Abstract

We report the use of a twisted nematic liquid-crystal spatial light modulator (TNLC-SLM) for quantitative phase imaging. The experimental setup is a new implementation of the SLIM principle, which is a phase shifting, white light method for quantitative phase imaging. The approach is based on switching between the phase and amplitude modulation modes of the SLM. Our system is able to deliver a 0.99 nm spatial and 1.33 nm temporal pathlength sensitivity while retaining the optical transverse resolution. The system is implemented as an additional module mounted to a conventional microscope, which makes the system very easy to deploy and integrate with other imaging modalities.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Popescu, Quantitative Phase Imaging of Cells and Tissues, Biophotonics (Mcgraw-Hill, 2011).
  2. A. Atalar, C. F. Quate, and H. K. Wickramasinghe, “Phase imaging in reflection with the acoustic microscope,” Appl. Phys. Lett.31(12), 791–793 (1977).
    [CrossRef]
  3. C. J. Sheppard and T. Wilson, “Fourier imaging of phase information in scanning and conventional optical microscopes,” Philos. Trans. R. Soc. London, Ser. A295, 513–536 (1980).
  4. T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun.133(1-6), 339–346 (1997).
    [CrossRef]
  5. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett.30(10), 1165–1167 (2005).
    [CrossRef] [PubMed]
  6. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett.29(21), 2503–2505 (2004).
    [CrossRef] [PubMed]
  7. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett.24(5), 291–293 (1999).
    [CrossRef] [PubMed]
  8. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett.30(16), 2131–2133 (2005).
    [CrossRef] [PubMed]
  9. K. Creath and G. Goldstein, “Dynamic quantitative phase imaging for biological objects using a pixelated phase mask,” Biomed. Opt. Express3(11), 2866–2880 (2012).
    [CrossRef] [PubMed]
  10. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express17(15), 13080–13094 (2009).
    [CrossRef] [PubMed]
  11. C. Mann, L. Yu, C.-M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express13(22), 8693–8698 (2005).
    [CrossRef] [PubMed]
  12. E. Wolf, Progress in Optics (Elsevier Science, 2012), Vol. 57.
  13. Z. Wang, L. Millet, V. Chan, H. F. Ding, M. U. Gillette, R. Bashir, and G. Popescu, “Label-free intracellular transport measured by spatial light interference microscopy,” J. Biomed. Opt.16(2), 026019 (2011).
    [CrossRef] [PubMed]
  14. R. Wang, Z. Wang, J. Leigh, N. Sobh, L. Millet, M. U. Gillette, A. J. Levine, and G. Popescu, “One-dimensional deterministic transport in neurons measured by dispersion-relation phase spectroscopy,” J. Phys. Condens. Matter23(37), 374107 (2011).
    [CrossRef] [PubMed]
  15. G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, and R. R. Dasari, “Optical imaging of cell mass and growth dynamics,” Am J. Physiol.295, 538–544 (2008).
  16. M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13124–13129 (2011).
    [CrossRef] [PubMed]
  17. Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A.107(15), 6731–6736 (2010).
    [CrossRef] [PubMed]
  18. Z. Wang, D. L. Marks, P. S. Carney, L. J. Millet, M. U. Gillette, A. Mihi, P. V. Braun, Z. Shen, S. G. Prasanth, and G. Popescu, “Spatial light interference tomography (SLIT),” Opt. Express19(21), 19907–19918 (2011).
    [CrossRef] [PubMed]
  19. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007).
    [CrossRef] [PubMed]
  20. Z. Wang, I. S. Chun, X. Li, Z.-Y. Ong, E. Pop, L. Millet, M. Gillette, and G. Popescu, “Topography and refractometry of nanostructures using spatial light interference microscopy,” Opt. Lett.35(2), 208–210 (2010).
    [CrossRef] [PubMed]
  21. Z. Wang, K. Tangella, A. Balla, and G. Popescu, “Tissue refractive index as marker of disease,” J. Biomed. Opt.16(11), 116017 (2011).
    [CrossRef] [PubMed]
  22. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett.37(6), 1094–1096 (2012).
    [CrossRef] [PubMed]
  23. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett.31(6), 775–777 (2006).
    [CrossRef] [PubMed]
  24. Z. Wang, L. J. Millet, M. Mir, H. Ding, S. Unarunotai, J. A. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19, 1016–1026 (2011).
  25. D. Zicha and G. A. Dunn, “An Image-Processing System For Cell Behavior Studies In Subconfluent Cultures,” J. Microsc.179(1), 11–21 (1995).
    [CrossRef]
  26. W. C. Warger and C. A. DiMarzio, “Computational signal-to-noise ratio analysis for optical quadrature microscopy,” Opt. Express17(4), 2400–2422 (2009).
    [CrossRef] [PubMed]
  27. M. Young, B. Faulkner, and J. Cole, “Resolution in optical systems using coherent illumination,” J. Opt. Soc. Am.60(1), 137–139 (1970).
    [CrossRef]
  28. J. W. Goodman, Speckle phenomena in optics: theory and applications (Roberts & Co, 2007).
  29. D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett.80(12), 2586–2589 (1998).
    [CrossRef]
  30. A. Yariv and P. Yeh, Optical waves in crystals (Wiley New York, 1984), Vol. 5.
  31. K. Lu and B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng.29, 240–244 (1989).
  32. J. L. Pezzaniti and R. A. Chipman, “Phase-only modulation of a twisted nematic liquid-crystal TV by use of the eigenpolarization states,” Opt. Lett.18(18), 1567–1569 (1993).
    [CrossRef] [PubMed]
  33. T. H. Barnes, T. Eiju, K. Matusda, and N. Ooyama, “Phase-only modulation using a twisted nematic liquid crystal television,” Appl. Opt.28(22), 4845–4852 (1989).
    [CrossRef] [PubMed]
  34. N. Konforti, E. Marom, and S.-T. Wu, “Phase-only modulation with twisted nematic liquid-crystal spatial light modulators,” Opt. Lett.13(3), 251–253 (1988).
    [CrossRef] [PubMed]
  35. Z. Yin, K. Li, T. Kanade, and M. Chen, “Understanding the optics to aid microscopy image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2010 (Springer, 2010), pp. 209–217.

2012 (2)

2011 (6)

Z. Wang, D. L. Marks, P. S. Carney, L. J. Millet, M. U. Gillette, A. Mihi, P. V. Braun, Z. Shen, S. G. Prasanth, and G. Popescu, “Spatial light interference tomography (SLIT),” Opt. Express19(21), 19907–19918 (2011).
[CrossRef] [PubMed]

Z. Wang, L. Millet, V. Chan, H. F. Ding, M. U. Gillette, R. Bashir, and G. Popescu, “Label-free intracellular transport measured by spatial light interference microscopy,” J. Biomed. Opt.16(2), 026019 (2011).
[CrossRef] [PubMed]

R. Wang, Z. Wang, J. Leigh, N. Sobh, L. Millet, M. U. Gillette, A. J. Levine, and G. Popescu, “One-dimensional deterministic transport in neurons measured by dispersion-relation phase spectroscopy,” J. Phys. Condens. Matter23(37), 374107 (2011).
[CrossRef] [PubMed]

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13124–13129 (2011).
[CrossRef] [PubMed]

Z. Wang, K. Tangella, A. Balla, and G. Popescu, “Tissue refractive index as marker of disease,” J. Biomed. Opt.16(11), 116017 (2011).
[CrossRef] [PubMed]

Z. Wang, L. J. Millet, M. Mir, H. Ding, S. Unarunotai, J. A. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19, 1016–1026 (2011).

2010 (2)

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A.107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Z. Wang, I. S. Chun, X. Li, Z.-Y. Ong, E. Pop, L. Millet, M. Gillette, and G. Popescu, “Topography and refractometry of nanostructures using spatial light interference microscopy,” Opt. Lett.35(2), 208–210 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (1)

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, and R. R. Dasari, “Optical imaging of cell mass and growth dynamics,” Am J. Physiol.295, 538–544 (2008).

2007 (1)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (3)

2004 (1)

1999 (1)

1998 (1)

D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett.80(12), 2586–2589 (1998).
[CrossRef]

1997 (1)

T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun.133(1-6), 339–346 (1997).
[CrossRef]

1995 (1)

D. Zicha and G. A. Dunn, “An Image-Processing System For Cell Behavior Studies In Subconfluent Cultures,” J. Microsc.179(1), 11–21 (1995).
[CrossRef]

1993 (1)

1989 (2)

T. H. Barnes, T. Eiju, K. Matusda, and N. Ooyama, “Phase-only modulation using a twisted nematic liquid crystal television,” Appl. Opt.28(22), 4845–4852 (1989).
[CrossRef] [PubMed]

K. Lu and B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng.29, 240–244 (1989).

1988 (1)

1980 (1)

C. J. Sheppard and T. Wilson, “Fourier imaging of phase information in scanning and conventional optical microscopes,” Philos. Trans. R. Soc. London, Ser. A295, 513–536 (1980).

1977 (1)

A. Atalar, C. F. Quate, and H. K. Wickramasinghe, “Phase imaging in reflection with the acoustic microscope,” Appl. Phys. Lett.31(12), 791–793 (1977).
[CrossRef]

1970 (1)

Akkin, T.

Atalar, A.

A. Atalar, C. F. Quate, and H. K. Wickramasinghe, “Phase imaging in reflection with the acoustic microscope,” Appl. Phys. Lett.31(12), 791–793 (1977).
[CrossRef]

Badizadegan, K.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A.107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007).
[CrossRef] [PubMed]

G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett.29(21), 2503–2505 (2004).
[CrossRef] [PubMed]

Balla, A.

Z. Wang, K. Tangella, A. Balla, and G. Popescu, “Tissue refractive index as marker of disease,” J. Biomed. Opt.16(11), 116017 (2011).
[CrossRef] [PubMed]

Barnes, T. H.

Bashir, R.

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13124–13129 (2011).
[CrossRef] [PubMed]

Z. Wang, L. Millet, V. Chan, H. F. Ding, M. U. Gillette, R. Bashir, and G. Popescu, “Label-free intracellular transport measured by spatial light interference microscopy,” J. Biomed. Opt.16(2), 026019 (2011).
[CrossRef] [PubMed]

Bednarz, M.

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13124–13129 (2011).
[CrossRef] [PubMed]

Best, C. A.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A.107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Best-Popescu, C.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, and R. R. Dasari, “Optical imaging of cell mass and growth dynamics,” Am J. Physiol.295, 538–544 (2008).

Bevilacqua, F.

Bhaduri, B.

Bon, P.

Braun, P. V.

Carney, P. S.

Cense, B.

Chan, V.

Z. Wang, L. Millet, V. Chan, H. F. Ding, M. U. Gillette, R. Bashir, and G. Popescu, “Label-free intracellular transport measured by spatial light interference microscopy,” J. Biomed. Opt.16(2), 026019 (2011).
[CrossRef] [PubMed]

Chipman, R. A.

Choi, W.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007).
[CrossRef] [PubMed]

Chun, I. S.

Cole, J.

Creath, K.

Cuche, E.

Dasari, R. R.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A.107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, and R. R. Dasari, “Optical imaging of cell mass and growth dynamics,” Am J. Physiol.295, 538–544 (2008).

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett.31(6), 775–777 (2006).
[CrossRef] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett.30(10), 1165–1167 (2005).
[CrossRef] [PubMed]

G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett.29(21), 2503–2505 (2004).
[CrossRef] [PubMed]

de Boer, J. F.

Deflores, L.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, and R. R. Dasari, “Optical imaging of cell mass and growth dynamics,” Am J. Physiol.295, 538–544 (2008).

Deflores, L. P.

Depeursinge, C.

DiMarzio, C. A.

Ding, H.

Z. Wang, L. J. Millet, M. Mir, H. Ding, S. Unarunotai, J. A. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19, 1016–1026 (2011).

Ding, H. F.

Z. Wang, L. Millet, V. Chan, H. F. Ding, M. U. Gillette, R. Bashir, and G. Popescu, “Label-free intracellular transport measured by spatial light interference microscopy,” J. Biomed. Opt.16(2), 026019 (2011).
[CrossRef] [PubMed]

Dunn, G. A.

D. Zicha and G. A. Dunn, “An Image-Processing System For Cell Behavior Studies In Subconfluent Cultures,” J. Microsc.179(1), 11–21 (1995).
[CrossRef]

Eiju, T.

Fang-Yen, C.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007).
[CrossRef] [PubMed]

Faulkner, B.

Feld, M. S.

Gillette, M.

Gillette, M. U.

Z. Wang, D. L. Marks, P. S. Carney, L. J. Millet, M. U. Gillette, A. Mihi, P. V. Braun, Z. Shen, S. G. Prasanth, and G. Popescu, “Spatial light interference tomography (SLIT),” Opt. Express19(21), 19907–19918 (2011).
[CrossRef] [PubMed]

R. Wang, Z. Wang, J. Leigh, N. Sobh, L. Millet, M. U. Gillette, A. J. Levine, and G. Popescu, “One-dimensional deterministic transport in neurons measured by dispersion-relation phase spectroscopy,” J. Phys. Condens. Matter23(37), 374107 (2011).
[CrossRef] [PubMed]

Z. Wang, L. J. Millet, M. Mir, H. Ding, S. Unarunotai, J. A. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19, 1016–1026 (2011).

Z. Wang, L. Millet, V. Chan, H. F. Ding, M. U. Gillette, R. Bashir, and G. Popescu, “Label-free intracellular transport measured by spatial light interference microscopy,” J. Biomed. Opt.16(2), 026019 (2011).
[CrossRef] [PubMed]

Golding, I.

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13124–13129 (2011).
[CrossRef] [PubMed]

Goldstein, G.

Gureyev, T. E.

T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun.133(1-6), 339–346 (1997).
[CrossRef]

Henle, M. L.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A.107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Ikeda, T.

Iwai, H.

Joo, C.

Kim, M.

Konforti, N.

Kuriabova, T.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A.107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Leigh, J.

R. Wang, Z. Wang, J. Leigh, N. Sobh, L. Millet, M. U. Gillette, A. J. Levine, and G. Popescu, “One-dimensional deterministic transport in neurons measured by dispersion-relation phase spectroscopy,” J. Phys. Condens. Matter23(37), 374107 (2011).
[CrossRef] [PubMed]

Levine, A. J.

R. Wang, Z. Wang, J. Leigh, N. Sobh, L. Millet, M. U. Gillette, A. J. Levine, and G. Popescu, “One-dimensional deterministic transport in neurons measured by dispersion-relation phase spectroscopy,” J. Phys. Condens. Matter23(37), 374107 (2011).
[CrossRef] [PubMed]

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A.107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Li, X.

Lo, C.-M.

Lu, K.

K. Lu and B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng.29, 240–244 (1989).

Lue, N.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, and R. R. Dasari, “Optical imaging of cell mass and growth dynamics,” Am J. Physiol.295, 538–544 (2008).

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007).
[CrossRef] [PubMed]

Mann, C.

Marks, D. L.

Marom, E.

Matusda, K.

Maucort, G.

Mihi, A.

Millet, L.

R. Wang, Z. Wang, J. Leigh, N. Sobh, L. Millet, M. U. Gillette, A. J. Levine, and G. Popescu, “One-dimensional deterministic transport in neurons measured by dispersion-relation phase spectroscopy,” J. Phys. Condens. Matter23(37), 374107 (2011).
[CrossRef] [PubMed]

Z. Wang, L. Millet, V. Chan, H. F. Ding, M. U. Gillette, R. Bashir, and G. Popescu, “Label-free intracellular transport measured by spatial light interference microscopy,” J. Biomed. Opt.16(2), 026019 (2011).
[CrossRef] [PubMed]

Z. Wang, I. S. Chun, X. Li, Z.-Y. Ong, E. Pop, L. Millet, M. Gillette, and G. Popescu, “Topography and refractometry of nanostructures using spatial light interference microscopy,” Opt. Lett.35(2), 208–210 (2010).
[CrossRef] [PubMed]

Millet, L. J.

Z. Wang, D. L. Marks, P. S. Carney, L. J. Millet, M. U. Gillette, A. Mihi, P. V. Braun, Z. Shen, S. G. Prasanth, and G. Popescu, “Spatial light interference tomography (SLIT),” Opt. Express19(21), 19907–19918 (2011).
[CrossRef] [PubMed]

Z. Wang, L. J. Millet, M. Mir, H. Ding, S. Unarunotai, J. A. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19, 1016–1026 (2011).

Mir, M.

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett.37(6), 1094–1096 (2012).
[CrossRef] [PubMed]

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13124–13129 (2011).
[CrossRef] [PubMed]

Z. Wang, L. J. Millet, M. Mir, H. Ding, S. Unarunotai, J. A. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19, 1016–1026 (2011).

Monneret, S.

Nugent, K. A.

D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett.80(12), 2586–2589 (1998).
[CrossRef]

T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun.133(1-6), 339–346 (1997).
[CrossRef]

Oh, S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007).
[CrossRef] [PubMed]

Ong, Z.-Y.

Ooyama, N.

Paganin, D.

D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett.80(12), 2586–2589 (1998).
[CrossRef]

Park, B. H.

Park, Y.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A.107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, and R. R. Dasari, “Optical imaging of cell mass and growth dynamics,” Am J. Physiol.295, 538–544 (2008).

Pezzaniti, J. L.

Pham, H.

Pop, E.

Popescu, G.

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett.37(6), 1094–1096 (2012).
[CrossRef] [PubMed]

Z. Wang, D. L. Marks, P. S. Carney, L. J. Millet, M. U. Gillette, A. Mihi, P. V. Braun, Z. Shen, S. G. Prasanth, and G. Popescu, “Spatial light interference tomography (SLIT),” Opt. Express19(21), 19907–19918 (2011).
[CrossRef] [PubMed]

R. Wang, Z. Wang, J. Leigh, N. Sobh, L. Millet, M. U. Gillette, A. J. Levine, and G. Popescu, “One-dimensional deterministic transport in neurons measured by dispersion-relation phase spectroscopy,” J. Phys. Condens. Matter23(37), 374107 (2011).
[CrossRef] [PubMed]

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13124–13129 (2011).
[CrossRef] [PubMed]

Z. Wang, L. Millet, V. Chan, H. F. Ding, M. U. Gillette, R. Bashir, and G. Popescu, “Label-free intracellular transport measured by spatial light interference microscopy,” J. Biomed. Opt.16(2), 026019 (2011).
[CrossRef] [PubMed]

Z. Wang, K. Tangella, A. Balla, and G. Popescu, “Tissue refractive index as marker of disease,” J. Biomed. Opt.16(11), 116017 (2011).
[CrossRef] [PubMed]

Z. Wang, L. J. Millet, M. Mir, H. Ding, S. Unarunotai, J. A. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19, 1016–1026 (2011).

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A.107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Z. Wang, I. S. Chun, X. Li, Z.-Y. Ong, E. Pop, L. Millet, M. Gillette, and G. Popescu, “Topography and refractometry of nanostructures using spatial light interference microscopy,” Opt. Lett.35(2), 208–210 (2010).
[CrossRef] [PubMed]

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, and R. R. Dasari, “Optical imaging of cell mass and growth dynamics,” Am J. Physiol.295, 538–544 (2008).

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett.31(6), 775–777 (2006).
[CrossRef] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett.30(10), 1165–1167 (2005).
[CrossRef] [PubMed]

G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett.29(21), 2503–2505 (2004).
[CrossRef] [PubMed]

Prasanth, S. G.

Z. Wang, D. L. Marks, P. S. Carney, L. J. Millet, M. U. Gillette, A. Mihi, P. V. Braun, Z. Shen, S. G. Prasanth, and G. Popescu, “Spatial light interference tomography (SLIT),” Opt. Express19(21), 19907–19918 (2011).
[CrossRef] [PubMed]

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13124–13129 (2011).
[CrossRef] [PubMed]

Quate, C. F.

A. Atalar, C. F. Quate, and H. K. Wickramasinghe, “Phase imaging in reflection with the acoustic microscope,” Appl. Phys. Lett.31(12), 791–793 (1977).
[CrossRef]

Rogers, J. A.

Z. Wang, L. J. Millet, M. Mir, H. Ding, S. Unarunotai, J. A. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19, 1016–1026 (2011).

Saleh, B. E. A.

K. Lu and B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng.29, 240–244 (1989).

Shen, Z.

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13124–13129 (2011).
[CrossRef] [PubMed]

Z. Wang, D. L. Marks, P. S. Carney, L. J. Millet, M. U. Gillette, A. Mihi, P. V. Braun, Z. Shen, S. G. Prasanth, and G. Popescu, “Spatial light interference tomography (SLIT),” Opt. Express19(21), 19907–19918 (2011).
[CrossRef] [PubMed]

Sheppard, C. J.

C. J. Sheppard and T. Wilson, “Fourier imaging of phase information in scanning and conventional optical microscopes,” Philos. Trans. R. Soc. London, Ser. A295, 513–536 (1980).

Sobh, N.

R. Wang, Z. Wang, J. Leigh, N. Sobh, L. Millet, M. U. Gillette, A. J. Levine, and G. Popescu, “One-dimensional deterministic transport in neurons measured by dispersion-relation phase spectroscopy,” J. Phys. Condens. Matter23(37), 374107 (2011).
[CrossRef] [PubMed]

Tangella, K.

Z. Wang, K. Tangella, A. Balla, and G. Popescu, “Tissue refractive index as marker of disease,” J. Biomed. Opt.16(11), 116017 (2011).
[CrossRef] [PubMed]

Unarunotai, S.

Z. Wang, L. J. Millet, M. Mir, H. Ding, S. Unarunotai, J. A. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19, 1016–1026 (2011).

Vaughan, J. C.

Wang, R.

R. Wang, Z. Wang, J. Leigh, N. Sobh, L. Millet, M. U. Gillette, A. J. Levine, and G. Popescu, “One-dimensional deterministic transport in neurons measured by dispersion-relation phase spectroscopy,” J. Phys. Condens. Matter23(37), 374107 (2011).
[CrossRef] [PubMed]

Wang, Z.

R. Wang, Z. Wang, J. Leigh, N. Sobh, L. Millet, M. U. Gillette, A. J. Levine, and G. Popescu, “One-dimensional deterministic transport in neurons measured by dispersion-relation phase spectroscopy,” J. Phys. Condens. Matter23(37), 374107 (2011).
[CrossRef] [PubMed]

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13124–13129 (2011).
[CrossRef] [PubMed]

Z. Wang, D. L. Marks, P. S. Carney, L. J. Millet, M. U. Gillette, A. Mihi, P. V. Braun, Z. Shen, S. G. Prasanth, and G. Popescu, “Spatial light interference tomography (SLIT),” Opt. Express19(21), 19907–19918 (2011).
[CrossRef] [PubMed]

Z. Wang, L. J. Millet, M. Mir, H. Ding, S. Unarunotai, J. A. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19, 1016–1026 (2011).

Z. Wang, K. Tangella, A. Balla, and G. Popescu, “Tissue refractive index as marker of disease,” J. Biomed. Opt.16(11), 116017 (2011).
[CrossRef] [PubMed]

Z. Wang, L. Millet, V. Chan, H. F. Ding, M. U. Gillette, R. Bashir, and G. Popescu, “Label-free intracellular transport measured by spatial light interference microscopy,” J. Biomed. Opt.16(2), 026019 (2011).
[CrossRef] [PubMed]

Z. Wang, I. S. Chun, X. Li, Z.-Y. Ong, E. Pop, L. Millet, M. Gillette, and G. Popescu, “Topography and refractometry of nanostructures using spatial light interference microscopy,” Opt. Lett.35(2), 208–210 (2010).
[CrossRef] [PubMed]

Warger, W. C.

Wattellier, B.

Wickramasinghe, H. K.

A. Atalar, C. F. Quate, and H. K. Wickramasinghe, “Phase imaging in reflection with the acoustic microscope,” Appl. Phys. Lett.31(12), 791–793 (1977).
[CrossRef]

Wilson, T.

C. J. Sheppard and T. Wilson, “Fourier imaging of phase information in scanning and conventional optical microscopes,” Philos. Trans. R. Soc. London, Ser. A295, 513–536 (1980).

Wu, S.-T.

Young, M.

Yu, L.

Zicha, D.

D. Zicha and G. A. Dunn, “An Image-Processing System For Cell Behavior Studies In Subconfluent Cultures,” J. Microsc.179(1), 11–21 (1995).
[CrossRef]

Am J. Physiol. (1)

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, and R. R. Dasari, “Optical imaging of cell mass and growth dynamics,” Am J. Physiol.295, 538–544 (2008).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Atalar, C. F. Quate, and H. K. Wickramasinghe, “Phase imaging in reflection with the acoustic microscope,” Appl. Phys. Lett.31(12), 791–793 (1977).
[CrossRef]

Biomed. Opt. Express (1)

J. Biomed. Opt. (2)

Z. Wang, L. Millet, V. Chan, H. F. Ding, M. U. Gillette, R. Bashir, and G. Popescu, “Label-free intracellular transport measured by spatial light interference microscopy,” J. Biomed. Opt.16(2), 026019 (2011).
[CrossRef] [PubMed]

Z. Wang, K. Tangella, A. Balla, and G. Popescu, “Tissue refractive index as marker of disease,” J. Biomed. Opt.16(11), 116017 (2011).
[CrossRef] [PubMed]

J. Microsc. (1)

D. Zicha and G. A. Dunn, “An Image-Processing System For Cell Behavior Studies In Subconfluent Cultures,” J. Microsc.179(1), 11–21 (1995).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Condens. Matter (1)

R. Wang, Z. Wang, J. Leigh, N. Sobh, L. Millet, M. U. Gillette, A. J. Levine, and G. Popescu, “One-dimensional deterministic transport in neurons measured by dispersion-relation phase spectroscopy,” J. Phys. Condens. Matter23(37), 374107 (2011).
[CrossRef] [PubMed]

Nat. Methods (1)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007).
[CrossRef] [PubMed]

Opt. Commun. (1)

T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun.133(1-6), 339–346 (1997).
[CrossRef]

Opt. Eng. (1)

K. Lu and B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng.29, 240–244 (1989).

Opt. Express (4)

Opt. Lett. (9)

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett.37(6), 1094–1096 (2012).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett.31(6), 775–777 (2006).
[CrossRef] [PubMed]

Z. Wang, I. S. Chun, X. Li, Z.-Y. Ong, E. Pop, L. Millet, M. Gillette, and G. Popescu, “Topography and refractometry of nanostructures using spatial light interference microscopy,” Opt. Lett.35(2), 208–210 (2010).
[CrossRef] [PubMed]

N. Konforti, E. Marom, and S.-T. Wu, “Phase-only modulation with twisted nematic liquid-crystal spatial light modulators,” Opt. Lett.13(3), 251–253 (1988).
[CrossRef] [PubMed]

J. L. Pezzaniti and R. A. Chipman, “Phase-only modulation of a twisted nematic liquid-crystal TV by use of the eigenpolarization states,” Opt. Lett.18(18), 1567–1569 (1993).
[CrossRef] [PubMed]

E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett.24(5), 291–293 (1999).
[CrossRef] [PubMed]

G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett.29(21), 2503–2505 (2004).
[CrossRef] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett.30(10), 1165–1167 (2005).
[CrossRef] [PubMed]

C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett.30(16), 2131–2133 (2005).
[CrossRef] [PubMed]

Philos. Trans. R. Soc. London, Ser. A (1)

C. J. Sheppard and T. Wilson, “Fourier imaging of phase information in scanning and conventional optical microscopes,” Philos. Trans. R. Soc. London, Ser. A295, 513–536 (1980).

Phys. Rev. Lett. (1)

D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett.80(12), 2586–2589 (1998).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (2)

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13124–13129 (2011).
[CrossRef] [PubMed]

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A.107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Spatial light interference microscopy (SLIM) (1)

Z. Wang, L. J. Millet, M. Mir, H. Ding, S. Unarunotai, J. A. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19, 1016–1026 (2011).

Other (5)

G. Popescu, Quantitative Phase Imaging of Cells and Tissues, Biophotonics (Mcgraw-Hill, 2011).

A. Yariv and P. Yeh, Optical waves in crystals (Wiley New York, 1984), Vol. 5.

J. W. Goodman, Speckle phenomena in optics: theory and applications (Roberts & Co, 2007).

E. Wolf, Progress in Optics (Elsevier Science, 2012), Vol. 57.

Z. Yin, K. Li, T. Kanade, and M. Chen, “Understanding the optics to aid microscopy image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2010 (Springer, 2010), pp. 209–217.

Supplementary Material (1)

» Media 1: AVI (2256 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Twisted nematic LCs in 2 cases. (a) Without applied electric field. (b) Under applied electric field. The molecules tilt towards the electrodes and lose their rotating power.

Fig. 2
Fig. 2

An example setup for light modulation with TNLC- SLM. A TNLC-SLM is placed between two polarizers (called the polarizer and the analyzer).

Fig. 3
Fig. 3

Intensity transmittance

Fig. 4
Fig. 4

Phase shifting

Fig. 5
Fig. 5

(a) Optical setup of the SLIM system using TNLC-SLM. The output image from an inverted phase contrast microscope (Nikon Ti-E in our case) is spatially Fourier transformed by Fourier lens 1 onto the surface of a transmission TNLC-SLM (LC 2002 from Holoeye). The SLM introduces different phase and intensity modulations to the Fourier transform of the scattered and non-scattered components. Then, Fourier lens 2 performs a secondary Fourier transform, which reconstructs the image on the LCD. This image plane is conjugated with the sample plane. Since we are using a 40×/0.95 NA Plan Apo phase objective with an extra unity magnification from the SLIM module, we have approximately 4.5 pixels per micron (b) Four recorded frames of a SLIM quantitative phase image. Top row: 2 frames recorded under intensity modulation, bottom row: 2 frames recorded under phase-mostly modulation (details of these modes will be discuss later on). Since a phase objective, instead of a bright field one, is used in our acquisition, I( r; a p 0 , a p 0 ,0 ) corresponds to the phase contrast image and I( r; a p 180 , a p 0 ,π/2 ) will be an image when the scattered and non-scatter component are 180° out of phase. The field of view has size of size 200×200μ m 2 .

Fig. 6
Fig. 6

(a) Optical setup for TN-LC SLM calibration. (b) Two SLM patterns used in the calibration.

Fig. 7
Fig. 7

Measured modulation characteristics for the phase-mostly modulation mode ψ in = 330 o , ψ out = 0 o . Red dots indicate operating points that are used in the SLIM measurements (see Table 1). (a) Relative amplitude modulation factor r g,0 vs. grayscale valueg. (b) Relative modulated phase shift ϕ m g,0 vs. grayscale values g.

Fig. 8
Fig. 8

(a) Thickness map (in microns) of two polystyrene micro-beads of 2μm mean diameter. (b) Cross-section along the line profile in (a). Horizontal axis shows the pixel indices while the vertical axis shows the thickness. (c) Quantitative optical path length (OPL) map of a background region for a single frame. The unit is in nanometers. (d) Blue: Histogram of optical path length noise of across (c) (standard deviation σ s =0.99nm ). Red: Histogram of optical path length temporal noise across 284 frames (standard deviation σ t =1.33nm ).

Fig. 9
Fig. 9

Quantitative phase image of the red blood cells; colorbar indicates phase in rads.

Fig. 10
Fig. 10

(a), (b) Phase Contrast and SLIM images of two HeLa cells at one z-stack (chosen as z=0μm ), (c), (d) Another pair of Phase Contrast and SLIM images of the HeLa cells at z=1.8μm . These images are frames extracted from Media 1. The green arrows point to the location of nucleoli. Thanks to combination of 4 frames, the halo effect is SLIM is less than Phase Contrast. This fact subsequently renders higher contrast ratio in SLIM images (e.g. the red arrows points to the location when a shaper edge of the nucleoli is observed) compared to the Phase Contrast images. Color bar indicates phase in radians.

Tables (1)

Tables Icon

Table 1 Modulation procedure for SLIM with TNLC-SLM for a single phase acquisition

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

J=exp( i β d )R( ϕ d )M( ϕ d , β d ).
M( ϕ d , β d )=[ cos( γ )i β d γ sin( γ ) ( ϕ d γ )sin( γ ) ( ϕ d γ )sin( γ ) cos( γ )+i β d γ sin( γ ) ],
T= cos 2 ( ψ in ){ [ ϕ d γ sin( γ )cos( ψ in ψ out )+cos( γ )sin( ψ in ψ out ) ] 2 + [ β d γ sin( γ )sin( ψ in + ψ out ) ] 2 },
δ= β d tan 1 [ ( β d /γ )sin( γ )sin( ψ in + ψ out ) ( ϕ d /γ )sin( γ )cos( ψ in ψ out )+cos( γ )sin( ψ in ψ out ) ].
U(r,t)= U o (r,t)+ U 1 (r,t),
ϕ( r )U( r )= ω c o h( r ) [ n( r,z ) n o ] dz.
I(r; a o , a 1 , ϕ m )= | a o U o ( r,t )+ a 1 U 1 ( r,t+τ ) | 2 t = a o 2 | U o (r) | 2 + a 1 2 | U 1 (r) | 2 +2 a o a 1 | U o (r) U 1 (r) |cos[ Δϕ(r)+ ϕ m ],
ϕ( r )= tan 1 ( β( r )sin[ Δϕ( r ) ] 1+β( r )cos[ Δϕ( r ) ] ).
I( r; a i 0 , a i 255 , ϕ m,i 0,255 ) ( a i 255 ) 2 | U 1 ( r ) | 2 I( r; a i 255 , a i 0 , ϕ m,i 255,0 ) ( a i 255 ) 2 | U 0 ( r ) | 2 }β( r ) I( r; a i 0 , a i 255 , ϕ m,i 0,255 ) I( r; a i 255 , a i 0 , ϕ m,i 255,0 ) .
I( r; a p 0 , a p 0 ,0 ) ( a p 0 ) 2 | U 0 ( r ) | 2 + ( a p 0 ) 2 | U 1 ( r ) | 2 +2( a p 0 a p 0 )| U 0 ( r ) U 1 ( r ) |cos( Δϕ(r) ), I( r; a p 180 , a p 0 , π 2 ) ( a p 180 ) 2 | U 0 ( r ) | 2 + ( a p 0 ) 2 | U 1 ( r ) | 2 2( a p 180 a p 0 )| U 0 ( r ) U 1 ( r ) |sin( Δϕ(r) ).
I( r; a p 0 , a p 0 ,0 ) I( r; a p 180 , a p 0 ,π/2 ) = ( a p 0 ) 2 + ( a p 0 ) 2 β ( r ) 2 +2( a p 0 a p 0 )β( r )cos( Δϕ(r) ) ( a p 180 ) 2 + ( a p 0 ) 2 β ( r ) 2 2( a p 180 a p 0 )β( r )sin( Δϕ(r) ) ,

Metrics