Abstract

Imaging of simultaneous two-photon absorption and stimulated Raman scattering is accomplished by detecting the intensity changes of the two-color pulses simultaneously and the mathematical operations of addition and subtraction. The stimulated Raman scattering is quantitatively separated from the two-photon absorption, generated in a mixed solution in which a glycerin solution is miscible in various proportions with a quantum dot solution. Our technique is applied to simultaneous two-photon absorption and stimulated Raman scattering imaging.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  2. K. König, “Multiphoton microscopy in life sciences,” J. Microsc.200(2), 83–104 (2000).
    [CrossRef] [PubMed]
  3. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
    [CrossRef] [PubMed]
  4. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
    [CrossRef] [PubMed]
  5. J. Squier and M. Müller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum.72(7), 2855–2867 (2001).
    [CrossRef]
  6. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70(8), 922–924 (1997).
    [CrossRef]
  7. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett.7(8), 350–352 (1982).
    [CrossRef] [PubMed]
  8. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999).
    [CrossRef]
  9. D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt.12(5), 054004 (2007).
    [CrossRef] [PubMed]
  10. D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett.32(18), 2641–2643 (2007).
    [CrossRef] [PubMed]
  11. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
    [CrossRef] [PubMed]
  12. P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys.11(3), 033026 (2009).
    [CrossRef]
  13. Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, and K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express17(5), 3651–3658 (2009).
    [CrossRef] [PubMed]
  14. P. Samineni, B. Li, J. W. Wilson, W. S. Warren, and M. C. Fischer, “Cross-phase modulation imaging,” Opt. Lett.37(5), 800–802 (2012).
    [CrossRef] [PubMed]
  15. J. W. Wilson, P. Samineni, W. S. Warren, and M. C. Fischer, “Cross-phase modulation spectral shifting: nonlinear phase contrast in a pump-probe microscope,” Biomed. Opt. Express3(5), 854–862 (2012).
    [CrossRef] [PubMed]
  16. H. Kano and H. O. Hamaguchi, “In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber,” Opt. Express14(7), 2798–2804 (2006).
    [CrossRef] [PubMed]
  17. P. Tian and W. S. Warren, “Ultrafast measurement of two-photon absorption by loss modulation,” Opt. Lett.27(18), 1634–1636 (2002).
    [CrossRef] [PubMed]
  18. M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. U.S.A.109(1), 28–32 (2012).
    [CrossRef] [PubMed]
  19. D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc.134(8), 3623–3626 (2012).
    [CrossRef] [PubMed]
  20. F. E. Robles, J. W. Wilson, M. C. Fischer, and W. S. Warren, “Phasor analysis for nonlinear pump-probe microscopy,” Opt. Express20(15), 17082–17092 (2012).
    [CrossRef]
  21. G. I. Redford and R. M. Clegg, “Polar plot representation for frequency-domain analysis of fluorescence lifetimes,” J. Fluoresc.15(5), 805–815 (2005).
    [CrossRef] [PubMed]
  22. M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J.94(2), L14–L16 (2008).
    [CrossRef] [PubMed]
  23. C. Stringari, A. Cinquin, O. Cinquin, M. A. Digman, P. J. Donovan, and E. Gratton, “Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue,” Proc. Natl. Acad. Sci. U.S.A.108(33), 13582–13587 (2011).
    [CrossRef] [PubMed]
  24. K. Isobe, H. Kawano, T. Takeda, A. Suda, A. Kumagai, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Background-free deep imaging by spatial overlap modulation nonlinear optical microscopy,” Biomed. Opt. Express3(7), 1594–1608 (2012).
    [CrossRef] [PubMed]

2012 (6)

2011 (1)

C. Stringari, A. Cinquin, O. Cinquin, M. A. Digman, P. J. Donovan, and E. Gratton, “Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue,” Proc. Natl. Acad. Sci. U.S.A.108(33), 13582–13587 (2011).
[CrossRef] [PubMed]

2009 (2)

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys.11(3), 033026 (2009).
[CrossRef]

Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, and K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express17(5), 3651–3658 (2009).
[CrossRef] [PubMed]

2008 (2)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J.94(2), L14–L16 (2008).
[CrossRef] [PubMed]

2007 (2)

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt.12(5), 054004 (2007).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett.32(18), 2641–2643 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

G. I. Redford and R. M. Clegg, “Polar plot representation for frequency-domain analysis of fluorescence lifetimes,” J. Fluoresc.15(5), 805–815 (2005).
[CrossRef] [PubMed]

2003 (2)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (1)

J. Squier and M. Müller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum.72(7), 2855–2867 (2001).
[CrossRef]

2000 (1)

K. König, “Multiphoton microscopy in life sciences,” J. Microsc.200(2), 83–104 (2000).
[CrossRef] [PubMed]

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999).
[CrossRef]

1997 (1)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70(8), 922–924 (1997).
[CrossRef]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

1982 (1)

Barad, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70(8), 922–924 (1997).
[CrossRef]

Caiolfa, V. R.

M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J.94(2), L14–L16 (2008).
[CrossRef] [PubMed]

Campagnola, P. J.

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

Chen, B. J.

Cinquin, A.

C. Stringari, A. Cinquin, O. Cinquin, M. A. Digman, P. J. Donovan, and E. Gratton, “Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue,” Proc. Natl. Acad. Sci. U.S.A.108(33), 13582–13587 (2011).
[CrossRef] [PubMed]

Cinquin, O.

C. Stringari, A. Cinquin, O. Cinquin, M. A. Digman, P. J. Donovan, and E. Gratton, “Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue,” Proc. Natl. Acad. Sci. U.S.A.108(33), 13582–13587 (2011).
[CrossRef] [PubMed]

Clegg, R. M.

G. I. Redford and R. M. Clegg, “Polar plot representation for frequency-domain analysis of fluorescence lifetimes,” J. Fluoresc.15(5), 805–815 (2005).
[CrossRef] [PubMed]

Dake, F.

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Digman, M. A.

C. Stringari, A. Cinquin, O. Cinquin, M. A. Digman, P. J. Donovan, and E. Gratton, “Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue,” Proc. Natl. Acad. Sci. U.S.A.108(33), 13582–13587 (2011).
[CrossRef] [PubMed]

M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J.94(2), L14–L16 (2008).
[CrossRef] [PubMed]

Donovan, P. J.

C. Stringari, A. Cinquin, O. Cinquin, M. A. Digman, P. J. Donovan, and E. Gratton, “Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue,” Proc. Natl. Acad. Sci. U.S.A.108(33), 13582–13587 (2011).
[CrossRef] [PubMed]

Duncan, M. D.

Eisenberg, H.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70(8), 922–924 (1997).
[CrossRef]

Endo, H.

M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. U.S.A.109(1), 28–32 (2012).
[CrossRef] [PubMed]

Fischer, M. C.

Freudiger, C.

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc.134(8), 3623–3626 (2012).
[CrossRef] [PubMed]

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Fu, D.

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc.134(8), 3623–3626 (2012).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt.12(5), 054004 (2007).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett.32(18), 2641–2643 (2007).
[CrossRef] [PubMed]

Fujita, K.

M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. U.S.A.109(1), 28–32 (2012).
[CrossRef] [PubMed]

Fukui, K.

Gratton, E.

C. Stringari, A. Cinquin, O. Cinquin, M. A. Digman, P. J. Donovan, and E. Gratton, “Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue,” Proc. Natl. Acad. Sci. U.S.A.108(33), 13582–13587 (2011).
[CrossRef] [PubMed]

M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J.94(2), L14–L16 (2008).
[CrossRef] [PubMed]

Hamaguchi, H. O.

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Holtom, G.

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc.134(8), 3623–3626 (2012).
[CrossRef] [PubMed]

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999).
[CrossRef]

Horowitz, M.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70(8), 922–924 (1997).
[CrossRef]

Isobe, K.

Itoh, K.

Kajiyama, S.

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Kano, H.

Kawano, H.

Kawata, S.

M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. U.S.A.109(1), 28–32 (2012).
[CrossRef] [PubMed]

König, K.

K. König, “Multiphoton microscopy in life sciences,” J. Microsc.200(2), 83–104 (2000).
[CrossRef] [PubMed]

Kovalev, A.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys.11(3), 033026 (2009).
[CrossRef]

Kumagai, A.

Li, B.

Loew, L. M.

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

Lu, F.-K.

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc.134(8), 3623–3626 (2012).
[CrossRef] [PubMed]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Manuccia, T. J.

Matthews, T. E.

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt.12(5), 054004 (2007).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett.32(18), 2641–2643 (2007).
[CrossRef] [PubMed]

Midorikawa, K.

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Miyawaki, A.

Mizuno, H.

Müller, M.

J. Squier and M. Müller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum.72(7), 2855–2867 (2001).
[CrossRef]

Nandakumar, P.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys.11(3), 033026 (2009).
[CrossRef]

Okada, M.

M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. U.S.A.109(1), 28–32 (2012).
[CrossRef] [PubMed]

Ozeki, Y.

Palonpon, A. F.

M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. U.S.A.109(1), 28–32 (2012).
[CrossRef] [PubMed]

Pernik, D. R.

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc.134(8), 3623–3626 (2012).
[CrossRef] [PubMed]

Redford, G. I.

G. I. Redford and R. M. Clegg, “Polar plot representation for frequency-domain analysis of fluorescence lifetimes,” J. Fluoresc.15(5), 805–815 (2005).
[CrossRef] [PubMed]

Reintjes, J.

Robles, F. E.

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Samineni, P.

Silberberg, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70(8), 922–924 (1997).
[CrossRef]

Smith, N. I.

M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. U.S.A.109(1), 28–32 (2012).
[CrossRef] [PubMed]

Sodeoka, M.

M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. U.S.A.109(1), 28–32 (2012).
[CrossRef] [PubMed]

Squier, J.

J. Squier and M. Müller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum.72(7), 2855–2867 (2001).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Stringari, C.

C. Stringari, A. Cinquin, O. Cinquin, M. A. Digman, P. J. Donovan, and E. Gratton, “Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue,” Proc. Natl. Acad. Sci. U.S.A.108(33), 13582–13587 (2011).
[CrossRef] [PubMed]

Suda, A.

Takeda, T.

Tian, P.

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Volkmer, A.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys.11(3), 033026 (2009).
[CrossRef]

Warren, W. S.

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Wilson, J. W.

Xie, X. S.

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc.134(8), 3623–3626 (2012).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999).
[CrossRef]

Ye, T.

D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett.32(18), 2641–2643 (2007).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt.12(5), 054004 (2007).
[CrossRef] [PubMed]

Yurtserver, G.

Yurtsever, G.

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt.12(5), 054004 (2007).
[CrossRef] [PubMed]

Zamai, M.

M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J.94(2), L14–L16 (2008).
[CrossRef] [PubMed]

Zhang, X.

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc.134(8), 3623–3626 (2012).
[CrossRef] [PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70(8), 922–924 (1997).
[CrossRef]

Biomed. Opt. Express (2)

Biophys. J. (1)

M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J.94(2), L14–L16 (2008).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc.134(8), 3623–3626 (2012).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt.12(5), 054004 (2007).
[CrossRef] [PubMed]

J. Fluoresc. (1)

G. I. Redford and R. M. Clegg, “Polar plot representation for frequency-domain analysis of fluorescence lifetimes,” J. Fluoresc.15(5), 805–815 (2005).
[CrossRef] [PubMed]

J. Microsc. (1)

K. König, “Multiphoton microscopy in life sciences,” J. Microsc.200(2), 83–104 (2000).
[CrossRef] [PubMed]

Nat. Biotechnol. (2)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

New J. Phys. (1)

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys.11(3), 033026 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (2)

C. Stringari, A. Cinquin, O. Cinquin, M. A. Digman, P. J. Donovan, and E. Gratton, “Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue,” Proc. Natl. Acad. Sci. U.S.A.108(33), 13582–13587 (2011).
[CrossRef] [PubMed]

M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. U.S.A.109(1), 28–32 (2012).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

J. Squier and M. Müller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum.72(7), 2855–2867 (2001).
[CrossRef]

Science (2)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Simplified energy diagrams describing the processes of (a) TPA and (b) SRS. (c) Intensity distributions of the two pulses in SPOM. (d) Excitation intensities for TPA or SRS detection. (e) Intensity changes by TPA. (f) Intensity changes by SRS.

Fig. 2
Fig. 2

SPOM-NOM setup. PBS: polarizing beamsplitter, OPO: optical parametric oscillator, PC: prechirper, DM: dichroic mirror, OB: objective lens, SPF: shortpass filter, LPF: longpass filter, BPF: bandpass filter, PMT: photomultiplier tube, PD: photodiode.

Fig. 3
Fig. 3

Intensity change at 830 nm by XPM and the TPEF intensity in the cover glass and the GFP solution as a function of the time delay between the two-color pulses, respectively.

Fig. 4
Fig. 4

Line profiles of the intensity losses at 830 and 1100 nm, and the sum (TPA) and difference (SRS) of the two losses in the axial direction near the silicon-oil objective lens, cover slip, and mixed solution of quantum dot (QD) and glycerin (Gly) in various proportions.

Fig. 5
Fig. 5

Intensity losses at 830 and 1100 nm, and the sum and difference of the two losses as a function of the concentrations of QD and glycerin in the mixed solution.

Fig. 6
Fig. 6

Intensity loss at 830 and 1100 nm, and the sum and difference of the losses in the glycerin solution as a function of the excitation powers at (a) 830 nm and (b) 1100 nm. (c, d) Equivalent plots for the QD solution.

Fig. 7
Fig. 7

Loss images of polystyrene beads in a QD solution at (a) 830 nm and (b) 1100 nm. Images of the (c) sum and (d) difference of these two images.

Fig. 8
Fig. 8

Enhancement of the spatial resolution in SRS imaging by SPOM-NOM. (a, b) SRS and CARS images of 200-nm polystyrene beads by (a) SPOM-NOM and (b) conventional CARS microscopy, respectively. (c) Normalized intensity profiles in the x direction indicated by white dotted lines in images (a) and (b), which corresponds to the lateral (x) response. (d) Normalized intensity profiles in the y direction indicated by white dotted lines in images (a) and (b), which corresponds to the lateral (y) response. (e) Line profiles of SRS intensity in the axial direction near the interface between a cover slip and a glycerin solution.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ I TPA1 (r,t) C ER Im χ ER (3) I 1 (r) I 2 (rδcos2πft),
Δ I TPA2 (r,t) C ER Im χ ER (3) I 1 (r) I 2 (rδcos2πft),
Δ I SRS1 (r,t) C RR Im χ RR (3) I 1 (r) I 2 (rδcos2πft),
Δ I SRS2 (r,t) C RR Im χ RR (3) I 1 (r) I 2 (rδcos2πft),
Δ I 1 (r,t)+Δ I 2 (r,t)=2Δ I TPA1 (r,t)2 C ER Im χ ER (3) I 1 (r) I 2 (rδcos2πft).
Δ I 1 (r,t)Δ I 2 (r,t)=2Δ I SRS1 (r,t)2 C RR Im χ RR (3) I 1 (r) I 2 (rδcos2πft).

Metrics