Abstract

In this paper, we demonstrate a new single-cell optoporation and transfection technique using a femtosecond Gaussian laser beam and optical tweezers. Tightly focused near-infrared (NIR) femtosecond laser pulse was employed to transiently perforate the cellular membrane at a single point in MCF-7 cancer cells. A distinct technique was developed by trapping the microparticle using optical tweezers to focus the femtosecond laser precisely on the cell membrane to puncture it. Subsequently, an external gene was introduced in the cell by trapping and inserting the same plasmid-coated microparticle into the optoporated cell using optical tweezers. Various experimental parameters such as femtosecond laser exposure power, exposure time, puncture hole size, exact focusing of the femtosecond laser on the cell membrane, and cell healing time were closely analyzed to create the optimal conditions for cell viability. Following the insertion of plasmid-coated microparticles in the cell, the targeted cells exhibited green fluorescent protein (GFP) under the fluorescent microscope, hence confirming successful transfection into the cell. This new optoporation and transfection technique maximizes the level of selectivity and control over the targeted cell, and this may be a breakthrough method through which to induce controllable genetic changes in the cell.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. G. Nabel, G. Plautz, and G. J. Nabel, “Site-specific gene expression in vivo by direct gene transfer into the arterial wall,” Science249(4974), 1285–1288 (1990).
    [CrossRef] [PubMed]
  2. F. L. Graham and A. J. van der Eb, “A new technique for the assay of infectivity of human adenovirus 5 DNA,” Virology52(2), 456–467 (1973).
    [CrossRef] [PubMed]
  3. S. Bacchetti and F. L. Graham, “Transfer of the gene for thymidine kinase to thymidine kinase-deficient human cells by purified herpes simplex viral DNA,” Proc. Natl. Acad. Sci. U.S.A.74(4), 1590–1594 (1977).
    [CrossRef] [PubMed]
  4. D. Fischer, A. von Harpe, K. Kunath, H. Petersen, Y. Li, and T. Kissel, “Copolymers of ethylene imine and N-(2-hydroxyethyl)-ethylene imine as tools to study effects of polymer structure on physicochemical and biological properties of DNA complexes,” Bioconjug. Chem.13(5), 1124–1133 (2002).
    [CrossRef] [PubMed]
  5. S. Menuel, S. Fontanay, I. Clarot, R. E. Duval, L. Diez, and A. Marsura, “Synthesis and complexation ability of a novel bis- (guanidinium)-tetrakis-(beta-cyclodextrin) dendrimeric tetrapod as a potential gene delivery (DNA and siRNA) system. Study of cellular siRNA transfection,” Bioconjug. Chem.19(12), 2357–2362 (2008).
    [CrossRef] [PubMed]
  6. T. Welzel, I. Radtke, W. Meyer-Zaika, R. Heumann, and M. Epple, “Transfection of cells with custom-made calcium phosphate nanoparticles coated with DNA,” J. Mater. Chem.14(14), 2213–2217 (2004).
    [CrossRef]
  7. E. Neumann, M. Schaefer-Ridder, Y. Wang, and P. H. Hofschneider, “Gene transfer into mouse lyoma cells by electroporation in high electric fields,” EMBO J.1(7), 841–845 (1982).
    [PubMed]
  8. J. P. Dear, J. E. Field, and A. J. Walton, “Gas compression and jet formation in cavities collapsed by a shock wave,” Nature332(6164), 505–508 (1988).
    [CrossRef]
  9. M. Ward, J. Wu, and J.-F. Chiu, “Ultrasound-induced cell lysis and sonoporation enhanced by contrast agents,” J. Acoust. Soc. Am.105(5), 2951–2957 (1999).
    [CrossRef] [PubMed]
  10. D. L. Miller and J. Song, “Tumor growth reduction and DNA transfer by cavitation-enhanced high-intensity focused ultrasound in vivo,” Ultrasound Med. Biol.29(6), 887–893 (2003).
    [CrossRef] [PubMed]
  11. P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys.1(2), 107–110 (2005).
    [CrossRef]
  12. C. D. Ohl, M. Arora, R. Ikink, N. de Jong, M. Versluis, M. Delius, and D. Lohse, “Sonoporation from jetting cavitation bubbles,” Biophys. J.91(11), 4285–4295 (2006).
    [CrossRef] [PubMed]
  13. G. Zhang, V. Budker, and J. A. Wolff, “High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA,” Hum. Gene Ther.10(10), 1735–1737 (1999).
    [CrossRef] [PubMed]
  14. G. Zhang, D. Vargo, V. Budker, N. Armstrong, S. Knechtle, and J. A. Wolff, “Expression of naked plasmid DNA injected into the afferent and efferent vessels of rodent and dog livers,” Hum. Gene Ther.8(15), 1763–1772 (1997).
    [CrossRef] [PubMed]
  15. J. B. Bell, K. M. Podetz-Pedersen, E. L. Aronovich, L. R. Belur, R. S. McIvor, and P. B. Hackett, “Preferential delivery of the Sleeping Beauty transposon system to livers of mice by hydrodynamic injection,” Nat. Protoc.2(12), 3153–3165 (2007).
    [CrossRef] [PubMed]
  16. F. Scherer, M. Anton, U. Schillinger, J. Henke, C. Bergemann, A. Krüger, B. Gänsbacher, and C. Plank, “Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo,” Gene Ther.9(2), 102–109 (2002).
    [CrossRef] [PubMed]
  17. M. Uchida, X. W. Li, P. Mertens, and H. O. Alpar, “Transfection by particle bombardment: delivery of plasmid DNA into mammalian cells using gene gun,” Biochim. Biophys. Acta1790(8), 754–764 (2009).
    [CrossRef] [PubMed]
  18. M. R. Capecchi, “High efficiency transformation by direct microinjection of DNA into cultured mammalian cells,” Cell22(2), 479–488 (1980).
    [CrossRef] [PubMed]
  19. C. M. Cuerrier, R. Lebel, and M. Grandbois, “Single cell transfection using plasmid decorated AFM probes,” Biochem. Biophys. Res. Commun.355(3), 632–636 (2007).
    [CrossRef] [PubMed]
  20. M. Tsukakoshi, S. Kurata, Y. Nomiya, Y. Ikawa, and T. Kasuya, “A Novel Method of DNA Transfection by Laser Microbeam Cell Surgery,” Appl. Phys. B35(3), 135–140 (1984).
    [CrossRef]
  21. Y. Arita, M. L. Torres-Mapa, W. M. Lee, T. Čižmár, P. Campbell, F. J. Gunn-Moore, and K. Dholakia, “Spatially optimized gene transfection by laser-induced breakdown of optically trapped nanoparticles,” Appl. Phys. Lett.98(9), 093702–093703 (2011).
    [CrossRef]
  22. H. He, S.-K. Kong, R. K.-Y. Lee, Y.-K. Suen, and K. T. Chan, “Targeted photoporation and transfection in human HepG2 cells by a fiber femtosecond laser at 1554 nm,” Opt. Lett.33(24), 2961–2963 (2008).
    [CrossRef] [PubMed]
  23. S. Sagi, T. Knoll, L. Trojan, A. Schaaf, P. Alken, and M. S. Michel, “Gene delivery into prostate cancer cells by holmium laser application,” Prostate Cancer Prostatic Dis.6(2), 127–130 (2003).
    [CrossRef] [PubMed]
  24. S. K. Mohanty, M. Sharma, and P. K. Gupta, “Laser-assisted microinjection into targeted animal cells,” Biotechnol. Lett.25(11), 895–899 (2003).
    [CrossRef] [PubMed]
  25. Y. A. Badr, M. A. Kereim, M. A. Yehia, O. O. Fouad, and A. Bahieldin, “Production of fertile transgenic wheat plants by laser micropuncture,” Photochem. Photobiol. Sci.4(10), 803–807 (2005).
    [CrossRef] [PubMed]
  26. S. Kurata and Y. Ikawa, “Novel method for substance injection into the cell by laser beam--a study of the injection volume,” Cell Struct. Funct.11(2), 205–207 (1986).
    [CrossRef] [PubMed]
  27. J. Baumgart, W. Bintig, A. Ngezahayo, S. Willenbrock, H. Murua Escobar, W. Ertmer, H. Lubatschowski, and A. Heisterkamp, “Quantified femtosecond laser based opto-perforation of living GFSHR-17 and MTH53 a cells,” Opt. Express16(5), 3021–3031 (2008).
    [CrossRef] [PubMed]
  28. C. Peng, R. E. Palazzo, and I. Wilke, “Laser intensity dependence of femtosecond near-infrared optoinjection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.75(4), 041903–041911 (2007).
    [CrossRef] [PubMed]
  29. U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature418(6895), 290–291 (2002).
    [CrossRef] [PubMed]
  30. A. Uchugonova, K. König, R. Bueckle, A. Isemann, and G. Tempea, “Targeted transfection of stem cells with sub-20 femtosecond laser pulses,” Opt. Express16(13), 9357–9364 (2008).
    [CrossRef] [PubMed]
  31. C. T. Brown, D. J. Stevenson, X. Tsampoula, C. McDougall, A. A. Lagatsky, W. Sibbett, F. J. Gunn-Moore, and K. Dholakia, “Enhanced operation of femtosecond lasers and applications in cell transfection,” J Biophotonics1(3), 183–199 (2008).
    [CrossRef] [PubMed]
  32. S. Sato, T. Ando, and M. Obara, “Optical fiber-based photomechanical gene transfer system for in vivo application,” Opt. Lett.36(23), 4545–4547 (2011).
    [CrossRef] [PubMed]
  33. D. J. Stevenson, F. J. Gunn-Moore, P. Campbell, and K. Dholakia, “Single cell optical transfection,” J. R. Soc. Interface7(47), 863–871 (2010).
    [CrossRef] [PubMed]
  34. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970).
    [CrossRef]
  35. A. Ashkin and J. M. Dziedzic, “Optical Levitation by Radiation Pressure,” Appl. Phys. Lett.19(8), 283–285 (1971).
    [CrossRef]
  36. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  37. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235(4795), 1517–1520 (1987).
    [CrossRef] [PubMed]
  38. V. Bormuth, A. Jannasch, M. Ander, C. M. van Kats, A. van Blaaderen, J. Howard, and E. Schäffer, “Optical trapping of coated microspheres,” Opt. Express16(18), 13831–13844 (2008).
    [CrossRef] [PubMed]
  39. H. D. Soule, J. Vazguez, A. Long, S. Albert, and M. Brennan, “A human cell line from a pleural effusion derived from a breast carcinoma,” J. Natl. Cancer Inst.51(5), 1409–1416 (1973).
    [PubMed]
  40. W. Sellmeier, “Zur Erklärung der abnormen Farbenfolge im Spectrum einiger Substanzen,” Annalen der Physik und Chemie219(6), 272–282 (1871).
    [CrossRef]
  41. E. Hecht, Optics (Addison-Wesley, San Francisco, 2001).
  42. G. Ghosh, “Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses,” Appl. Opt.36(7), 1540–1546 (1997).
    [CrossRef] [PubMed]
  43. G. Kloos, Matrix Methods for Optical Layout (SPIE Publications, Washington, 2007).
  44. D. Stevenson, B. Agate, X. Tsampoula, P. Fischer, C. T. A. Brown, W. Sibbett, A. Riches, F. Gunn-Moore, and K. Dholakia, “Femtosecond optical transfection of cells: viability and efficiency,” Opt. Express14(16), 7125–7133 (2006).
    [CrossRef] [PubMed]
  45. W. Tao, J. Wilkinson, E. J. Stanbridge, and M. W. Berns, “Direct gene transfer into human cultured cells facilitated by laser micropuncture of the cell membrane,” Proc. Natl. Acad. Sci. U.S.A.84(12), 4180–4184 (1987).
    [CrossRef] [PubMed]
  46. Y. Guo, H. Liang, and M. W. Berns, “Laser-mediated gene transfer in rice,” Physiol. Plant.93(1), 19–24 (1995).
    [CrossRef]

2011 (2)

Y. Arita, M. L. Torres-Mapa, W. M. Lee, T. Čižmár, P. Campbell, F. J. Gunn-Moore, and K. Dholakia, “Spatially optimized gene transfection by laser-induced breakdown of optically trapped nanoparticles,” Appl. Phys. Lett.98(9), 093702–093703 (2011).
[CrossRef]

S. Sato, T. Ando, and M. Obara, “Optical fiber-based photomechanical gene transfer system for in vivo application,” Opt. Lett.36(23), 4545–4547 (2011).
[CrossRef] [PubMed]

2010 (1)

D. J. Stevenson, F. J. Gunn-Moore, P. Campbell, and K. Dholakia, “Single cell optical transfection,” J. R. Soc. Interface7(47), 863–871 (2010).
[CrossRef] [PubMed]

2009 (1)

M. Uchida, X. W. Li, P. Mertens, and H. O. Alpar, “Transfection by particle bombardment: delivery of plasmid DNA into mammalian cells using gene gun,” Biochim. Biophys. Acta1790(8), 754–764 (2009).
[CrossRef] [PubMed]

2008 (6)

S. Menuel, S. Fontanay, I. Clarot, R. E. Duval, L. Diez, and A. Marsura, “Synthesis and complexation ability of a novel bis- (guanidinium)-tetrakis-(beta-cyclodextrin) dendrimeric tetrapod as a potential gene delivery (DNA and siRNA) system. Study of cellular siRNA transfection,” Bioconjug. Chem.19(12), 2357–2362 (2008).
[CrossRef] [PubMed]

J. Baumgart, W. Bintig, A. Ngezahayo, S. Willenbrock, H. Murua Escobar, W. Ertmer, H. Lubatschowski, and A. Heisterkamp, “Quantified femtosecond laser based opto-perforation of living GFSHR-17 and MTH53 a cells,” Opt. Express16(5), 3021–3031 (2008).
[CrossRef] [PubMed]

A. Uchugonova, K. König, R. Bueckle, A. Isemann, and G. Tempea, “Targeted transfection of stem cells with sub-20 femtosecond laser pulses,” Opt. Express16(13), 9357–9364 (2008).
[CrossRef] [PubMed]

C. T. Brown, D. J. Stevenson, X. Tsampoula, C. McDougall, A. A. Lagatsky, W. Sibbett, F. J. Gunn-Moore, and K. Dholakia, “Enhanced operation of femtosecond lasers and applications in cell transfection,” J Biophotonics1(3), 183–199 (2008).
[CrossRef] [PubMed]

H. He, S.-K. Kong, R. K.-Y. Lee, Y.-K. Suen, and K. T. Chan, “Targeted photoporation and transfection in human HepG2 cells by a fiber femtosecond laser at 1554 nm,” Opt. Lett.33(24), 2961–2963 (2008).
[CrossRef] [PubMed]

V. Bormuth, A. Jannasch, M. Ander, C. M. van Kats, A. van Blaaderen, J. Howard, and E. Schäffer, “Optical trapping of coated microspheres,” Opt. Express16(18), 13831–13844 (2008).
[CrossRef] [PubMed]

2007 (3)

C. M. Cuerrier, R. Lebel, and M. Grandbois, “Single cell transfection using plasmid decorated AFM probes,” Biochem. Biophys. Res. Commun.355(3), 632–636 (2007).
[CrossRef] [PubMed]

C. Peng, R. E. Palazzo, and I. Wilke, “Laser intensity dependence of femtosecond near-infrared optoinjection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.75(4), 041903–041911 (2007).
[CrossRef] [PubMed]

J. B. Bell, K. M. Podetz-Pedersen, E. L. Aronovich, L. R. Belur, R. S. McIvor, and P. B. Hackett, “Preferential delivery of the Sleeping Beauty transposon system to livers of mice by hydrodynamic injection,” Nat. Protoc.2(12), 3153–3165 (2007).
[CrossRef] [PubMed]

2006 (2)

2005 (2)

P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys.1(2), 107–110 (2005).
[CrossRef]

Y. A. Badr, M. A. Kereim, M. A. Yehia, O. O. Fouad, and A. Bahieldin, “Production of fertile transgenic wheat plants by laser micropuncture,” Photochem. Photobiol. Sci.4(10), 803–807 (2005).
[CrossRef] [PubMed]

2004 (1)

T. Welzel, I. Radtke, W. Meyer-Zaika, R. Heumann, and M. Epple, “Transfection of cells with custom-made calcium phosphate nanoparticles coated with DNA,” J. Mater. Chem.14(14), 2213–2217 (2004).
[CrossRef]

2003 (3)

D. L. Miller and J. Song, “Tumor growth reduction and DNA transfer by cavitation-enhanced high-intensity focused ultrasound in vivo,” Ultrasound Med. Biol.29(6), 887–893 (2003).
[CrossRef] [PubMed]

S. Sagi, T. Knoll, L. Trojan, A. Schaaf, P. Alken, and M. S. Michel, “Gene delivery into prostate cancer cells by holmium laser application,” Prostate Cancer Prostatic Dis.6(2), 127–130 (2003).
[CrossRef] [PubMed]

S. K. Mohanty, M. Sharma, and P. K. Gupta, “Laser-assisted microinjection into targeted animal cells,” Biotechnol. Lett.25(11), 895–899 (2003).
[CrossRef] [PubMed]

2002 (3)

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature418(6895), 290–291 (2002).
[CrossRef] [PubMed]

F. Scherer, M. Anton, U. Schillinger, J. Henke, C. Bergemann, A. Krüger, B. Gänsbacher, and C. Plank, “Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo,” Gene Ther.9(2), 102–109 (2002).
[CrossRef] [PubMed]

D. Fischer, A. von Harpe, K. Kunath, H. Petersen, Y. Li, and T. Kissel, “Copolymers of ethylene imine and N-(2-hydroxyethyl)-ethylene imine as tools to study effects of polymer structure on physicochemical and biological properties of DNA complexes,” Bioconjug. Chem.13(5), 1124–1133 (2002).
[CrossRef] [PubMed]

1999 (2)

M. Ward, J. Wu, and J.-F. Chiu, “Ultrasound-induced cell lysis and sonoporation enhanced by contrast agents,” J. Acoust. Soc. Am.105(5), 2951–2957 (1999).
[CrossRef] [PubMed]

G. Zhang, V. Budker, and J. A. Wolff, “High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA,” Hum. Gene Ther.10(10), 1735–1737 (1999).
[CrossRef] [PubMed]

1997 (2)

G. Zhang, D. Vargo, V. Budker, N. Armstrong, S. Knechtle, and J. A. Wolff, “Expression of naked plasmid DNA injected into the afferent and efferent vessels of rodent and dog livers,” Hum. Gene Ther.8(15), 1763–1772 (1997).
[CrossRef] [PubMed]

G. Ghosh, “Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses,” Appl. Opt.36(7), 1540–1546 (1997).
[CrossRef] [PubMed]

1995 (1)

Y. Guo, H. Liang, and M. W. Berns, “Laser-mediated gene transfer in rice,” Physiol. Plant.93(1), 19–24 (1995).
[CrossRef]

1990 (1)

E. G. Nabel, G. Plautz, and G. J. Nabel, “Site-specific gene expression in vivo by direct gene transfer into the arterial wall,” Science249(4974), 1285–1288 (1990).
[CrossRef] [PubMed]

1988 (1)

J. P. Dear, J. E. Field, and A. J. Walton, “Gas compression and jet formation in cavities collapsed by a shock wave,” Nature332(6164), 505–508 (1988).
[CrossRef]

1987 (2)

W. Tao, J. Wilkinson, E. J. Stanbridge, and M. W. Berns, “Direct gene transfer into human cultured cells facilitated by laser micropuncture of the cell membrane,” Proc. Natl. Acad. Sci. U.S.A.84(12), 4180–4184 (1987).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

1986 (2)

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986).
[CrossRef] [PubMed]

S. Kurata and Y. Ikawa, “Novel method for substance injection into the cell by laser beam--a study of the injection volume,” Cell Struct. Funct.11(2), 205–207 (1986).
[CrossRef] [PubMed]

1984 (1)

M. Tsukakoshi, S. Kurata, Y. Nomiya, Y. Ikawa, and T. Kasuya, “A Novel Method of DNA Transfection by Laser Microbeam Cell Surgery,” Appl. Phys. B35(3), 135–140 (1984).
[CrossRef]

1982 (1)

E. Neumann, M. Schaefer-Ridder, Y. Wang, and P. H. Hofschneider, “Gene transfer into mouse lyoma cells by electroporation in high electric fields,” EMBO J.1(7), 841–845 (1982).
[PubMed]

1980 (1)

M. R. Capecchi, “High efficiency transformation by direct microinjection of DNA into cultured mammalian cells,” Cell22(2), 479–488 (1980).
[CrossRef] [PubMed]

1977 (1)

S. Bacchetti and F. L. Graham, “Transfer of the gene for thymidine kinase to thymidine kinase-deficient human cells by purified herpes simplex viral DNA,” Proc. Natl. Acad. Sci. U.S.A.74(4), 1590–1594 (1977).
[CrossRef] [PubMed]

1973 (2)

F. L. Graham and A. J. van der Eb, “A new technique for the assay of infectivity of human adenovirus 5 DNA,” Virology52(2), 456–467 (1973).
[CrossRef] [PubMed]

H. D. Soule, J. Vazguez, A. Long, S. Albert, and M. Brennan, “A human cell line from a pleural effusion derived from a breast carcinoma,” J. Natl. Cancer Inst.51(5), 1409–1416 (1973).
[PubMed]

1971 (1)

A. Ashkin and J. M. Dziedzic, “Optical Levitation by Radiation Pressure,” Appl. Phys. Lett.19(8), 283–285 (1971).
[CrossRef]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970).
[CrossRef]

1871 (1)

W. Sellmeier, “Zur Erklärung der abnormen Farbenfolge im Spectrum einiger Substanzen,” Annalen der Physik und Chemie219(6), 272–282 (1871).
[CrossRef]

Agate, B.

Albert, S.

H. D. Soule, J. Vazguez, A. Long, S. Albert, and M. Brennan, “A human cell line from a pleural effusion derived from a breast carcinoma,” J. Natl. Cancer Inst.51(5), 1409–1416 (1973).
[PubMed]

Alken, P.

S. Sagi, T. Knoll, L. Trojan, A. Schaaf, P. Alken, and M. S. Michel, “Gene delivery into prostate cancer cells by holmium laser application,” Prostate Cancer Prostatic Dis.6(2), 127–130 (2003).
[CrossRef] [PubMed]

Alpar, H. O.

M. Uchida, X. W. Li, P. Mertens, and H. O. Alpar, “Transfection by particle bombardment: delivery of plasmid DNA into mammalian cells using gene gun,” Biochim. Biophys. Acta1790(8), 754–764 (2009).
[CrossRef] [PubMed]

Ander, M.

Ando, T.

Anton, M.

F. Scherer, M. Anton, U. Schillinger, J. Henke, C. Bergemann, A. Krüger, B. Gänsbacher, and C. Plank, “Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo,” Gene Ther.9(2), 102–109 (2002).
[CrossRef] [PubMed]

Arita, Y.

Y. Arita, M. L. Torres-Mapa, W. M. Lee, T. Čižmár, P. Campbell, F. J. Gunn-Moore, and K. Dholakia, “Spatially optimized gene transfection by laser-induced breakdown of optically trapped nanoparticles,” Appl. Phys. Lett.98(9), 093702–093703 (2011).
[CrossRef]

Armstrong, N.

G. Zhang, D. Vargo, V. Budker, N. Armstrong, S. Knechtle, and J. A. Wolff, “Expression of naked plasmid DNA injected into the afferent and efferent vessels of rodent and dog livers,” Hum. Gene Ther.8(15), 1763–1772 (1997).
[CrossRef] [PubMed]

Aronovich, E. L.

J. B. Bell, K. M. Podetz-Pedersen, E. L. Aronovich, L. R. Belur, R. S. McIvor, and P. B. Hackett, “Preferential delivery of the Sleeping Beauty transposon system to livers of mice by hydrodynamic injection,” Nat. Protoc.2(12), 3153–3165 (2007).
[CrossRef] [PubMed]

Arora, M.

C. D. Ohl, M. Arora, R. Ikink, N. de Jong, M. Versluis, M. Delius, and D. Lohse, “Sonoporation from jetting cavitation bubbles,” Biophys. J.91(11), 4285–4295 (2006).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical Levitation by Radiation Pressure,” Appl. Phys. Lett.19(8), 283–285 (1971).
[CrossRef]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970).
[CrossRef]

Bacchetti, S.

S. Bacchetti and F. L. Graham, “Transfer of the gene for thymidine kinase to thymidine kinase-deficient human cells by purified herpes simplex viral DNA,” Proc. Natl. Acad. Sci. U.S.A.74(4), 1590–1594 (1977).
[CrossRef] [PubMed]

Badr, Y. A.

Y. A. Badr, M. A. Kereim, M. A. Yehia, O. O. Fouad, and A. Bahieldin, “Production of fertile transgenic wheat plants by laser micropuncture,” Photochem. Photobiol. Sci.4(10), 803–807 (2005).
[CrossRef] [PubMed]

Bahieldin, A.

Y. A. Badr, M. A. Kereim, M. A. Yehia, O. O. Fouad, and A. Bahieldin, “Production of fertile transgenic wheat plants by laser micropuncture,” Photochem. Photobiol. Sci.4(10), 803–807 (2005).
[CrossRef] [PubMed]

Baumgart, J.

Bell, J. B.

J. B. Bell, K. M. Podetz-Pedersen, E. L. Aronovich, L. R. Belur, R. S. McIvor, and P. B. Hackett, “Preferential delivery of the Sleeping Beauty transposon system to livers of mice by hydrodynamic injection,” Nat. Protoc.2(12), 3153–3165 (2007).
[CrossRef] [PubMed]

Belur, L. R.

J. B. Bell, K. M. Podetz-Pedersen, E. L. Aronovich, L. R. Belur, R. S. McIvor, and P. B. Hackett, “Preferential delivery of the Sleeping Beauty transposon system to livers of mice by hydrodynamic injection,” Nat. Protoc.2(12), 3153–3165 (2007).
[CrossRef] [PubMed]

Bergemann, C.

F. Scherer, M. Anton, U. Schillinger, J. Henke, C. Bergemann, A. Krüger, B. Gänsbacher, and C. Plank, “Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo,” Gene Ther.9(2), 102–109 (2002).
[CrossRef] [PubMed]

Berns, M. W.

Y. Guo, H. Liang, and M. W. Berns, “Laser-mediated gene transfer in rice,” Physiol. Plant.93(1), 19–24 (1995).
[CrossRef]

W. Tao, J. Wilkinson, E. J. Stanbridge, and M. W. Berns, “Direct gene transfer into human cultured cells facilitated by laser micropuncture of the cell membrane,” Proc. Natl. Acad. Sci. U.S.A.84(12), 4180–4184 (1987).
[CrossRef] [PubMed]

Bintig, W.

Bjorkholm, J. E.

Bormuth, V.

Brennan, M.

H. D. Soule, J. Vazguez, A. Long, S. Albert, and M. Brennan, “A human cell line from a pleural effusion derived from a breast carcinoma,” J. Natl. Cancer Inst.51(5), 1409–1416 (1973).
[PubMed]

Brown, C. T.

C. T. Brown, D. J. Stevenson, X. Tsampoula, C. McDougall, A. A. Lagatsky, W. Sibbett, F. J. Gunn-Moore, and K. Dholakia, “Enhanced operation of femtosecond lasers and applications in cell transfection,” J Biophotonics1(3), 183–199 (2008).
[CrossRef] [PubMed]

Brown, C. T. A.

Budker, V.

G. Zhang, V. Budker, and J. A. Wolff, “High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA,” Hum. Gene Ther.10(10), 1735–1737 (1999).
[CrossRef] [PubMed]

G. Zhang, D. Vargo, V. Budker, N. Armstrong, S. Knechtle, and J. A. Wolff, “Expression of naked plasmid DNA injected into the afferent and efferent vessels of rodent and dog livers,” Hum. Gene Ther.8(15), 1763–1772 (1997).
[CrossRef] [PubMed]

Bueckle, R.

Campbell, P.

Y. Arita, M. L. Torres-Mapa, W. M. Lee, T. Čižmár, P. Campbell, F. J. Gunn-Moore, and K. Dholakia, “Spatially optimized gene transfection by laser-induced breakdown of optically trapped nanoparticles,” Appl. Phys. Lett.98(9), 093702–093703 (2011).
[CrossRef]

D. J. Stevenson, F. J. Gunn-Moore, P. Campbell, and K. Dholakia, “Single cell optical transfection,” J. R. Soc. Interface7(47), 863–871 (2010).
[CrossRef] [PubMed]

P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys.1(2), 107–110 (2005).
[CrossRef]

Capecchi, M. R.

M. R. Capecchi, “High efficiency transformation by direct microinjection of DNA into cultured mammalian cells,” Cell22(2), 479–488 (1980).
[CrossRef] [PubMed]

Chan, K. T.

Chiu, J.-F.

M. Ward, J. Wu, and J.-F. Chiu, “Ultrasound-induced cell lysis and sonoporation enhanced by contrast agents,” J. Acoust. Soc. Am.105(5), 2951–2957 (1999).
[CrossRef] [PubMed]

Chu, S.

Cižmár, T.

Y. Arita, M. L. Torres-Mapa, W. M. Lee, T. Čižmár, P. Campbell, F. J. Gunn-Moore, and K. Dholakia, “Spatially optimized gene transfection by laser-induced breakdown of optically trapped nanoparticles,” Appl. Phys. Lett.98(9), 093702–093703 (2011).
[CrossRef]

Clarot, I.

S. Menuel, S. Fontanay, I. Clarot, R. E. Duval, L. Diez, and A. Marsura, “Synthesis and complexation ability of a novel bis- (guanidinium)-tetrakis-(beta-cyclodextrin) dendrimeric tetrapod as a potential gene delivery (DNA and siRNA) system. Study of cellular siRNA transfection,” Bioconjug. Chem.19(12), 2357–2362 (2008).
[CrossRef] [PubMed]

Cuerrier, C. M.

C. M. Cuerrier, R. Lebel, and M. Grandbois, “Single cell transfection using plasmid decorated AFM probes,” Biochem. Biophys. Res. Commun.355(3), 632–636 (2007).
[CrossRef] [PubMed]

Cuschieri, A.

P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys.1(2), 107–110 (2005).
[CrossRef]

de Jong, N.

C. D. Ohl, M. Arora, R. Ikink, N. de Jong, M. Versluis, M. Delius, and D. Lohse, “Sonoporation from jetting cavitation bubbles,” Biophys. J.91(11), 4285–4295 (2006).
[CrossRef] [PubMed]

Dear, J. P.

J. P. Dear, J. E. Field, and A. J. Walton, “Gas compression and jet formation in cavities collapsed by a shock wave,” Nature332(6164), 505–508 (1988).
[CrossRef]

Delius, M.

C. D. Ohl, M. Arora, R. Ikink, N. de Jong, M. Versluis, M. Delius, and D. Lohse, “Sonoporation from jetting cavitation bubbles,” Biophys. J.91(11), 4285–4295 (2006).
[CrossRef] [PubMed]

Dholakia, K.

Y. Arita, M. L. Torres-Mapa, W. M. Lee, T. Čižmár, P. Campbell, F. J. Gunn-Moore, and K. Dholakia, “Spatially optimized gene transfection by laser-induced breakdown of optically trapped nanoparticles,” Appl. Phys. Lett.98(9), 093702–093703 (2011).
[CrossRef]

D. J. Stevenson, F. J. Gunn-Moore, P. Campbell, and K. Dholakia, “Single cell optical transfection,” J. R. Soc. Interface7(47), 863–871 (2010).
[CrossRef] [PubMed]

C. T. Brown, D. J. Stevenson, X. Tsampoula, C. McDougall, A. A. Lagatsky, W. Sibbett, F. J. Gunn-Moore, and K. Dholakia, “Enhanced operation of femtosecond lasers and applications in cell transfection,” J Biophotonics1(3), 183–199 (2008).
[CrossRef] [PubMed]

D. Stevenson, B. Agate, X. Tsampoula, P. Fischer, C. T. A. Brown, W. Sibbett, A. Riches, F. Gunn-Moore, and K. Dholakia, “Femtosecond optical transfection of cells: viability and efficiency,” Opt. Express14(16), 7125–7133 (2006).
[CrossRef] [PubMed]

P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys.1(2), 107–110 (2005).
[CrossRef]

Diez, L.

S. Menuel, S. Fontanay, I. Clarot, R. E. Duval, L. Diez, and A. Marsura, “Synthesis and complexation ability of a novel bis- (guanidinium)-tetrakis-(beta-cyclodextrin) dendrimeric tetrapod as a potential gene delivery (DNA and siRNA) system. Study of cellular siRNA transfection,” Bioconjug. Chem.19(12), 2357–2362 (2008).
[CrossRef] [PubMed]

Duval, R. E.

S. Menuel, S. Fontanay, I. Clarot, R. E. Duval, L. Diez, and A. Marsura, “Synthesis and complexation ability of a novel bis- (guanidinium)-tetrakis-(beta-cyclodextrin) dendrimeric tetrapod as a potential gene delivery (DNA and siRNA) system. Study of cellular siRNA transfection,” Bioconjug. Chem.19(12), 2357–2362 (2008).
[CrossRef] [PubMed]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical Levitation by Radiation Pressure,” Appl. Phys. Lett.19(8), 283–285 (1971).
[CrossRef]

Epple, M.

T. Welzel, I. Radtke, W. Meyer-Zaika, R. Heumann, and M. Epple, “Transfection of cells with custom-made calcium phosphate nanoparticles coated with DNA,” J. Mater. Chem.14(14), 2213–2217 (2004).
[CrossRef]

Ertmer, W.

Field, J. E.

J. P. Dear, J. E. Field, and A. J. Walton, “Gas compression and jet formation in cavities collapsed by a shock wave,” Nature332(6164), 505–508 (1988).
[CrossRef]

Fischer, D.

D. Fischer, A. von Harpe, K. Kunath, H. Petersen, Y. Li, and T. Kissel, “Copolymers of ethylene imine and N-(2-hydroxyethyl)-ethylene imine as tools to study effects of polymer structure on physicochemical and biological properties of DNA complexes,” Bioconjug. Chem.13(5), 1124–1133 (2002).
[CrossRef] [PubMed]

Fischer, P.

Fontanay, S.

S. Menuel, S. Fontanay, I. Clarot, R. E. Duval, L. Diez, and A. Marsura, “Synthesis and complexation ability of a novel bis- (guanidinium)-tetrakis-(beta-cyclodextrin) dendrimeric tetrapod as a potential gene delivery (DNA and siRNA) system. Study of cellular siRNA transfection,” Bioconjug. Chem.19(12), 2357–2362 (2008).
[CrossRef] [PubMed]

Fouad, O. O.

Y. A. Badr, M. A. Kereim, M. A. Yehia, O. O. Fouad, and A. Bahieldin, “Production of fertile transgenic wheat plants by laser micropuncture,” Photochem. Photobiol. Sci.4(10), 803–807 (2005).
[CrossRef] [PubMed]

Gänsbacher, B.

F. Scherer, M. Anton, U. Schillinger, J. Henke, C. Bergemann, A. Krüger, B. Gänsbacher, and C. Plank, “Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo,” Gene Ther.9(2), 102–109 (2002).
[CrossRef] [PubMed]

Ghosh, G.

Graham, F. L.

S. Bacchetti and F. L. Graham, “Transfer of the gene for thymidine kinase to thymidine kinase-deficient human cells by purified herpes simplex viral DNA,” Proc. Natl. Acad. Sci. U.S.A.74(4), 1590–1594 (1977).
[CrossRef] [PubMed]

F. L. Graham and A. J. van der Eb, “A new technique for the assay of infectivity of human adenovirus 5 DNA,” Virology52(2), 456–467 (1973).
[CrossRef] [PubMed]

Grandbois, M.

C. M. Cuerrier, R. Lebel, and M. Grandbois, “Single cell transfection using plasmid decorated AFM probes,” Biochem. Biophys. Res. Commun.355(3), 632–636 (2007).
[CrossRef] [PubMed]

Gunn-Moore, F.

Gunn-Moore, F. J.

Y. Arita, M. L. Torres-Mapa, W. M. Lee, T. Čižmár, P. Campbell, F. J. Gunn-Moore, and K. Dholakia, “Spatially optimized gene transfection by laser-induced breakdown of optically trapped nanoparticles,” Appl. Phys. Lett.98(9), 093702–093703 (2011).
[CrossRef]

D. J. Stevenson, F. J. Gunn-Moore, P. Campbell, and K. Dholakia, “Single cell optical transfection,” J. R. Soc. Interface7(47), 863–871 (2010).
[CrossRef] [PubMed]

C. T. Brown, D. J. Stevenson, X. Tsampoula, C. McDougall, A. A. Lagatsky, W. Sibbett, F. J. Gunn-Moore, and K. Dholakia, “Enhanced operation of femtosecond lasers and applications in cell transfection,” J Biophotonics1(3), 183–199 (2008).
[CrossRef] [PubMed]

Guo, Y.

Y. Guo, H. Liang, and M. W. Berns, “Laser-mediated gene transfer in rice,” Physiol. Plant.93(1), 19–24 (1995).
[CrossRef]

Gupta, P. K.

S. K. Mohanty, M. Sharma, and P. K. Gupta, “Laser-assisted microinjection into targeted animal cells,” Biotechnol. Lett.25(11), 895–899 (2003).
[CrossRef] [PubMed]

Hackett, P. B.

J. B. Bell, K. M. Podetz-Pedersen, E. L. Aronovich, L. R. Belur, R. S. McIvor, and P. B. Hackett, “Preferential delivery of the Sleeping Beauty transposon system to livers of mice by hydrodynamic injection,” Nat. Protoc.2(12), 3153–3165 (2007).
[CrossRef] [PubMed]

He, H.

Heisterkamp, A.

Henke, J.

F. Scherer, M. Anton, U. Schillinger, J. Henke, C. Bergemann, A. Krüger, B. Gänsbacher, and C. Plank, “Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo,” Gene Ther.9(2), 102–109 (2002).
[CrossRef] [PubMed]

Heumann, R.

T. Welzel, I. Radtke, W. Meyer-Zaika, R. Heumann, and M. Epple, “Transfection of cells with custom-made calcium phosphate nanoparticles coated with DNA,” J. Mater. Chem.14(14), 2213–2217 (2004).
[CrossRef]

Hofschneider, P. H.

E. Neumann, M. Schaefer-Ridder, Y. Wang, and P. H. Hofschneider, “Gene transfer into mouse lyoma cells by electroporation in high electric fields,” EMBO J.1(7), 841–845 (1982).
[PubMed]

Howard, J.

Ikawa, Y.

S. Kurata and Y. Ikawa, “Novel method for substance injection into the cell by laser beam--a study of the injection volume,” Cell Struct. Funct.11(2), 205–207 (1986).
[CrossRef] [PubMed]

M. Tsukakoshi, S. Kurata, Y. Nomiya, Y. Ikawa, and T. Kasuya, “A Novel Method of DNA Transfection by Laser Microbeam Cell Surgery,” Appl. Phys. B35(3), 135–140 (1984).
[CrossRef]

Ikink, R.

C. D. Ohl, M. Arora, R. Ikink, N. de Jong, M. Versluis, M. Delius, and D. Lohse, “Sonoporation from jetting cavitation bubbles,” Biophys. J.91(11), 4285–4295 (2006).
[CrossRef] [PubMed]

Isemann, A.

Jannasch, A.

Kasuya, T.

M. Tsukakoshi, S. Kurata, Y. Nomiya, Y. Ikawa, and T. Kasuya, “A Novel Method of DNA Transfection by Laser Microbeam Cell Surgery,” Appl. Phys. B35(3), 135–140 (1984).
[CrossRef]

Kereim, M. A.

Y. A. Badr, M. A. Kereim, M. A. Yehia, O. O. Fouad, and A. Bahieldin, “Production of fertile transgenic wheat plants by laser micropuncture,” Photochem. Photobiol. Sci.4(10), 803–807 (2005).
[CrossRef] [PubMed]

Kissel, T.

D. Fischer, A. von Harpe, K. Kunath, H. Petersen, Y. Li, and T. Kissel, “Copolymers of ethylene imine and N-(2-hydroxyethyl)-ethylene imine as tools to study effects of polymer structure on physicochemical and biological properties of DNA complexes,” Bioconjug. Chem.13(5), 1124–1133 (2002).
[CrossRef] [PubMed]

Knechtle, S.

G. Zhang, D. Vargo, V. Budker, N. Armstrong, S. Knechtle, and J. A. Wolff, “Expression of naked plasmid DNA injected into the afferent and efferent vessels of rodent and dog livers,” Hum. Gene Ther.8(15), 1763–1772 (1997).
[CrossRef] [PubMed]

Knoll, T.

S. Sagi, T. Knoll, L. Trojan, A. Schaaf, P. Alken, and M. S. Michel, “Gene delivery into prostate cancer cells by holmium laser application,” Prostate Cancer Prostatic Dis.6(2), 127–130 (2003).
[CrossRef] [PubMed]

Kong, S.-K.

König, K.

Krüger, A.

F. Scherer, M. Anton, U. Schillinger, J. Henke, C. Bergemann, A. Krüger, B. Gänsbacher, and C. Plank, “Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo,” Gene Ther.9(2), 102–109 (2002).
[CrossRef] [PubMed]

Kunath, K.

D. Fischer, A. von Harpe, K. Kunath, H. Petersen, Y. Li, and T. Kissel, “Copolymers of ethylene imine and N-(2-hydroxyethyl)-ethylene imine as tools to study effects of polymer structure on physicochemical and biological properties of DNA complexes,” Bioconjug. Chem.13(5), 1124–1133 (2002).
[CrossRef] [PubMed]

Kurata, S.

S. Kurata and Y. Ikawa, “Novel method for substance injection into the cell by laser beam--a study of the injection volume,” Cell Struct. Funct.11(2), 205–207 (1986).
[CrossRef] [PubMed]

M. Tsukakoshi, S. Kurata, Y. Nomiya, Y. Ikawa, and T. Kasuya, “A Novel Method of DNA Transfection by Laser Microbeam Cell Surgery,” Appl. Phys. B35(3), 135–140 (1984).
[CrossRef]

Lagatsky, A. A.

C. T. Brown, D. J. Stevenson, X. Tsampoula, C. McDougall, A. A. Lagatsky, W. Sibbett, F. J. Gunn-Moore, and K. Dholakia, “Enhanced operation of femtosecond lasers and applications in cell transfection,” J Biophotonics1(3), 183–199 (2008).
[CrossRef] [PubMed]

Lebel, R.

C. M. Cuerrier, R. Lebel, and M. Grandbois, “Single cell transfection using plasmid decorated AFM probes,” Biochem. Biophys. Res. Commun.355(3), 632–636 (2007).
[CrossRef] [PubMed]

Lee, R. K.-Y.

Lee, W. M.

Y. Arita, M. L. Torres-Mapa, W. M. Lee, T. Čižmár, P. Campbell, F. J. Gunn-Moore, and K. Dholakia, “Spatially optimized gene transfection by laser-induced breakdown of optically trapped nanoparticles,” Appl. Phys. Lett.98(9), 093702–093703 (2011).
[CrossRef]

Li, X. W.

M. Uchida, X. W. Li, P. Mertens, and H. O. Alpar, “Transfection by particle bombardment: delivery of plasmid DNA into mammalian cells using gene gun,” Biochim. Biophys. Acta1790(8), 754–764 (2009).
[CrossRef] [PubMed]

Li, Y.

D. Fischer, A. von Harpe, K. Kunath, H. Petersen, Y. Li, and T. Kissel, “Copolymers of ethylene imine and N-(2-hydroxyethyl)-ethylene imine as tools to study effects of polymer structure on physicochemical and biological properties of DNA complexes,” Bioconjug. Chem.13(5), 1124–1133 (2002).
[CrossRef] [PubMed]

Liang, H.

Y. Guo, H. Liang, and M. W. Berns, “Laser-mediated gene transfer in rice,” Physiol. Plant.93(1), 19–24 (1995).
[CrossRef]

Lohse, D.

C. D. Ohl, M. Arora, R. Ikink, N. de Jong, M. Versluis, M. Delius, and D. Lohse, “Sonoporation from jetting cavitation bubbles,” Biophys. J.91(11), 4285–4295 (2006).
[CrossRef] [PubMed]

Long, A.

H. D. Soule, J. Vazguez, A. Long, S. Albert, and M. Brennan, “A human cell line from a pleural effusion derived from a breast carcinoma,” J. Natl. Cancer Inst.51(5), 1409–1416 (1973).
[PubMed]

Lubatschowski, H.

Marsura, A.

S. Menuel, S. Fontanay, I. Clarot, R. E. Duval, L. Diez, and A. Marsura, “Synthesis and complexation ability of a novel bis- (guanidinium)-tetrakis-(beta-cyclodextrin) dendrimeric tetrapod as a potential gene delivery (DNA and siRNA) system. Study of cellular siRNA transfection,” Bioconjug. Chem.19(12), 2357–2362 (2008).
[CrossRef] [PubMed]

McDougall, C.

C. T. Brown, D. J. Stevenson, X. Tsampoula, C. McDougall, A. A. Lagatsky, W. Sibbett, F. J. Gunn-Moore, and K. Dholakia, “Enhanced operation of femtosecond lasers and applications in cell transfection,” J Biophotonics1(3), 183–199 (2008).
[CrossRef] [PubMed]

McIvor, R. S.

J. B. Bell, K. M. Podetz-Pedersen, E. L. Aronovich, L. R. Belur, R. S. McIvor, and P. B. Hackett, “Preferential delivery of the Sleeping Beauty transposon system to livers of mice by hydrodynamic injection,” Nat. Protoc.2(12), 3153–3165 (2007).
[CrossRef] [PubMed]

Menuel, S.

S. Menuel, S. Fontanay, I. Clarot, R. E. Duval, L. Diez, and A. Marsura, “Synthesis and complexation ability of a novel bis- (guanidinium)-tetrakis-(beta-cyclodextrin) dendrimeric tetrapod as a potential gene delivery (DNA and siRNA) system. Study of cellular siRNA transfection,” Bioconjug. Chem.19(12), 2357–2362 (2008).
[CrossRef] [PubMed]

Mertens, P.

M. Uchida, X. W. Li, P. Mertens, and H. O. Alpar, “Transfection by particle bombardment: delivery of plasmid DNA into mammalian cells using gene gun,” Biochim. Biophys. Acta1790(8), 754–764 (2009).
[CrossRef] [PubMed]

Meyer-Zaika, W.

T. Welzel, I. Radtke, W. Meyer-Zaika, R. Heumann, and M. Epple, “Transfection of cells with custom-made calcium phosphate nanoparticles coated with DNA,” J. Mater. Chem.14(14), 2213–2217 (2004).
[CrossRef]

Michel, M. S.

S. Sagi, T. Knoll, L. Trojan, A. Schaaf, P. Alken, and M. S. Michel, “Gene delivery into prostate cancer cells by holmium laser application,” Prostate Cancer Prostatic Dis.6(2), 127–130 (2003).
[CrossRef] [PubMed]

Miller, D. L.

D. L. Miller and J. Song, “Tumor growth reduction and DNA transfer by cavitation-enhanced high-intensity focused ultrasound in vivo,” Ultrasound Med. Biol.29(6), 887–893 (2003).
[CrossRef] [PubMed]

Mohanty, S. K.

S. K. Mohanty, M. Sharma, and P. K. Gupta, “Laser-assisted microinjection into targeted animal cells,” Biotechnol. Lett.25(11), 895–899 (2003).
[CrossRef] [PubMed]

Murua Escobar, H.

Nabel, E. G.

E. G. Nabel, G. Plautz, and G. J. Nabel, “Site-specific gene expression in vivo by direct gene transfer into the arterial wall,” Science249(4974), 1285–1288 (1990).
[CrossRef] [PubMed]

Nabel, G. J.

E. G. Nabel, G. Plautz, and G. J. Nabel, “Site-specific gene expression in vivo by direct gene transfer into the arterial wall,” Science249(4974), 1285–1288 (1990).
[CrossRef] [PubMed]

Neumann, E.

E. Neumann, M. Schaefer-Ridder, Y. Wang, and P. H. Hofschneider, “Gene transfer into mouse lyoma cells by electroporation in high electric fields,” EMBO J.1(7), 841–845 (1982).
[PubMed]

Ngezahayo, A.

Nomiya, Y.

M. Tsukakoshi, S. Kurata, Y. Nomiya, Y. Ikawa, and T. Kasuya, “A Novel Method of DNA Transfection by Laser Microbeam Cell Surgery,” Appl. Phys. B35(3), 135–140 (1984).
[CrossRef]

Obara, M.

Ohl, C. D.

C. D. Ohl, M. Arora, R. Ikink, N. de Jong, M. Versluis, M. Delius, and D. Lohse, “Sonoporation from jetting cavitation bubbles,” Biophys. J.91(11), 4285–4295 (2006).
[CrossRef] [PubMed]

Palazzo, R. E.

C. Peng, R. E. Palazzo, and I. Wilke, “Laser intensity dependence of femtosecond near-infrared optoinjection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.75(4), 041903–041911 (2007).
[CrossRef] [PubMed]

Peng, C.

C. Peng, R. E. Palazzo, and I. Wilke, “Laser intensity dependence of femtosecond near-infrared optoinjection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.75(4), 041903–041911 (2007).
[CrossRef] [PubMed]

Petersen, H.

D. Fischer, A. von Harpe, K. Kunath, H. Petersen, Y. Li, and T. Kissel, “Copolymers of ethylene imine and N-(2-hydroxyethyl)-ethylene imine as tools to study effects of polymer structure on physicochemical and biological properties of DNA complexes,” Bioconjug. Chem.13(5), 1124–1133 (2002).
[CrossRef] [PubMed]

Plank, C.

F. Scherer, M. Anton, U. Schillinger, J. Henke, C. Bergemann, A. Krüger, B. Gänsbacher, and C. Plank, “Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo,” Gene Ther.9(2), 102–109 (2002).
[CrossRef] [PubMed]

Plautz, G.

E. G. Nabel, G. Plautz, and G. J. Nabel, “Site-specific gene expression in vivo by direct gene transfer into the arterial wall,” Science249(4974), 1285–1288 (1990).
[CrossRef] [PubMed]

Podetz-Pedersen, K. M.

J. B. Bell, K. M. Podetz-Pedersen, E. L. Aronovich, L. R. Belur, R. S. McIvor, and P. B. Hackett, “Preferential delivery of the Sleeping Beauty transposon system to livers of mice by hydrodynamic injection,” Nat. Protoc.2(12), 3153–3165 (2007).
[CrossRef] [PubMed]

Prausnitz, M.

P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys.1(2), 107–110 (2005).
[CrossRef]

Prentice, P.

P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys.1(2), 107–110 (2005).
[CrossRef]

Radtke, I.

T. Welzel, I. Radtke, W. Meyer-Zaika, R. Heumann, and M. Epple, “Transfection of cells with custom-made calcium phosphate nanoparticles coated with DNA,” J. Mater. Chem.14(14), 2213–2217 (2004).
[CrossRef]

Riches, A.

Sagi, S.

S. Sagi, T. Knoll, L. Trojan, A. Schaaf, P. Alken, and M. S. Michel, “Gene delivery into prostate cancer cells by holmium laser application,” Prostate Cancer Prostatic Dis.6(2), 127–130 (2003).
[CrossRef] [PubMed]

Sato, S.

Schaaf, A.

S. Sagi, T. Knoll, L. Trojan, A. Schaaf, P. Alken, and M. S. Michel, “Gene delivery into prostate cancer cells by holmium laser application,” Prostate Cancer Prostatic Dis.6(2), 127–130 (2003).
[CrossRef] [PubMed]

Schaefer-Ridder, M.

E. Neumann, M. Schaefer-Ridder, Y. Wang, and P. H. Hofschneider, “Gene transfer into mouse lyoma cells by electroporation in high electric fields,” EMBO J.1(7), 841–845 (1982).
[PubMed]

Schäffer, E.

Scherer, F.

F. Scherer, M. Anton, U. Schillinger, J. Henke, C. Bergemann, A. Krüger, B. Gänsbacher, and C. Plank, “Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo,” Gene Ther.9(2), 102–109 (2002).
[CrossRef] [PubMed]

Schillinger, U.

F. Scherer, M. Anton, U. Schillinger, J. Henke, C. Bergemann, A. Krüger, B. Gänsbacher, and C. Plank, “Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo,” Gene Ther.9(2), 102–109 (2002).
[CrossRef] [PubMed]

Sellmeier, W.

W. Sellmeier, “Zur Erklärung der abnormen Farbenfolge im Spectrum einiger Substanzen,” Annalen der Physik und Chemie219(6), 272–282 (1871).
[CrossRef]

Sharma, M.

S. K. Mohanty, M. Sharma, and P. K. Gupta, “Laser-assisted microinjection into targeted animal cells,” Biotechnol. Lett.25(11), 895–899 (2003).
[CrossRef] [PubMed]

Sibbett, W.

C. T. Brown, D. J. Stevenson, X. Tsampoula, C. McDougall, A. A. Lagatsky, W. Sibbett, F. J. Gunn-Moore, and K. Dholakia, “Enhanced operation of femtosecond lasers and applications in cell transfection,” J Biophotonics1(3), 183–199 (2008).
[CrossRef] [PubMed]

D. Stevenson, B. Agate, X. Tsampoula, P. Fischer, C. T. A. Brown, W. Sibbett, A. Riches, F. Gunn-Moore, and K. Dholakia, “Femtosecond optical transfection of cells: viability and efficiency,” Opt. Express14(16), 7125–7133 (2006).
[CrossRef] [PubMed]

Song, J.

D. L. Miller and J. Song, “Tumor growth reduction and DNA transfer by cavitation-enhanced high-intensity focused ultrasound in vivo,” Ultrasound Med. Biol.29(6), 887–893 (2003).
[CrossRef] [PubMed]

Soule, H. D.

H. D. Soule, J. Vazguez, A. Long, S. Albert, and M. Brennan, “A human cell line from a pleural effusion derived from a breast carcinoma,” J. Natl. Cancer Inst.51(5), 1409–1416 (1973).
[PubMed]

Stanbridge, E. J.

W. Tao, J. Wilkinson, E. J. Stanbridge, and M. W. Berns, “Direct gene transfer into human cultured cells facilitated by laser micropuncture of the cell membrane,” Proc. Natl. Acad. Sci. U.S.A.84(12), 4180–4184 (1987).
[CrossRef] [PubMed]

Stevenson, D.

Stevenson, D. J.

D. J. Stevenson, F. J. Gunn-Moore, P. Campbell, and K. Dholakia, “Single cell optical transfection,” J. R. Soc. Interface7(47), 863–871 (2010).
[CrossRef] [PubMed]

C. T. Brown, D. J. Stevenson, X. Tsampoula, C. McDougall, A. A. Lagatsky, W. Sibbett, F. J. Gunn-Moore, and K. Dholakia, “Enhanced operation of femtosecond lasers and applications in cell transfection,” J Biophotonics1(3), 183–199 (2008).
[CrossRef] [PubMed]

Suen, Y.-K.

Tao, W.

W. Tao, J. Wilkinson, E. J. Stanbridge, and M. W. Berns, “Direct gene transfer into human cultured cells facilitated by laser micropuncture of the cell membrane,” Proc. Natl. Acad. Sci. U.S.A.84(12), 4180–4184 (1987).
[CrossRef] [PubMed]

Tempea, G.

Tirlapur, U. K.

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature418(6895), 290–291 (2002).
[CrossRef] [PubMed]

Torres-Mapa, M. L.

Y. Arita, M. L. Torres-Mapa, W. M. Lee, T. Čižmár, P. Campbell, F. J. Gunn-Moore, and K. Dholakia, “Spatially optimized gene transfection by laser-induced breakdown of optically trapped nanoparticles,” Appl. Phys. Lett.98(9), 093702–093703 (2011).
[CrossRef]

Trojan, L.

S. Sagi, T. Knoll, L. Trojan, A. Schaaf, P. Alken, and M. S. Michel, “Gene delivery into prostate cancer cells by holmium laser application,” Prostate Cancer Prostatic Dis.6(2), 127–130 (2003).
[CrossRef] [PubMed]

Tsampoula, X.

C. T. Brown, D. J. Stevenson, X. Tsampoula, C. McDougall, A. A. Lagatsky, W. Sibbett, F. J. Gunn-Moore, and K. Dholakia, “Enhanced operation of femtosecond lasers and applications in cell transfection,” J Biophotonics1(3), 183–199 (2008).
[CrossRef] [PubMed]

D. Stevenson, B. Agate, X. Tsampoula, P. Fischer, C. T. A. Brown, W. Sibbett, A. Riches, F. Gunn-Moore, and K. Dholakia, “Femtosecond optical transfection of cells: viability and efficiency,” Opt. Express14(16), 7125–7133 (2006).
[CrossRef] [PubMed]

Tsukakoshi, M.

M. Tsukakoshi, S. Kurata, Y. Nomiya, Y. Ikawa, and T. Kasuya, “A Novel Method of DNA Transfection by Laser Microbeam Cell Surgery,” Appl. Phys. B35(3), 135–140 (1984).
[CrossRef]

Uchida, M.

M. Uchida, X. W. Li, P. Mertens, and H. O. Alpar, “Transfection by particle bombardment: delivery of plasmid DNA into mammalian cells using gene gun,” Biochim. Biophys. Acta1790(8), 754–764 (2009).
[CrossRef] [PubMed]

Uchugonova, A.

van Blaaderen, A.

van der Eb, A. J.

F. L. Graham and A. J. van der Eb, “A new technique for the assay of infectivity of human adenovirus 5 DNA,” Virology52(2), 456–467 (1973).
[CrossRef] [PubMed]

van Kats, C. M.

Vargo, D.

G. Zhang, D. Vargo, V. Budker, N. Armstrong, S. Knechtle, and J. A. Wolff, “Expression of naked plasmid DNA injected into the afferent and efferent vessels of rodent and dog livers,” Hum. Gene Ther.8(15), 1763–1772 (1997).
[CrossRef] [PubMed]

Vazguez, J.

H. D. Soule, J. Vazguez, A. Long, S. Albert, and M. Brennan, “A human cell line from a pleural effusion derived from a breast carcinoma,” J. Natl. Cancer Inst.51(5), 1409–1416 (1973).
[PubMed]

Versluis, M.

C. D. Ohl, M. Arora, R. Ikink, N. de Jong, M. Versluis, M. Delius, and D. Lohse, “Sonoporation from jetting cavitation bubbles,” Biophys. J.91(11), 4285–4295 (2006).
[CrossRef] [PubMed]

von Harpe, A.

D. Fischer, A. von Harpe, K. Kunath, H. Petersen, Y. Li, and T. Kissel, “Copolymers of ethylene imine and N-(2-hydroxyethyl)-ethylene imine as tools to study effects of polymer structure on physicochemical and biological properties of DNA complexes,” Bioconjug. Chem.13(5), 1124–1133 (2002).
[CrossRef] [PubMed]

Walton, A. J.

J. P. Dear, J. E. Field, and A. J. Walton, “Gas compression and jet formation in cavities collapsed by a shock wave,” Nature332(6164), 505–508 (1988).
[CrossRef]

Wang, Y.

E. Neumann, M. Schaefer-Ridder, Y. Wang, and P. H. Hofschneider, “Gene transfer into mouse lyoma cells by electroporation in high electric fields,” EMBO J.1(7), 841–845 (1982).
[PubMed]

Ward, M.

M. Ward, J. Wu, and J.-F. Chiu, “Ultrasound-induced cell lysis and sonoporation enhanced by contrast agents,” J. Acoust. Soc. Am.105(5), 2951–2957 (1999).
[CrossRef] [PubMed]

Welzel, T.

T. Welzel, I. Radtke, W. Meyer-Zaika, R. Heumann, and M. Epple, “Transfection of cells with custom-made calcium phosphate nanoparticles coated with DNA,” J. Mater. Chem.14(14), 2213–2217 (2004).
[CrossRef]

Wilke, I.

C. Peng, R. E. Palazzo, and I. Wilke, “Laser intensity dependence of femtosecond near-infrared optoinjection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.75(4), 041903–041911 (2007).
[CrossRef] [PubMed]

Wilkinson, J.

W. Tao, J. Wilkinson, E. J. Stanbridge, and M. W. Berns, “Direct gene transfer into human cultured cells facilitated by laser micropuncture of the cell membrane,” Proc. Natl. Acad. Sci. U.S.A.84(12), 4180–4184 (1987).
[CrossRef] [PubMed]

Willenbrock, S.

Wolff, J. A.

G. Zhang, V. Budker, and J. A. Wolff, “High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA,” Hum. Gene Ther.10(10), 1735–1737 (1999).
[CrossRef] [PubMed]

G. Zhang, D. Vargo, V. Budker, N. Armstrong, S. Knechtle, and J. A. Wolff, “Expression of naked plasmid DNA injected into the afferent and efferent vessels of rodent and dog livers,” Hum. Gene Ther.8(15), 1763–1772 (1997).
[CrossRef] [PubMed]

Wu, J.

M. Ward, J. Wu, and J.-F. Chiu, “Ultrasound-induced cell lysis and sonoporation enhanced by contrast agents,” J. Acoust. Soc. Am.105(5), 2951–2957 (1999).
[CrossRef] [PubMed]

Yehia, M. A.

Y. A. Badr, M. A. Kereim, M. A. Yehia, O. O. Fouad, and A. Bahieldin, “Production of fertile transgenic wheat plants by laser micropuncture,” Photochem. Photobiol. Sci.4(10), 803–807 (2005).
[CrossRef] [PubMed]

Zhang, G.

G. Zhang, V. Budker, and J. A. Wolff, “High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA,” Hum. Gene Ther.10(10), 1735–1737 (1999).
[CrossRef] [PubMed]

G. Zhang, D. Vargo, V. Budker, N. Armstrong, S. Knechtle, and J. A. Wolff, “Expression of naked plasmid DNA injected into the afferent and efferent vessels of rodent and dog livers,” Hum. Gene Ther.8(15), 1763–1772 (1997).
[CrossRef] [PubMed]

Annalen der Physik und Chemie (1)

W. Sellmeier, “Zur Erklärung der abnormen Farbenfolge im Spectrum einiger Substanzen,” Annalen der Physik und Chemie219(6), 272–282 (1871).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

M. Tsukakoshi, S. Kurata, Y. Nomiya, Y. Ikawa, and T. Kasuya, “A Novel Method of DNA Transfection by Laser Microbeam Cell Surgery,” Appl. Phys. B35(3), 135–140 (1984).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Arita, M. L. Torres-Mapa, W. M. Lee, T. Čižmár, P. Campbell, F. J. Gunn-Moore, and K. Dholakia, “Spatially optimized gene transfection by laser-induced breakdown of optically trapped nanoparticles,” Appl. Phys. Lett.98(9), 093702–093703 (2011).
[CrossRef]

A. Ashkin and J. M. Dziedzic, “Optical Levitation by Radiation Pressure,” Appl. Phys. Lett.19(8), 283–285 (1971).
[CrossRef]

Biochem. Biophys. Res. Commun. (1)

C. M. Cuerrier, R. Lebel, and M. Grandbois, “Single cell transfection using plasmid decorated AFM probes,” Biochem. Biophys. Res. Commun.355(3), 632–636 (2007).
[CrossRef] [PubMed]

Biochim. Biophys. Acta (1)

M. Uchida, X. W. Li, P. Mertens, and H. O. Alpar, “Transfection by particle bombardment: delivery of plasmid DNA into mammalian cells using gene gun,” Biochim. Biophys. Acta1790(8), 754–764 (2009).
[CrossRef] [PubMed]

Bioconjug. Chem. (2)

D. Fischer, A. von Harpe, K. Kunath, H. Petersen, Y. Li, and T. Kissel, “Copolymers of ethylene imine and N-(2-hydroxyethyl)-ethylene imine as tools to study effects of polymer structure on physicochemical and biological properties of DNA complexes,” Bioconjug. Chem.13(5), 1124–1133 (2002).
[CrossRef] [PubMed]

S. Menuel, S. Fontanay, I. Clarot, R. E. Duval, L. Diez, and A. Marsura, “Synthesis and complexation ability of a novel bis- (guanidinium)-tetrakis-(beta-cyclodextrin) dendrimeric tetrapod as a potential gene delivery (DNA and siRNA) system. Study of cellular siRNA transfection,” Bioconjug. Chem.19(12), 2357–2362 (2008).
[CrossRef] [PubMed]

Biophys. J. (1)

C. D. Ohl, M. Arora, R. Ikink, N. de Jong, M. Versluis, M. Delius, and D. Lohse, “Sonoporation from jetting cavitation bubbles,” Biophys. J.91(11), 4285–4295 (2006).
[CrossRef] [PubMed]

Biotechnol. Lett. (1)

S. K. Mohanty, M. Sharma, and P. K. Gupta, “Laser-assisted microinjection into targeted animal cells,” Biotechnol. Lett.25(11), 895–899 (2003).
[CrossRef] [PubMed]

Cell (1)

M. R. Capecchi, “High efficiency transformation by direct microinjection of DNA into cultured mammalian cells,” Cell22(2), 479–488 (1980).
[CrossRef] [PubMed]

Cell Struct. Funct. (1)

S. Kurata and Y. Ikawa, “Novel method for substance injection into the cell by laser beam--a study of the injection volume,” Cell Struct. Funct.11(2), 205–207 (1986).
[CrossRef] [PubMed]

EMBO J. (1)

E. Neumann, M. Schaefer-Ridder, Y. Wang, and P. H. Hofschneider, “Gene transfer into mouse lyoma cells by electroporation in high electric fields,” EMBO J.1(7), 841–845 (1982).
[PubMed]

Gene Ther. (1)

F. Scherer, M. Anton, U. Schillinger, J. Henke, C. Bergemann, A. Krüger, B. Gänsbacher, and C. Plank, “Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo,” Gene Ther.9(2), 102–109 (2002).
[CrossRef] [PubMed]

Hum. Gene Ther. (2)

G. Zhang, V. Budker, and J. A. Wolff, “High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA,” Hum. Gene Ther.10(10), 1735–1737 (1999).
[CrossRef] [PubMed]

G. Zhang, D. Vargo, V. Budker, N. Armstrong, S. Knechtle, and J. A. Wolff, “Expression of naked plasmid DNA injected into the afferent and efferent vessels of rodent and dog livers,” Hum. Gene Ther.8(15), 1763–1772 (1997).
[CrossRef] [PubMed]

J Biophotonics (1)

C. T. Brown, D. J. Stevenson, X. Tsampoula, C. McDougall, A. A. Lagatsky, W. Sibbett, F. J. Gunn-Moore, and K. Dholakia, “Enhanced operation of femtosecond lasers and applications in cell transfection,” J Biophotonics1(3), 183–199 (2008).
[CrossRef] [PubMed]

J. Acoust. Soc. Am. (1)

M. Ward, J. Wu, and J.-F. Chiu, “Ultrasound-induced cell lysis and sonoporation enhanced by contrast agents,” J. Acoust. Soc. Am.105(5), 2951–2957 (1999).
[CrossRef] [PubMed]

J. Mater. Chem. (1)

T. Welzel, I. Radtke, W. Meyer-Zaika, R. Heumann, and M. Epple, “Transfection of cells with custom-made calcium phosphate nanoparticles coated with DNA,” J. Mater. Chem.14(14), 2213–2217 (2004).
[CrossRef]

J. Natl. Cancer Inst. (1)

H. D. Soule, J. Vazguez, A. Long, S. Albert, and M. Brennan, “A human cell line from a pleural effusion derived from a breast carcinoma,” J. Natl. Cancer Inst.51(5), 1409–1416 (1973).
[PubMed]

J. R. Soc. Interface (1)

D. J. Stevenson, F. J. Gunn-Moore, P. Campbell, and K. Dholakia, “Single cell optical transfection,” J. R. Soc. Interface7(47), 863–871 (2010).
[CrossRef] [PubMed]

Nat. Phys. (1)

P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys.1(2), 107–110 (2005).
[CrossRef]

Nat. Protoc. (1)

J. B. Bell, K. M. Podetz-Pedersen, E. L. Aronovich, L. R. Belur, R. S. McIvor, and P. B. Hackett, “Preferential delivery of the Sleeping Beauty transposon system to livers of mice by hydrodynamic injection,” Nat. Protoc.2(12), 3153–3165 (2007).
[CrossRef] [PubMed]

Nature (2)

J. P. Dear, J. E. Field, and A. J. Walton, “Gas compression and jet formation in cavities collapsed by a shock wave,” Nature332(6164), 505–508 (1988).
[CrossRef]

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature418(6895), 290–291 (2002).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Photochem. Photobiol. Sci. (1)

Y. A. Badr, M. A. Kereim, M. A. Yehia, O. O. Fouad, and A. Bahieldin, “Production of fertile transgenic wheat plants by laser micropuncture,” Photochem. Photobiol. Sci.4(10), 803–807 (2005).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

C. Peng, R. E. Palazzo, and I. Wilke, “Laser intensity dependence of femtosecond near-infrared optoinjection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.75(4), 041903–041911 (2007).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970).
[CrossRef]

Physiol. Plant. (1)

Y. Guo, H. Liang, and M. W. Berns, “Laser-mediated gene transfer in rice,” Physiol. Plant.93(1), 19–24 (1995).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (2)

W. Tao, J. Wilkinson, E. J. Stanbridge, and M. W. Berns, “Direct gene transfer into human cultured cells facilitated by laser micropuncture of the cell membrane,” Proc. Natl. Acad. Sci. U.S.A.84(12), 4180–4184 (1987).
[CrossRef] [PubMed]

S. Bacchetti and F. L. Graham, “Transfer of the gene for thymidine kinase to thymidine kinase-deficient human cells by purified herpes simplex viral DNA,” Proc. Natl. Acad. Sci. U.S.A.74(4), 1590–1594 (1977).
[CrossRef] [PubMed]

Prostate Cancer Prostatic Dis. (1)

S. Sagi, T. Knoll, L. Trojan, A. Schaaf, P. Alken, and M. S. Michel, “Gene delivery into prostate cancer cells by holmium laser application,” Prostate Cancer Prostatic Dis.6(2), 127–130 (2003).
[CrossRef] [PubMed]

Science (2)

E. G. Nabel, G. Plautz, and G. J. Nabel, “Site-specific gene expression in vivo by direct gene transfer into the arterial wall,” Science249(4974), 1285–1288 (1990).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

Ultrasound Med. Biol. (1)

D. L. Miller and J. Song, “Tumor growth reduction and DNA transfer by cavitation-enhanced high-intensity focused ultrasound in vivo,” Ultrasound Med. Biol.29(6), 887–893 (2003).
[CrossRef] [PubMed]

Virology (1)

F. L. Graham and A. J. van der Eb, “A new technique for the assay of infectivity of human adenovirus 5 DNA,” Virology52(2), 456–467 (1973).
[CrossRef] [PubMed]

Other (2)

G. Kloos, Matrix Methods for Optical Layout (SPIE Publications, Washington, 2007).

E. Hecht, Optics (Addison-Wesley, San Francisco, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for optoporation and transfection of MCF-7 cells. (1) is 800 nm femtosecond puncturing laser, (2) is 1064 nm continuous wave trapping laser, (3) is puncturing and trapping lasers, (4) is 685 nm continuous wave detection laser, (5) is puncturing, trapping and detection laser beams, (6) is illumination light. The QPD is located above the condenser lens and on the right-hand side of the band-pass filter.

Fig. 2
Fig. 2

(a) Trapping and manipulation of microparticle by 800 nm femtosecond laser used in continuous wave mode. (b) Trapping and manipulation of microparticle by 1064 nm continuous wave laser. (c) Graph of QPD voltage vs. lasers’ foci spot defined by the position of objective positioner. (d) Schematic diagram showing the measured relative distance between 800 nm and 1064 nm lasers’ foci.

Fig. 3
Fig. 3

(a) Particle is trapped at 1064 nm trapping laser focus and it is 500 nm above the cell membrane when trapped particle touches the cell membrane. At this position, focus of 800 nm femtosecond puncturing laser will be 700 nm inside the cell and it is not focused exactly on the cell membrane. (b) Objective positioner is moved 700 nm away to bring puncturing laser focus exactly on the cell membrane. Values are in nm.

Fig. 4
Fig. 4

Schematic of TDFPI procedure and CCD images of morphological changes on the cell membrane of MCF-7 cell. (a) Trapping laser is turned on and brought near to the plasmid coated microparticle present in the medium of MCF-7 cell petridish. (b) Trapping the plasmid coated microparticle by trapping laser. (c) Plasmid coated microparticle is manipulated by trapping laser until the cell membrane is reached and position of plasmid coated microparticle is detected while touching the cell membrane. (d) Objective positioner is moved back from cell membrane to get puncturing laser focus exactly on cell membrane. (e) Actuation of beam shutter to expose puncturing laser on cell membrane for optoporation. (f) Insertion of trapped plasmid coated microparticle into the cell before punctured hole heal itself.

Fig. 5
Fig. 5

Confocal laser scanning microphotographs of MCF-7 cell 96 hours after optically tweezing the plasmid coated 1µm particle into the cell. (a) Transmitted light image with the focal plane above the top surface of the cell. (b) Transmitted light image of the cell with the focal plane inside the cell showing that particle is inside the cell. The inserted particle is marked by the circle. Horizontal and vertical lines are grid lines marked on the Petri dish. (c) Confocal fluorescence image. (d) Merged image.

Fig. 6
Fig. 6

Confocal laser scanning microphotographs of MCF-7 cell after 72 hours of optically tweezing the plasmid coated 1µm particle into the cell. Two attempts were made on the same cell to insert the plasmid coated micropartilcle (a) Square boxes show the particles floating in the media. Encircled are the optically tweezed plasmid coated microparticles into the cell. (b) Confocal fluorescence image. (c) Merged image.

Fig. 7
Fig. 7

Confocal laser scanning microphotographs of MCF-7 cell 96 hours after the control experiment. (a) The plasmid coated microparticles were brought above the cell membrane. Cells were not punctured and particles remained above the surface of the cell. (b) Fluorescence image of the control cells that did not exhibit any fluorescence.

Tables (2)

Tables Icon

Table 1 Viability of the MCF-7 cell on different laser exposure parameters.

Tables Icon

Table 2 Transfection efficiencies of different laser based methods

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n 2 (λ)=A+ B 1 C λ 2 + D 1 E λ 2
1 f =(n1) ( 1 R 1 1 R 2 + (n1)t n R 1 R 2 )

Metrics