J. Ke and E. Lam, “Image reconstruction from nonuniformly spaced samples in spectral-domain optical coherence tomography,” Biomed. Opt. Express3, 741–752 (2012).

[CrossRef]
[PubMed]

L. Fang, S. Li, Q. Nie, J. A. Izatt, C. A. Toth, and S. Farsiu, “Sparsity based denoising of spectral domain optical coherence tomography images,” Biomed. Opt. Express3(5), 927–942 (2012).

[CrossRef]
[PubMed]

N. Zhang, T. Huo, C. Wang, T. Chen, J. Zheng, and P. Xue, “Compressed sensing with linear-in-wavenumber sampling in spectral-domain optical coherence tomography,” Opt. Lett.37(15), 3075–3077 (2012).

[CrossRef]
[PubMed]

D. Xu, N. Vaswani, Y. Huang, and J. U. Kang, “Modified compressive sensing optical coherence tomography with noise reduction,” Opt. Lett.37(20), 4209–4211 (2012).

[CrossRef]
[PubMed]

F. Knoll, G. Schultz, K. Bredies, D. Gallichan, M. Zaitsev, J. Hennig, and R. Stollberger, “Reconstruction of undersampled radial PatLoc imaging using total generalized variation,” Magn. Reson. Med.37(15), in Press (2012).

K. Zhang and J. U. Kang, “Real-time numerical dispersion compensation using graphics processing unit for Fourier-domain optical coherence tomography,” Electron. Lett., 47(5), 309–310 (2011).

[CrossRef]

X. Chen, M. Salerno, F. H. Epstein, and C. H. Meyer, “Accelerated multi-TI spiral MRI using compressed sensing with temporal constraints,” Proc. Intl. Soc. Mag. Recon. Med.19, 4369 (2011).

M. Jeon, J. Kim, U. Jung, C. Lee, W. Jung, and S. A. Boppart, “Full-range k-domain linearization in spectral-domain optical coherence tomography, Appl. Opt.50, 1158–1162 (2011).

[CrossRef]
[PubMed]

M. Young, E. Lebed, Y. Jian, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography,” Biomed. Opt. Express, 2(9), 2690–2697 (2011).

[CrossRef]

X. Liu and J. U. Kang, “Sparse OCT: Optimizing compressed sensing in spectral domain optical coherence tomography,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XVII, SPIE, 7904, 79041CL (2011).

N. Mohan, I. Stojanovic, W.C. Karl, B.E.A. Saleh, and M.C. Teich, “Compressed sensing in optical coherence tomography,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XVII, SPIE, 7570, 75700L (2010).

[CrossRef]

X. Liu and J. U. Kang, “Compressive SD-OCT: the application of compressed sensing in spectral domain optical coherence tomography,” Opt. Express, 18(21), 22010–22019 (2010).

[CrossRef]
[PubMed]

E. Lebed, P. J. Mackenzie, M. V. Sarunic, and F. M. Beg, “Rapid volumetric OCT image acquisition using compressive sampling,” Opt. Express, 18(29), 21003–21012 (2010).

[CrossRef]
[PubMed]

H. K. Chan and S. Tang, High-speed spectral domain optical coherence tomography using non-uniform fast Fourier transform, Biomed. Opt. Express1, 1309–1319 (2010).

[CrossRef]

K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express18(11), 11772–11784 (2010).

[CrossRef]
[PubMed]

S. Vergnole, D. Levesque, and G. Lamouche, “Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography,” Opt. Express18(12), 10446–10461 (2010).

[CrossRef]
[PubMed]

M. Lustig and J. M. Pauly, “SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space,” Magn. Reson. Med., 64, 457–471 (2010).

[PubMed]

K. Wang, Z. Ding, T. Wu, C. Wang, J. Meng, M. Chen, and L. Xu, “Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system,” Opt. Express17(14), 12121–12131 (2009).

[CrossRef]
[PubMed]

M. Afonso, J. Bioucas-Dias, and M. Figueiredo, “An augmented Lagrangian approach to the constraint optimization formulation of imaging inverse problems,” IEEE Trans. on Image Proc.20(3), 681–695 (2009).

[CrossRef]

E. van den Berg and M.P. Friedlander, “Probing the Pareto frontier for basis pursuit solutions,” SIAM Journal on Scientific Computing, 31(2), 890–912 (2008).

[CrossRef]

M. lusting, D. Donoho, and J. M. Pauly, “Sparse MRI: the application of compressed sensing for rapid MR imaging,” Magn. Reson. Med.58(6), 1182–1195 (2007).

[CrossRef]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, 52(4), 1289–1306 (2006).

[CrossRef]

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” Inf. Theory, 52(2), 489–509 (2006).

[CrossRef]

E. J. Candes and T. Tao, “Near-optical signal recovery from random projection: universal encoding strategies?” IEEE Trans. Inf. Theory, 52(12), 5406–5425 (2006).

[CrossRef]

M. Wojtkowski, V.J. Srinivasan, T.H. Ko, J.G. Fujimoto, A. Kowalczyk, and J.S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004).

[CrossRef]
[PubMed]

Y. Chen and X. Li, “Dispersion management up to the third order for real-time optical coherence tomography involving a phase or frequency modulator,” Opt. Express12(24), 5968–5978 (2004).

[CrossRef]
[PubMed]

D.L. Marks, A.L. Oldenburg, J.J. Reynolds, and S.A. Boppart, “Digital algorithm for dispersion correction in optical coherence tomography for homogeneous and stratified media,” Appl. Opt.42(2), 204–217 (2003).

[CrossRef]
[PubMed]

S. P. Monacos, R. K. Lam, A. A. Portillo, and G. G. Ortiz, “Design of an event-driven random-assess-windowing CCD-based camera,” Proc. SPIE4975, 115 (2003).

[CrossRef]

A.F. Fercher, W. Drexler, C.K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys., 66(2), 239–303 (2003).

[CrossRef]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express, 11(8), 889–894 (2003).

[CrossRef]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express, 11(18), 2183–2189 (2003).

[CrossRef]
[PubMed]

S. M. Potter, A. Mart, and J. Pine, “High-speed CCD movie camera with random pixel selection for neurobiology research,” Proc. SPIE2869, 243253 (1997).

B. Dierickx, D. Scheffer, G. Meynants, W. Ogiers, and J. Vlummens, “Random addressable active pixel image sensors,” Proc. SPIE2950, 2–7 (1996).

[CrossRef]

E. Aboussouan, L. Marinelli, and E. Tan, “Non-cartesian compressed sensing for diffusion spectrum imaging,” Proc. Intl. Soc. Mag. Recon. Med., 19, 1919 (2011).

E. Aboussouan, L. Marinelli, and E. Tan, “Non-cartesian compressed sensing for diffusion spectrum imaging,” Proc. Intl. Soc. Mag. Recon. Med., 19, 1919 (2011).

M. Afonso, J. Bioucas-Dias, and M. Figueiredo, “An augmented Lagrangian approach to the constraint optimization formulation of imaging inverse problems,” IEEE Trans. on Image Proc.20(3), 681–695 (2009).

[CrossRef]

S. Becker, J. O. Robin, and E. J. Candes, “NESTA: a fast and accurate first-order method for sparse recovery,” Technical report, California Institute of Technology (2009).

M. Afonso, J. Bioucas-Dias, and M. Figueiredo, “An augmented Lagrangian approach to the constraint optimization formulation of imaging inverse problems,” IEEE Trans. on Image Proc.20(3), 681–695 (2009).

[CrossRef]

F. Knoll, G. Schultz, K. Bredies, D. Gallichan, M. Zaitsev, J. Hennig, and R. Stollberger, “Reconstruction of undersampled radial PatLoc imaging using total generalized variation,” Magn. Reson. Med.37(15), in Press (2012).

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” Inf. Theory, 52(2), 489–509 (2006).

[CrossRef]

E. J. Candes and T. Tao, “Near-optical signal recovery from random projection: universal encoding strategies?” IEEE Trans. Inf. Theory, 52(12), 5406–5425 (2006).

[CrossRef]

S. Becker, J. O. Robin, and E. J. Candes, “NESTA: a fast and accurate first-order method for sparse recovery,” Technical report, California Institute of Technology (2009).

S.S. Sherif, C. Flueraru, Y. Mao, and S. Change, “Swept source optical coherence tomography with nonuniform frequency domain sampling,” Biomedical Optics, OSA, Technical Digest (CD)(Optical Society of America, 2008), paper BMD86.

[CrossRef]

X. Chen, M. Salerno, F. H. Epstein, and C. H. Meyer, “Accelerated multi-TI spiral MRI using compressed sensing with temporal constraints,” Proc. Intl. Soc. Mag. Recon. Med.19, 4369 (2011).

B. Dierickx, D. Scheffer, G. Meynants, W. Ogiers, and J. Vlummens, “Random addressable active pixel image sensors,” Proc. SPIE2950, 2–7 (1996).

[CrossRef]

M. lusting, D. Donoho, and J. M. Pauly, “Sparse MRI: the application of compressed sensing for rapid MR imaging,” Magn. Reson. Med.58(6), 1182–1195 (2007).

[CrossRef]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, 52(4), 1289–1306 (2006).

[CrossRef]

A.F. Fercher, W. Drexler, C.K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys., 66(2), 239–303 (2003).

[CrossRef]

W. Drexler and J. G. Fujimoto, Optical coherence tomography: Technology and Applications (Springer, Berlin, Germany, 2008).

[CrossRef]

M. Wojtkowski, V.J. Srinivasan, T.H. Ko, J.G. Fujimoto, A. Kowalczyk, and J.S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004).

[CrossRef]
[PubMed]

X. Chen, M. Salerno, F. H. Epstein, and C. H. Meyer, “Accelerated multi-TI spiral MRI using compressed sensing with temporal constraints,” Proc. Intl. Soc. Mag. Recon. Med.19, 4369 (2011).

A.F. Fercher, W. Drexler, C.K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys., 66(2), 239–303 (2003).

[CrossRef]

M. Afonso, J. Bioucas-Dias, and M. Figueiredo, “An augmented Lagrangian approach to the constraint optimization formulation of imaging inverse problems,” IEEE Trans. on Image Proc.20(3), 681–695 (2009).

[CrossRef]

S.S. Sherif, C. Flueraru, Y. Mao, and S. Change, “Swept source optical coherence tomography with nonuniform frequency domain sampling,” Biomedical Optics, OSA, Technical Digest (CD)(Optical Society of America, 2008), paper BMD86.

[CrossRef]

E. van den Berg and M.P. Friedlander, “Probing the Pareto frontier for basis pursuit solutions,” SIAM Journal on Scientific Computing, 31(2), 890–912 (2008).

[CrossRef]

W. Drexler and J. G. Fujimoto, Optical coherence tomography: Technology and Applications (Springer, Berlin, Germany, 2008).

[CrossRef]

M. Wojtkowski, V.J. Srinivasan, T.H. Ko, J.G. Fujimoto, A. Kowalczyk, and J.S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004).

[CrossRef]
[PubMed]

F. Knoll, G. Schultz, K. Bredies, D. Gallichan, M. Zaitsev, J. Hennig, and R. Stollberger, “Reconstruction of undersampled radial PatLoc imaging using total generalized variation,” Magn. Reson. Med.37(15), in Press (2012).

F. Knoll, G. Schultz, K. Bredies, D. Gallichan, M. Zaitsev, J. Hennig, and R. Stollberger, “Reconstruction of undersampled radial PatLoc imaging using total generalized variation,” Magn. Reson. Med.37(15), in Press (2012).

A.F. Fercher, W. Drexler, C.K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys., 66(2), 239–303 (2003).

[CrossRef]

D. Xu, N. Vaswani, Y. Huang, and J. U. Kang, “Modified compressive sensing optical coherence tomography with noise reduction,” Opt. Lett.37(20), 4209–4211 (2012).

[CrossRef]
[PubMed]

X. Liu and J. U. Kang, “Sparse OCT: Optimizing compressed sensing in spectral domain optical coherence tomography,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XVII, SPIE, 7904, 79041CL (2011).

K. Zhang and J. U. Kang, “Real-time numerical dispersion compensation using graphics processing unit for Fourier-domain optical coherence tomography,” Electron. Lett., 47(5), 309–310 (2011).

[CrossRef]

K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express18(11), 11772–11784 (2010).

[CrossRef]
[PubMed]

X. Liu and J. U. Kang, “Compressive SD-OCT: the application of compressed sensing in spectral domain optical coherence tomography,” Opt. Express, 18(21), 22010–22019 (2010).

[CrossRef]
[PubMed]

N. Mohan, I. Stojanovic, W.C. Karl, B.E.A. Saleh, and M.C. Teich, “Compressed sensing in optical coherence tomography,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XVII, SPIE, 7570, 75700L (2010).

[CrossRef]

F. Knoll, G. Schultz, K. Bredies, D. Gallichan, M. Zaitsev, J. Hennig, and R. Stollberger, “Reconstruction of undersampled radial PatLoc imaging using total generalized variation,” Magn. Reson. Med.37(15), in Press (2012).

M. Wojtkowski, V.J. Srinivasan, T.H. Ko, J.G. Fujimoto, A. Kowalczyk, and J.S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004).

[CrossRef]
[PubMed]

M. Wojtkowski, V.J. Srinivasan, T.H. Ko, J.G. Fujimoto, A. Kowalczyk, and J.S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004).

[CrossRef]
[PubMed]

S. P. Monacos, R. K. Lam, A. A. Portillo, and G. G. Ortiz, “Design of an event-driven random-assess-windowing CCD-based camera,” Proc. SPIE4975, 115 (2003).

[CrossRef]

A.F. Fercher, W. Drexler, C.K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys., 66(2), 239–303 (2003).

[CrossRef]

M. Young, E. Lebed, Y. Jian, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography,” Biomed. Opt. Express, 2(9), 2690–2697 (2011).

[CrossRef]

E. Lebed, P. J. Mackenzie, M. V. Sarunic, and F. M. Beg, “Rapid volumetric OCT image acquisition using compressive sampling,” Opt. Express, 18(29), 21003–21012 (2010).

[CrossRef]
[PubMed]

M. Lustig and J. M. Pauly, “SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space,” Magn. Reson. Med., 64, 457–471 (2010).

[PubMed]

M. lusting, D. Donoho, and J. M. Pauly, “Sparse MRI: the application of compressed sensing for rapid MR imaging,” Magn. Reson. Med.58(6), 1182–1195 (2007).

[CrossRef]

M. Young, E. Lebed, Y. Jian, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography,” Biomed. Opt. Express, 2(9), 2690–2697 (2011).

[CrossRef]

E. Lebed, P. J. Mackenzie, M. V. Sarunic, and F. M. Beg, “Rapid volumetric OCT image acquisition using compressive sampling,” Opt. Express, 18(29), 21003–21012 (2010).

[CrossRef]
[PubMed]

S.S. Sherif, C. Flueraru, Y. Mao, and S. Change, “Swept source optical coherence tomography with nonuniform frequency domain sampling,” Biomedical Optics, OSA, Technical Digest (CD)(Optical Society of America, 2008), paper BMD86.

[CrossRef]

E. Aboussouan, L. Marinelli, and E. Tan, “Non-cartesian compressed sensing for diffusion spectrum imaging,” Proc. Intl. Soc. Mag. Recon. Med., 19, 1919 (2011).

S. M. Potter, A. Mart, and J. Pine, “High-speed CCD movie camera with random pixel selection for neurobiology research,” Proc. SPIE2869, 243253 (1997).

X. Chen, M. Salerno, F. H. Epstein, and C. H. Meyer, “Accelerated multi-TI spiral MRI using compressed sensing with temporal constraints,” Proc. Intl. Soc. Mag. Recon. Med.19, 4369 (2011).

B. Dierickx, D. Scheffer, G. Meynants, W. Ogiers, and J. Vlummens, “Random addressable active pixel image sensors,” Proc. SPIE2950, 2–7 (1996).

[CrossRef]

N. Mohan, I. Stojanovic, W.C. Karl, B.E.A. Saleh, and M.C. Teich, “Compressed sensing in optical coherence tomography,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XVII, SPIE, 7570, 75700L (2010).

[CrossRef]

S. P. Monacos, R. K. Lam, A. A. Portillo, and G. G. Ortiz, “Design of an event-driven random-assess-windowing CCD-based camera,” Proc. SPIE4975, 115 (2003).

[CrossRef]

B. Dierickx, D. Scheffer, G. Meynants, W. Ogiers, and J. Vlummens, “Random addressable active pixel image sensors,” Proc. SPIE2950, 2–7 (1996).

[CrossRef]

S. P. Monacos, R. K. Lam, A. A. Portillo, and G. G. Ortiz, “Design of an event-driven random-assess-windowing CCD-based camera,” Proc. SPIE4975, 115 (2003).

[CrossRef]

M. Lustig and J. M. Pauly, “SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space,” Magn. Reson. Med., 64, 457–471 (2010).

[PubMed]

M. lusting, D. Donoho, and J. M. Pauly, “Sparse MRI: the application of compressed sensing for rapid MR imaging,” Magn. Reson. Med.58(6), 1182–1195 (2007).

[CrossRef]

S. M. Potter, A. Mart, and J. Pine, “High-speed CCD movie camera with random pixel selection for neurobiology research,” Proc. SPIE2869, 243253 (1997).

S. P. Monacos, R. K. Lam, A. A. Portillo, and G. G. Ortiz, “Design of an event-driven random-assess-windowing CCD-based camera,” Proc. SPIE4975, 115 (2003).

[CrossRef]

S. M. Potter, A. Mart, and J. Pine, “High-speed CCD movie camera with random pixel selection for neurobiology research,” Proc. SPIE2869, 243253 (1997).

S. Becker, J. O. Robin, and E. J. Candes, “NESTA: a fast and accurate first-order method for sparse recovery,” Technical report, California Institute of Technology (2009).

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” Inf. Theory, 52(2), 489–509 (2006).

[CrossRef]

N. Mohan, I. Stojanovic, W.C. Karl, B.E.A. Saleh, and M.C. Teich, “Compressed sensing in optical coherence tomography,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XVII, SPIE, 7570, 75700L (2010).

[CrossRef]

X. Chen, M. Salerno, F. H. Epstein, and C. H. Meyer, “Accelerated multi-TI spiral MRI using compressed sensing with temporal constraints,” Proc. Intl. Soc. Mag. Recon. Med.19, 4369 (2011).

M. Young, E. Lebed, Y. Jian, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography,” Biomed. Opt. Express, 2(9), 2690–2697 (2011).

[CrossRef]

E. Lebed, P. J. Mackenzie, M. V. Sarunic, and F. M. Beg, “Rapid volumetric OCT image acquisition using compressive sampling,” Opt. Express, 18(29), 21003–21012 (2010).

[CrossRef]
[PubMed]

B. Dierickx, D. Scheffer, G. Meynants, W. Ogiers, and J. Vlummens, “Random addressable active pixel image sensors,” Proc. SPIE2950, 2–7 (1996).

[CrossRef]

F. Knoll, G. Schultz, K. Bredies, D. Gallichan, M. Zaitsev, J. Hennig, and R. Stollberger, “Reconstruction of undersampled radial PatLoc imaging using total generalized variation,” Magn. Reson. Med.37(15), in Press (2012).

S.S. Sherif, C. Flueraru, Y. Mao, and S. Change, “Swept source optical coherence tomography with nonuniform frequency domain sampling,” Biomedical Optics, OSA, Technical Digest (CD)(Optical Society of America, 2008), paper BMD86.

[CrossRef]

M. Wojtkowski, V.J. Srinivasan, T.H. Ko, J.G. Fujimoto, A. Kowalczyk, and J.S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004).

[CrossRef]
[PubMed]

N. Mohan, I. Stojanovic, W.C. Karl, B.E.A. Saleh, and M.C. Teich, “Compressed sensing in optical coherence tomography,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XVII, SPIE, 7570, 75700L (2010).

[CrossRef]

F. Knoll, G. Schultz, K. Bredies, D. Gallichan, M. Zaitsev, J. Hennig, and R. Stollberger, “Reconstruction of undersampled radial PatLoc imaging using total generalized variation,” Magn. Reson. Med.37(15), in Press (2012).

E. Aboussouan, L. Marinelli, and E. Tan, “Non-cartesian compressed sensing for diffusion spectrum imaging,” Proc. Intl. Soc. Mag. Recon. Med., 19, 1919 (2011).

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” Inf. Theory, 52(2), 489–509 (2006).

[CrossRef]

E. J. Candes and T. Tao, “Near-optical signal recovery from random projection: universal encoding strategies?” IEEE Trans. Inf. Theory, 52(12), 5406–5425 (2006).

[CrossRef]

N. Mohan, I. Stojanovic, W.C. Karl, B.E.A. Saleh, and M.C. Teich, “Compressed sensing in optical coherence tomography,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XVII, SPIE, 7570, 75700L (2010).

[CrossRef]

E. van den Berg and M.P. Friedlander, “Probing the Pareto frontier for basis pursuit solutions,” SIAM Journal on Scientific Computing, 31(2), 890–912 (2008).

[CrossRef]

B. Dierickx, D. Scheffer, G. Meynants, W. Ogiers, and J. Vlummens, “Random addressable active pixel image sensors,” Proc. SPIE2950, 2–7 (1996).

[CrossRef]

N. Zhang, T. Huo, C. Wang, T. Chen, J. Zheng, and P. Xue, “Compressed sensing with linear-in-wavenumber sampling in spectral-domain optical coherence tomography,” Opt. Lett.37(15), 3075–3077 (2012).

[CrossRef]
[PubMed]

K. Wang, Z. Ding, T. Wu, C. Wang, J. Meng, M. Chen, and L. Xu, “Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system,” Opt. Express17(14), 12121–12131 (2009).

[CrossRef]
[PubMed]

M. Wojtkowski, V.J. Srinivasan, T.H. Ko, J.G. Fujimoto, A. Kowalczyk, and J.S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004).

[CrossRef]
[PubMed]

F. Knoll, G. Schultz, K. Bredies, D. Gallichan, M. Zaitsev, J. Hennig, and R. Stollberger, “Reconstruction of undersampled radial PatLoc imaging using total generalized variation,” Magn. Reson. Med.37(15), in Press (2012).

M. Jeon, J. Kim, U. Jung, C. Lee, W. Jung, and S. A. Boppart, “Full-range k-domain linearization in spectral-domain optical coherence tomography, Appl. Opt.50, 1158–1162 (2011).

[CrossRef]
[PubMed]

D.L. Marks, A.L. Oldenburg, J.J. Reynolds, and S.A. Boppart, “Digital algorithm for dispersion correction in optical coherence tomography for homogeneous and stratified media,” Appl. Opt.42(2), 204–217 (2003).

[CrossRef]
[PubMed]

H. K. Chan and S. Tang, High-speed spectral domain optical coherence tomography using non-uniform fast Fourier transform, Biomed. Opt. Express1, 1309–1319 (2010).

[CrossRef]

M. Young, E. Lebed, Y. Jian, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography,” Biomed. Opt. Express, 2(9), 2690–2697 (2011).

[CrossRef]

L. Fang, S. Li, Q. Nie, J. A. Izatt, C. A. Toth, and S. Farsiu, “Sparsity based denoising of spectral domain optical coherence tomography images,” Biomed. Opt. Express3(5), 927–942 (2012).

[CrossRef]
[PubMed]

J. Ke and E. Lam, “Image reconstruction from nonuniformly spaced samples in spectral-domain optical coherence tomography,” Biomed. Opt. Express3, 741–752 (2012).

[CrossRef]
[PubMed]

K. Zhang and J. U. Kang, “Real-time numerical dispersion compensation using graphics processing unit for Fourier-domain optical coherence tomography,” Electron. Lett., 47(5), 309–310 (2011).

[CrossRef]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, 52(4), 1289–1306 (2006).

[CrossRef]

E. J. Candes and T. Tao, “Near-optical signal recovery from random projection: universal encoding strategies?” IEEE Trans. Inf. Theory, 52(12), 5406–5425 (2006).

[CrossRef]

M. Afonso, J. Bioucas-Dias, and M. Figueiredo, “An augmented Lagrangian approach to the constraint optimization formulation of imaging inverse problems,” IEEE Trans. on Image Proc.20(3), 681–695 (2009).

[CrossRef]

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” Inf. Theory, 52(2), 489–509 (2006).

[CrossRef]

M. Lustig and J. M. Pauly, “SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space,” Magn. Reson. Med., 64, 457–471 (2010).

[PubMed]

F. Knoll, G. Schultz, K. Bredies, D. Gallichan, M. Zaitsev, J. Hennig, and R. Stollberger, “Reconstruction of undersampled radial PatLoc imaging using total generalized variation,” Magn. Reson. Med.37(15), in Press (2012).

M. lusting, D. Donoho, and J. M. Pauly, “Sparse MRI: the application of compressed sensing for rapid MR imaging,” Magn. Reson. Med.58(6), 1182–1195 (2007).

[CrossRef]

K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express18(11), 11772–11784 (2010).

[CrossRef]
[PubMed]

K. Wang, Z. Ding, T. Wu, C. Wang, J. Meng, M. Chen, and L. Xu, “Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system,” Opt. Express17(14), 12121–12131 (2009).

[CrossRef]
[PubMed]

S. Vergnole, D. Levesque, and G. Lamouche, “Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography,” Opt. Express18(12), 10446–10461 (2010).

[CrossRef]
[PubMed]

M. Wojtkowski, V.J. Srinivasan, T.H. Ko, J.G. Fujimoto, A. Kowalczyk, and J.S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004).

[CrossRef]
[PubMed]

Y. Chen and X. Li, “Dispersion management up to the third order for real-time optical coherence tomography involving a phase or frequency modulator,” Opt. Express12(24), 5968–5978 (2004).

[CrossRef]
[PubMed]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express, 11(8), 889–894 (2003).

[CrossRef]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express, 11(18), 2183–2189 (2003).

[CrossRef]
[PubMed]

S. Schwartz, C. Liu, A. Wong, D. A. Clausi, P. Fieguth, and K. Bizheva, “Energy-guided learning approach to compressive sensing,” Opt. Express21(1), 329–344 (2013).

[CrossRef]
[PubMed]

X. Liu and J. U. Kang, “Compressive SD-OCT: the application of compressed sensing in spectral domain optical coherence tomography,” Opt. Express, 18(21), 22010–22019 (2010).

[CrossRef]
[PubMed]

E. Lebed, P. J. Mackenzie, M. V. Sarunic, and F. M. Beg, “Rapid volumetric OCT image acquisition using compressive sampling,” Opt. Express, 18(29), 21003–21012 (2010).

[CrossRef]
[PubMed]

N. Zhang, T. Huo, C. Wang, T. Chen, J. Zheng, and P. Xue, “Compressed sensing with linear-in-wavenumber sampling in spectral-domain optical coherence tomography,” Opt. Lett.37(15), 3075–3077 (2012).

[CrossRef]
[PubMed]

D. Xu, N. Vaswani, Y. Huang, and J. U. Kang, “Modified compressive sensing optical coherence tomography with noise reduction,” Opt. Lett.37(20), 4209–4211 (2012).

[CrossRef]
[PubMed]

E. Aboussouan, L. Marinelli, and E. Tan, “Non-cartesian compressed sensing for diffusion spectrum imaging,” Proc. Intl. Soc. Mag. Recon. Med., 19, 1919 (2011).

X. Chen, M. Salerno, F. H. Epstein, and C. H. Meyer, “Accelerated multi-TI spiral MRI using compressed sensing with temporal constraints,” Proc. Intl. Soc. Mag. Recon. Med.19, 4369 (2011).

S. M. Potter, A. Mart, and J. Pine, “High-speed CCD movie camera with random pixel selection for neurobiology research,” Proc. SPIE2869, 243253 (1997).

S. P. Monacos, R. K. Lam, A. A. Portillo, and G. G. Ortiz, “Design of an event-driven random-assess-windowing CCD-based camera,” Proc. SPIE4975, 115 (2003).

[CrossRef]

B. Dierickx, D. Scheffer, G. Meynants, W. Ogiers, and J. Vlummens, “Random addressable active pixel image sensors,” Proc. SPIE2950, 2–7 (1996).

[CrossRef]

A.F. Fercher, W. Drexler, C.K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys., 66(2), 239–303 (2003).

[CrossRef]

E. van den Berg and M.P. Friedlander, “Probing the Pareto frontier for basis pursuit solutions,” SIAM Journal on Scientific Computing, 31(2), 890–912 (2008).

[CrossRef]

N. Mohan, I. Stojanovic, W.C. Karl, B.E.A. Saleh, and M.C. Teich, “Compressed sensing in optical coherence tomography,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XVII, SPIE, 7570, 75700L (2010).

[CrossRef]

X. Liu and J. U. Kang, “Sparse OCT: Optimizing compressed sensing in spectral domain optical coherence tomography,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XVII, SPIE, 7904, 79041CL (2011).

W. Drexler and J. G. Fujimoto, Optical coherence tomography: Technology and Applications (Springer, Berlin, Germany, 2008).

[CrossRef]

E. van den Berg and M.P. Friedlander, “SPGL1: a solver for large-scale sparse reconstruction”, http://www.cs.ubc.ca/labs/scl/spgl1 (2007).

S.S. Sherif, C. Flueraru, Y. Mao, and S. Change, “Swept source optical coherence tomography with nonuniform frequency domain sampling,” Biomedical Optics, OSA, Technical Digest (CD)(Optical Society of America, 2008), paper BMD86.

[CrossRef]

S. Becker, J. O. Robin, and E. J. Candes, “NESTA: a fast and accurate first-order method for sparse recovery,” Technical report, California Institute of Technology (2009).