and (c) OCM images with color codes of red and green respectively. Scale bars in Fig. 3(a) represent 100 μm; Figs. 3(b)-3(d) have the same scale with the scale bar in Fig. 3(b) representing 50 μm.

Fig. 4
Fig. 4

OCT, MPM, and OCM images from fish cornea sample. Figure 4(a) shows the large FOV cross-sectional OCT image where the epithelium (EP) and stroma (S) could be differentiated. Dashed line shows the region where the MPM/OCM is performed. Figures 4(b)-4(d) show the high-resolution TPEF, SHG and OCM images. Figure 4(e) shows the overlay of the TPEF, SHG and OCM images with color codes of red, blue, and green respectively. Scale bars in Figs. 4(a) and 4(b) represent 100 μm and 50 μm, respectively. Figures 4(b)-4(e) share the same FOV.

Fig. 5
Fig. 5

A stack of OCM images acquired together with the MPM images in Fig. 4 from the fish cornea sample. The frame numbers are labeled in the images. The OCM frame that co-registers with the MPM image in Fig. 4 is identified as frame number 256. The depth spacing between adjacent OCM frames is ~1 µm. The arrow shows the shifting direction of the boundary between the epithelium and stroma when the depth is increased. Scale bar is 50 µm.

Metrics