Abstract

As contrast agents, microbubbles have been playing significant roles in ultrasound imaging. Investigation of microbubble oscillation is crucial for microbubble characterization and detection. Unfortunately, 3-dimensional (3D) observation of microbubble oscillation is challenging and costly because of the bubble size—a few microns in diameter—and the high-speed dynamics under MHz ultrasound pressure waves. In this study, a cost-efficient optical confocal microscopic system combined with a gated and intensified charge-coupled device (ICCD) camera were developed to detect 3D microbubble oscillation. The capability of imaging microbubble high-speed oscillation with much lower costs than with an ultra-fast framing or streak camera system was demonstrated. In addition, microbubble oscillations along both lateral (x and y) and axial (z) directions were demonstrated. Accordingly, this system is an excellent alternative for 3D investigation of microbubble high-speed oscillation, especially when budgets are limited.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Ferrara, R. Pollard, and M. Borden, “Ultrasound microbubble contrast agents: Fundamentals and application to gene and drug delivery,” Annu. Rev. Biomed. Eng.9(1), 415–447 (2007).
    [CrossRef] [PubMed]
  2. S. P. Qin, C. F. Caskey, and K. W. Ferrara, “Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering,” Phys. Med. Biol.54(6), R27–R57 (2009).
    [CrossRef] [PubMed]
  3. S. Zhao, K. W. Ferrara, and P. A. Dayton, “Asymmetric oscillation of adherent targeted ultrasound contrast agents,” Appl. Phys. Lett.87(13), 134103 (2005).
    [CrossRef] [PubMed]
  4. H. J. Vos, B. Dollet, M. Versluis, and N. de Jong, “Nonspherical shape oscillations of coated microbubbles in contact with a wall,” Ultrasound Med. Biol.37(6), 935–948 (2011).
    [CrossRef] [PubMed]
  5. W. Lauterborn and T. Kurz, “Physics of bubble oscillations,” Rep. Prog. Phys.73, 106501 (2010).
  6. S. P. Qin and K. W. Ferrara, “Acoustic response of compliable microvessels containing ultrasound contrast agents,” Phys. Med. Biol.51(20), 5065–5088 (2006).
    [CrossRef] [PubMed]
  7. N. de Jong, P. J. Frinking, A. Bouakaz, M. Goorden, T. Schourmans, X. Jingping, and F. Mastik, “Optical imaging of contrast agent microbubbles in an ultrasound field with a 100-MHz camera,” Ultrasound Med. Biol.26(3), 487–492 (2000).
    [CrossRef] [PubMed]
  8. M. J. Hsu, M. Eghtedari, A. P. Goodwin, D. J. Hall, R. F. Mattrey, and S. C. Esener, “Characterization of individual ultrasound microbubble dynamics with a light-scattering system,” J. Biomed. Opt.16(6), 067002 (2011).
    [CrossRef] [PubMed]
  9. S. Wilhelm, B. Grobler, M. Gluch, and H. Heinz, “Confocal laser scanning microscopy principles,” in Zeiss Jena ( http://zeiss-campus.magnet.fsu.edu/referencelibrary/laserconfocal.html ).
  10. Y. G. Du, H. Jensen, and J. A. Jensen, “Comparison of Simulated and Measured Non-linear Ultrasound Fields,” Proc. SPIE7968, 79680P, 79680P-10 (2011).
    [CrossRef]
  11. J. E. Chomas, P. Dayton, J. Allen, K. Morgan, and K. W. Ferrara, “Mechanisms of contrast agent destruction,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control48(1), 232–248 (2001).
    [CrossRef] [PubMed]
  12. N. de Jong, M. Emmer, C. T. Chin, A. Bouakaz, F. Mastik, D. Lohse, and M. Versluis, ““Compression-only” behavior of phospholipid-coated contrast bubbles,” Ultrasound Med. Biol.33(4), 653–656 (2007).
    [CrossRef] [PubMed]
  13. J. Sijl, M. Overvelde, B. Dollet, V. Garbin, N. de Jong, D. Lohse, and M. Versluis, ““Compression-only” behavior: A second-order nonlinear response of ultrasound contrast agent microbubbles,” J. Acoust. Soc. Am.129(4), 1729–1739 (2011).
    [CrossRef] [PubMed]
  14. M. Overvelde, V. Garbin, B. Dollet, N. de Jong, D. Lohse, and M. Versluis, “Dynamics of Coated Microbubbles Adherent to a Wall,” Ultrasound Med. Biol.37(9), 1500–1508 (2011).
    [CrossRef] [PubMed]
  15. A. L. Klibanov, “Preparation of targeted microbubbles: ultrasound contrast agents for molecular imaging,” Med. Biol. Eng. Comput.47(8), 875–882 (2009).
    [CrossRef] [PubMed]
  16. N. Deshpande, A. Needles, and J. K. Willmann, “Molecular ultrasound imaging: current status and future directions,” Clin. Radiol.65(7), 567–581 (2010).
    [CrossRef] [PubMed]
  17. J. R. Lindner, “Molecular imaging with contrast ultrasound and targeted microbubbles,” J. Nucl. Cardiol.11(2), 215–221 (2004).
    [CrossRef] [PubMed]

2011 (5)

H. J. Vos, B. Dollet, M. Versluis, and N. de Jong, “Nonspherical shape oscillations of coated microbubbles in contact with a wall,” Ultrasound Med. Biol.37(6), 935–948 (2011).
[CrossRef] [PubMed]

M. J. Hsu, M. Eghtedari, A. P. Goodwin, D. J. Hall, R. F. Mattrey, and S. C. Esener, “Characterization of individual ultrasound microbubble dynamics with a light-scattering system,” J. Biomed. Opt.16(6), 067002 (2011).
[CrossRef] [PubMed]

Y. G. Du, H. Jensen, and J. A. Jensen, “Comparison of Simulated and Measured Non-linear Ultrasound Fields,” Proc. SPIE7968, 79680P, 79680P-10 (2011).
[CrossRef]

J. Sijl, M. Overvelde, B. Dollet, V. Garbin, N. de Jong, D. Lohse, and M. Versluis, ““Compression-only” behavior: A second-order nonlinear response of ultrasound contrast agent microbubbles,” J. Acoust. Soc. Am.129(4), 1729–1739 (2011).
[CrossRef] [PubMed]

M. Overvelde, V. Garbin, B. Dollet, N. de Jong, D. Lohse, and M. Versluis, “Dynamics of Coated Microbubbles Adherent to a Wall,” Ultrasound Med. Biol.37(9), 1500–1508 (2011).
[CrossRef] [PubMed]

2010 (2)

N. Deshpande, A. Needles, and J. K. Willmann, “Molecular ultrasound imaging: current status and future directions,” Clin. Radiol.65(7), 567–581 (2010).
[CrossRef] [PubMed]

W. Lauterborn and T. Kurz, “Physics of bubble oscillations,” Rep. Prog. Phys.73, 106501 (2010).

2009 (2)

S. P. Qin, C. F. Caskey, and K. W. Ferrara, “Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering,” Phys. Med. Biol.54(6), R27–R57 (2009).
[CrossRef] [PubMed]

A. L. Klibanov, “Preparation of targeted microbubbles: ultrasound contrast agents for molecular imaging,” Med. Biol. Eng. Comput.47(8), 875–882 (2009).
[CrossRef] [PubMed]

2007 (2)

K. Ferrara, R. Pollard, and M. Borden, “Ultrasound microbubble contrast agents: Fundamentals and application to gene and drug delivery,” Annu. Rev. Biomed. Eng.9(1), 415–447 (2007).
[CrossRef] [PubMed]

N. de Jong, M. Emmer, C. T. Chin, A. Bouakaz, F. Mastik, D. Lohse, and M. Versluis, ““Compression-only” behavior of phospholipid-coated contrast bubbles,” Ultrasound Med. Biol.33(4), 653–656 (2007).
[CrossRef] [PubMed]

2006 (1)

S. P. Qin and K. W. Ferrara, “Acoustic response of compliable microvessels containing ultrasound contrast agents,” Phys. Med. Biol.51(20), 5065–5088 (2006).
[CrossRef] [PubMed]

2005 (1)

S. Zhao, K. W. Ferrara, and P. A. Dayton, “Asymmetric oscillation of adherent targeted ultrasound contrast agents,” Appl. Phys. Lett.87(13), 134103 (2005).
[CrossRef] [PubMed]

2004 (1)

J. R. Lindner, “Molecular imaging with contrast ultrasound and targeted microbubbles,” J. Nucl. Cardiol.11(2), 215–221 (2004).
[CrossRef] [PubMed]

2001 (1)

J. E. Chomas, P. Dayton, J. Allen, K. Morgan, and K. W. Ferrara, “Mechanisms of contrast agent destruction,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control48(1), 232–248 (2001).
[CrossRef] [PubMed]

2000 (1)

N. de Jong, P. J. Frinking, A. Bouakaz, M. Goorden, T. Schourmans, X. Jingping, and F. Mastik, “Optical imaging of contrast agent microbubbles in an ultrasound field with a 100-MHz camera,” Ultrasound Med. Biol.26(3), 487–492 (2000).
[CrossRef] [PubMed]

Allen, J.

J. E. Chomas, P. Dayton, J. Allen, K. Morgan, and K. W. Ferrara, “Mechanisms of contrast agent destruction,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control48(1), 232–248 (2001).
[CrossRef] [PubMed]

Borden, M.

K. Ferrara, R. Pollard, and M. Borden, “Ultrasound microbubble contrast agents: Fundamentals and application to gene and drug delivery,” Annu. Rev. Biomed. Eng.9(1), 415–447 (2007).
[CrossRef] [PubMed]

Bouakaz, A.

N. de Jong, M. Emmer, C. T. Chin, A. Bouakaz, F. Mastik, D. Lohse, and M. Versluis, ““Compression-only” behavior of phospholipid-coated contrast bubbles,” Ultrasound Med. Biol.33(4), 653–656 (2007).
[CrossRef] [PubMed]

N. de Jong, P. J. Frinking, A. Bouakaz, M. Goorden, T. Schourmans, X. Jingping, and F. Mastik, “Optical imaging of contrast agent microbubbles in an ultrasound field with a 100-MHz camera,” Ultrasound Med. Biol.26(3), 487–492 (2000).
[CrossRef] [PubMed]

Caskey, C. F.

S. P. Qin, C. F. Caskey, and K. W. Ferrara, “Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering,” Phys. Med. Biol.54(6), R27–R57 (2009).
[CrossRef] [PubMed]

Chin, C. T.

N. de Jong, M. Emmer, C. T. Chin, A. Bouakaz, F. Mastik, D. Lohse, and M. Versluis, ““Compression-only” behavior of phospholipid-coated contrast bubbles,” Ultrasound Med. Biol.33(4), 653–656 (2007).
[CrossRef] [PubMed]

Chomas, J. E.

J. E. Chomas, P. Dayton, J. Allen, K. Morgan, and K. W. Ferrara, “Mechanisms of contrast agent destruction,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control48(1), 232–248 (2001).
[CrossRef] [PubMed]

Dayton, P.

J. E. Chomas, P. Dayton, J. Allen, K. Morgan, and K. W. Ferrara, “Mechanisms of contrast agent destruction,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control48(1), 232–248 (2001).
[CrossRef] [PubMed]

Dayton, P. A.

S. Zhao, K. W. Ferrara, and P. A. Dayton, “Asymmetric oscillation of adherent targeted ultrasound contrast agents,” Appl. Phys. Lett.87(13), 134103 (2005).
[CrossRef] [PubMed]

de Jong, N.

H. J. Vos, B. Dollet, M. Versluis, and N. de Jong, “Nonspherical shape oscillations of coated microbubbles in contact with a wall,” Ultrasound Med. Biol.37(6), 935–948 (2011).
[CrossRef] [PubMed]

J. Sijl, M. Overvelde, B. Dollet, V. Garbin, N. de Jong, D. Lohse, and M. Versluis, ““Compression-only” behavior: A second-order nonlinear response of ultrasound contrast agent microbubbles,” J. Acoust. Soc. Am.129(4), 1729–1739 (2011).
[CrossRef] [PubMed]

M. Overvelde, V. Garbin, B. Dollet, N. de Jong, D. Lohse, and M. Versluis, “Dynamics of Coated Microbubbles Adherent to a Wall,” Ultrasound Med. Biol.37(9), 1500–1508 (2011).
[CrossRef] [PubMed]

N. de Jong, M. Emmer, C. T. Chin, A. Bouakaz, F. Mastik, D. Lohse, and M. Versluis, ““Compression-only” behavior of phospholipid-coated contrast bubbles,” Ultrasound Med. Biol.33(4), 653–656 (2007).
[CrossRef] [PubMed]

N. de Jong, P. J. Frinking, A. Bouakaz, M. Goorden, T. Schourmans, X. Jingping, and F. Mastik, “Optical imaging of contrast agent microbubbles in an ultrasound field with a 100-MHz camera,” Ultrasound Med. Biol.26(3), 487–492 (2000).
[CrossRef] [PubMed]

Deshpande, N.

N. Deshpande, A. Needles, and J. K. Willmann, “Molecular ultrasound imaging: current status and future directions,” Clin. Radiol.65(7), 567–581 (2010).
[CrossRef] [PubMed]

Dollet, B.

M. Overvelde, V. Garbin, B. Dollet, N. de Jong, D. Lohse, and M. Versluis, “Dynamics of Coated Microbubbles Adherent to a Wall,” Ultrasound Med. Biol.37(9), 1500–1508 (2011).
[CrossRef] [PubMed]

J. Sijl, M. Overvelde, B. Dollet, V. Garbin, N. de Jong, D. Lohse, and M. Versluis, ““Compression-only” behavior: A second-order nonlinear response of ultrasound contrast agent microbubbles,” J. Acoust. Soc. Am.129(4), 1729–1739 (2011).
[CrossRef] [PubMed]

H. J. Vos, B. Dollet, M. Versluis, and N. de Jong, “Nonspherical shape oscillations of coated microbubbles in contact with a wall,” Ultrasound Med. Biol.37(6), 935–948 (2011).
[CrossRef] [PubMed]

Du, Y. G.

Y. G. Du, H. Jensen, and J. A. Jensen, “Comparison of Simulated and Measured Non-linear Ultrasound Fields,” Proc. SPIE7968, 79680P, 79680P-10 (2011).
[CrossRef]

Eghtedari, M.

M. J. Hsu, M. Eghtedari, A. P. Goodwin, D. J. Hall, R. F. Mattrey, and S. C. Esener, “Characterization of individual ultrasound microbubble dynamics with a light-scattering system,” J. Biomed. Opt.16(6), 067002 (2011).
[CrossRef] [PubMed]

Emmer, M.

N. de Jong, M. Emmer, C. T. Chin, A. Bouakaz, F. Mastik, D. Lohse, and M. Versluis, ““Compression-only” behavior of phospholipid-coated contrast bubbles,” Ultrasound Med. Biol.33(4), 653–656 (2007).
[CrossRef] [PubMed]

Esener, S. C.

M. J. Hsu, M. Eghtedari, A. P. Goodwin, D. J. Hall, R. F. Mattrey, and S. C. Esener, “Characterization of individual ultrasound microbubble dynamics with a light-scattering system,” J. Biomed. Opt.16(6), 067002 (2011).
[CrossRef] [PubMed]

Ferrara, K.

K. Ferrara, R. Pollard, and M. Borden, “Ultrasound microbubble contrast agents: Fundamentals and application to gene and drug delivery,” Annu. Rev. Biomed. Eng.9(1), 415–447 (2007).
[CrossRef] [PubMed]

Ferrara, K. W.

S. P. Qin, C. F. Caskey, and K. W. Ferrara, “Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering,” Phys. Med. Biol.54(6), R27–R57 (2009).
[CrossRef] [PubMed]

S. P. Qin and K. W. Ferrara, “Acoustic response of compliable microvessels containing ultrasound contrast agents,” Phys. Med. Biol.51(20), 5065–5088 (2006).
[CrossRef] [PubMed]

S. Zhao, K. W. Ferrara, and P. A. Dayton, “Asymmetric oscillation of adherent targeted ultrasound contrast agents,” Appl. Phys. Lett.87(13), 134103 (2005).
[CrossRef] [PubMed]

J. E. Chomas, P. Dayton, J. Allen, K. Morgan, and K. W. Ferrara, “Mechanisms of contrast agent destruction,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control48(1), 232–248 (2001).
[CrossRef] [PubMed]

Frinking, P. J.

N. de Jong, P. J. Frinking, A. Bouakaz, M. Goorden, T. Schourmans, X. Jingping, and F. Mastik, “Optical imaging of contrast agent microbubbles in an ultrasound field with a 100-MHz camera,” Ultrasound Med. Biol.26(3), 487–492 (2000).
[CrossRef] [PubMed]

Garbin, V.

J. Sijl, M. Overvelde, B. Dollet, V. Garbin, N. de Jong, D. Lohse, and M. Versluis, ““Compression-only” behavior: A second-order nonlinear response of ultrasound contrast agent microbubbles,” J. Acoust. Soc. Am.129(4), 1729–1739 (2011).
[CrossRef] [PubMed]

M. Overvelde, V. Garbin, B. Dollet, N. de Jong, D. Lohse, and M. Versluis, “Dynamics of Coated Microbubbles Adherent to a Wall,” Ultrasound Med. Biol.37(9), 1500–1508 (2011).
[CrossRef] [PubMed]

Goodwin, A. P.

M. J. Hsu, M. Eghtedari, A. P. Goodwin, D. J. Hall, R. F. Mattrey, and S. C. Esener, “Characterization of individual ultrasound microbubble dynamics with a light-scattering system,” J. Biomed. Opt.16(6), 067002 (2011).
[CrossRef] [PubMed]

Goorden, M.

N. de Jong, P. J. Frinking, A. Bouakaz, M. Goorden, T. Schourmans, X. Jingping, and F. Mastik, “Optical imaging of contrast agent microbubbles in an ultrasound field with a 100-MHz camera,” Ultrasound Med. Biol.26(3), 487–492 (2000).
[CrossRef] [PubMed]

Hall, D. J.

M. J. Hsu, M. Eghtedari, A. P. Goodwin, D. J. Hall, R. F. Mattrey, and S. C. Esener, “Characterization of individual ultrasound microbubble dynamics with a light-scattering system,” J. Biomed. Opt.16(6), 067002 (2011).
[CrossRef] [PubMed]

Hsu, M. J.

M. J. Hsu, M. Eghtedari, A. P. Goodwin, D. J. Hall, R. F. Mattrey, and S. C. Esener, “Characterization of individual ultrasound microbubble dynamics with a light-scattering system,” J. Biomed. Opt.16(6), 067002 (2011).
[CrossRef] [PubMed]

Jensen, H.

Y. G. Du, H. Jensen, and J. A. Jensen, “Comparison of Simulated and Measured Non-linear Ultrasound Fields,” Proc. SPIE7968, 79680P, 79680P-10 (2011).
[CrossRef]

Jensen, J. A.

Y. G. Du, H. Jensen, and J. A. Jensen, “Comparison of Simulated and Measured Non-linear Ultrasound Fields,” Proc. SPIE7968, 79680P, 79680P-10 (2011).
[CrossRef]

Jingping, X.

N. de Jong, P. J. Frinking, A. Bouakaz, M. Goorden, T. Schourmans, X. Jingping, and F. Mastik, “Optical imaging of contrast agent microbubbles in an ultrasound field with a 100-MHz camera,” Ultrasound Med. Biol.26(3), 487–492 (2000).
[CrossRef] [PubMed]

Klibanov, A. L.

A. L. Klibanov, “Preparation of targeted microbubbles: ultrasound contrast agents for molecular imaging,” Med. Biol. Eng. Comput.47(8), 875–882 (2009).
[CrossRef] [PubMed]

Kurz, T.

W. Lauterborn and T. Kurz, “Physics of bubble oscillations,” Rep. Prog. Phys.73, 106501 (2010).

Lauterborn, W.

W. Lauterborn and T. Kurz, “Physics of bubble oscillations,” Rep. Prog. Phys.73, 106501 (2010).

Lindner, J. R.

J. R. Lindner, “Molecular imaging with contrast ultrasound and targeted microbubbles,” J. Nucl. Cardiol.11(2), 215–221 (2004).
[CrossRef] [PubMed]

Lohse, D.

M. Overvelde, V. Garbin, B. Dollet, N. de Jong, D. Lohse, and M. Versluis, “Dynamics of Coated Microbubbles Adherent to a Wall,” Ultrasound Med. Biol.37(9), 1500–1508 (2011).
[CrossRef] [PubMed]

J. Sijl, M. Overvelde, B. Dollet, V. Garbin, N. de Jong, D. Lohse, and M. Versluis, ““Compression-only” behavior: A second-order nonlinear response of ultrasound contrast agent microbubbles,” J. Acoust. Soc. Am.129(4), 1729–1739 (2011).
[CrossRef] [PubMed]

N. de Jong, M. Emmer, C. T. Chin, A. Bouakaz, F. Mastik, D. Lohse, and M. Versluis, ““Compression-only” behavior of phospholipid-coated contrast bubbles,” Ultrasound Med. Biol.33(4), 653–656 (2007).
[CrossRef] [PubMed]

Mastik, F.

N. de Jong, M. Emmer, C. T. Chin, A. Bouakaz, F. Mastik, D. Lohse, and M. Versluis, ““Compression-only” behavior of phospholipid-coated contrast bubbles,” Ultrasound Med. Biol.33(4), 653–656 (2007).
[CrossRef] [PubMed]

N. de Jong, P. J. Frinking, A. Bouakaz, M. Goorden, T. Schourmans, X. Jingping, and F. Mastik, “Optical imaging of contrast agent microbubbles in an ultrasound field with a 100-MHz camera,” Ultrasound Med. Biol.26(3), 487–492 (2000).
[CrossRef] [PubMed]

Mattrey, R. F.

M. J. Hsu, M. Eghtedari, A. P. Goodwin, D. J. Hall, R. F. Mattrey, and S. C. Esener, “Characterization of individual ultrasound microbubble dynamics with a light-scattering system,” J. Biomed. Opt.16(6), 067002 (2011).
[CrossRef] [PubMed]

Morgan, K.

J. E. Chomas, P. Dayton, J. Allen, K. Morgan, and K. W. Ferrara, “Mechanisms of contrast agent destruction,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control48(1), 232–248 (2001).
[CrossRef] [PubMed]

Needles, A.

N. Deshpande, A. Needles, and J. K. Willmann, “Molecular ultrasound imaging: current status and future directions,” Clin. Radiol.65(7), 567–581 (2010).
[CrossRef] [PubMed]

Overvelde, M.

M. Overvelde, V. Garbin, B. Dollet, N. de Jong, D. Lohse, and M. Versluis, “Dynamics of Coated Microbubbles Adherent to a Wall,” Ultrasound Med. Biol.37(9), 1500–1508 (2011).
[CrossRef] [PubMed]

J. Sijl, M. Overvelde, B. Dollet, V. Garbin, N. de Jong, D. Lohse, and M. Versluis, ““Compression-only” behavior: A second-order nonlinear response of ultrasound contrast agent microbubbles,” J. Acoust. Soc. Am.129(4), 1729–1739 (2011).
[CrossRef] [PubMed]

Pollard, R.

K. Ferrara, R. Pollard, and M. Borden, “Ultrasound microbubble contrast agents: Fundamentals and application to gene and drug delivery,” Annu. Rev. Biomed. Eng.9(1), 415–447 (2007).
[CrossRef] [PubMed]

Qin, S. P.

S. P. Qin, C. F. Caskey, and K. W. Ferrara, “Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering,” Phys. Med. Biol.54(6), R27–R57 (2009).
[CrossRef] [PubMed]

S. P. Qin and K. W. Ferrara, “Acoustic response of compliable microvessels containing ultrasound contrast agents,” Phys. Med. Biol.51(20), 5065–5088 (2006).
[CrossRef] [PubMed]

Schourmans, T.

N. de Jong, P. J. Frinking, A. Bouakaz, M. Goorden, T. Schourmans, X. Jingping, and F. Mastik, “Optical imaging of contrast agent microbubbles in an ultrasound field with a 100-MHz camera,” Ultrasound Med. Biol.26(3), 487–492 (2000).
[CrossRef] [PubMed]

Sijl, J.

J. Sijl, M. Overvelde, B. Dollet, V. Garbin, N. de Jong, D. Lohse, and M. Versluis, ““Compression-only” behavior: A second-order nonlinear response of ultrasound contrast agent microbubbles,” J. Acoust. Soc. Am.129(4), 1729–1739 (2011).
[CrossRef] [PubMed]

Versluis, M.

J. Sijl, M. Overvelde, B. Dollet, V. Garbin, N. de Jong, D. Lohse, and M. Versluis, ““Compression-only” behavior: A second-order nonlinear response of ultrasound contrast agent microbubbles,” J. Acoust. Soc. Am.129(4), 1729–1739 (2011).
[CrossRef] [PubMed]

M. Overvelde, V. Garbin, B. Dollet, N. de Jong, D. Lohse, and M. Versluis, “Dynamics of Coated Microbubbles Adherent to a Wall,” Ultrasound Med. Biol.37(9), 1500–1508 (2011).
[CrossRef] [PubMed]

H. J. Vos, B. Dollet, M. Versluis, and N. de Jong, “Nonspherical shape oscillations of coated microbubbles in contact with a wall,” Ultrasound Med. Biol.37(6), 935–948 (2011).
[CrossRef] [PubMed]

N. de Jong, M. Emmer, C. T. Chin, A. Bouakaz, F. Mastik, D. Lohse, and M. Versluis, ““Compression-only” behavior of phospholipid-coated contrast bubbles,” Ultrasound Med. Biol.33(4), 653–656 (2007).
[CrossRef] [PubMed]

Vos, H. J.

H. J. Vos, B. Dollet, M. Versluis, and N. de Jong, “Nonspherical shape oscillations of coated microbubbles in contact with a wall,” Ultrasound Med. Biol.37(6), 935–948 (2011).
[CrossRef] [PubMed]

Willmann, J. K.

N. Deshpande, A. Needles, and J. K. Willmann, “Molecular ultrasound imaging: current status and future directions,” Clin. Radiol.65(7), 567–581 (2010).
[CrossRef] [PubMed]

Zhao, S.

S. Zhao, K. W. Ferrara, and P. A. Dayton, “Asymmetric oscillation of adherent targeted ultrasound contrast agents,” Appl. Phys. Lett.87(13), 134103 (2005).
[CrossRef] [PubMed]

Annu. Rev. Biomed. Eng. (1)

K. Ferrara, R. Pollard, and M. Borden, “Ultrasound microbubble contrast agents: Fundamentals and application to gene and drug delivery,” Annu. Rev. Biomed. Eng.9(1), 415–447 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

S. Zhao, K. W. Ferrara, and P. A. Dayton, “Asymmetric oscillation of adherent targeted ultrasound contrast agents,” Appl. Phys. Lett.87(13), 134103 (2005).
[CrossRef] [PubMed]

Clin. Radiol. (1)

N. Deshpande, A. Needles, and J. K. Willmann, “Molecular ultrasound imaging: current status and future directions,” Clin. Radiol.65(7), 567–581 (2010).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

J. E. Chomas, P. Dayton, J. Allen, K. Morgan, and K. W. Ferrara, “Mechanisms of contrast agent destruction,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control48(1), 232–248 (2001).
[CrossRef] [PubMed]

J. Acoust. Soc. Am. (1)

J. Sijl, M. Overvelde, B. Dollet, V. Garbin, N. de Jong, D. Lohse, and M. Versluis, ““Compression-only” behavior: A second-order nonlinear response of ultrasound contrast agent microbubbles,” J. Acoust. Soc. Am.129(4), 1729–1739 (2011).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

M. J. Hsu, M. Eghtedari, A. P. Goodwin, D. J. Hall, R. F. Mattrey, and S. C. Esener, “Characterization of individual ultrasound microbubble dynamics with a light-scattering system,” J. Biomed. Opt.16(6), 067002 (2011).
[CrossRef] [PubMed]

J. Nucl. Cardiol. (1)

J. R. Lindner, “Molecular imaging with contrast ultrasound and targeted microbubbles,” J. Nucl. Cardiol.11(2), 215–221 (2004).
[CrossRef] [PubMed]

Med. Biol. Eng. Comput. (1)

A. L. Klibanov, “Preparation of targeted microbubbles: ultrasound contrast agents for molecular imaging,” Med. Biol. Eng. Comput.47(8), 875–882 (2009).
[CrossRef] [PubMed]

Phys. Med. Biol. (2)

S. P. Qin and K. W. Ferrara, “Acoustic response of compliable microvessels containing ultrasound contrast agents,” Phys. Med. Biol.51(20), 5065–5088 (2006).
[CrossRef] [PubMed]

S. P. Qin, C. F. Caskey, and K. W. Ferrara, “Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering,” Phys. Med. Biol.54(6), R27–R57 (2009).
[CrossRef] [PubMed]

Proc. SPIE (1)

Y. G. Du, H. Jensen, and J. A. Jensen, “Comparison of Simulated and Measured Non-linear Ultrasound Fields,” Proc. SPIE7968, 79680P, 79680P-10 (2011).
[CrossRef]

Rep. Prog. Phys. (1)

W. Lauterborn and T. Kurz, “Physics of bubble oscillations,” Rep. Prog. Phys.73, 106501 (2010).

Ultrasound Med. Biol. (4)

N. de Jong, M. Emmer, C. T. Chin, A. Bouakaz, F. Mastik, D. Lohse, and M. Versluis, ““Compression-only” behavior of phospholipid-coated contrast bubbles,” Ultrasound Med. Biol.33(4), 653–656 (2007).
[CrossRef] [PubMed]

M. Overvelde, V. Garbin, B. Dollet, N. de Jong, D. Lohse, and M. Versluis, “Dynamics of Coated Microbubbles Adherent to a Wall,” Ultrasound Med. Biol.37(9), 1500–1508 (2011).
[CrossRef] [PubMed]

H. J. Vos, B. Dollet, M. Versluis, and N. de Jong, “Nonspherical shape oscillations of coated microbubbles in contact with a wall,” Ultrasound Med. Biol.37(6), 935–948 (2011).
[CrossRef] [PubMed]

N. de Jong, P. J. Frinking, A. Bouakaz, M. Goorden, T. Schourmans, X. Jingping, and F. Mastik, “Optical imaging of contrast agent microbubbles in an ultrasound field with a 100-MHz camera,” Ultrasound Med. Biol.26(3), 487–492 (2000).
[CrossRef] [PubMed]

Other (1)

S. Wilhelm, B. Grobler, M. Gluch, and H. Heinz, “Confocal laser scanning microscopy principles,” in Zeiss Jena ( http://zeiss-campus.magnet.fsu.edu/referencelibrary/laserconfocal.html ).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) A schematic diagram showing the imaging system setup and (b) a schematic diagram showing the timing relationship among the ultrasound pulse, bubble oscillation, strobe light illumination and ICCD camera acquisition.

Fig. 2
Fig. 2

(a) A plot of the reflected signal from a mirror versus the depth of the objective focus along the z direction. The zero depth means the mirror is on the objective focus. The data were measured and normalized from the confocal setup by scanning the mirror along z direction around the focus of the objective lens. The inset schematically shows the principle of detecting the oscillation of a microbubble’s floating top surface using the confocal setup. (b) A photograph of a microbubble captured with a cooled CCD camera on the horizontal x-y plane. (c) Plots of the backscattered signals from the microbubble (shown in [b]) versus the depth of the objective focus along z direction. The zero depth means the bubble bottom surface is on the objective focus. The solid and dashed lines are measured using the confocal and non-confocal setups, respectively, by scanning objective lens along z direction around its focus. The inset schematically shows the measurement geometry.

Fig. 3
Fig. 3

(a) A sequence of 44 images shows the ultrasound-driven oscillation of a microbubble (the static diameter = 5.6 µm), recorded by the gated ICCD camera. The number indicates the absolute acquisition time in µs. The time interval between two adjacent images is 100 ns. (b) The backscattered signal as a function of the time from the central top surface of the same oscillating microbubble, acquired by the confocal optical system. (c) Microbubble diameter oscillation (with a unit of micron) along the vertical and horizontal directions.

Fig. 4
Fig. 4

(a) A schematic diagram shows the four selected locations on the bubble surface. (b) the measured ultrasound pressure wave excited by a 3-cycle sinusoidal wave. (c) AC/DC data acquired at the four different locations (as shown in Fig. 4(a)) on the surface of a microbubble with a diameter of 8.5 µm. The AC/DC data represent the oscillation strength of the microbubble surface.

Fig. 5
Fig. 5

Microbubble’s static diameter before oscillation, maximum diameter during bubble expansion, and minimum diameter during bubble contraction were plotted as a function of applied ultrasound pressure.

Metrics