Abstract

One of the most promising applications of the X-ray phase-contrast imaging is the three dimensional tomographic reconstruction of the index of refraction. However, results reported so far are limited to relatively small samples. We present here the tomographic reconstruction of the index of refraction distribution of a large biomedical sample (> 10 cm diameter). A quantitative study comparing the absorption and phase contrast (analyzer-based) tomography images shows that the distribution of the index of refraction obtained with the phase contrast method provides a more accurate depiction (3–10 times larger signal to noise ratio values) of the sample internal structure. Thanks to the higher sensitivity of this method, the improved precision was obtained using an incoming photon fluence on the sample several times smaller than in the case of absorption imaging.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol58, R1–R35 (2013).
    [CrossRef]
  2. F. A. Dilmanian, Z. Zhong, B. Ren, X. Y. Wu, L. D. Chapman, I. Orion, and W. C. Thomlinson, “Computed tomography of x-ray index of refraction using the diffraction enhanced imaging method,” Phys. Med. Biol.45, 933–946 (2000).
    [CrossRef] [PubMed]
  3. T. Weitkamp, A. Diaz, Ch. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express.13, 6296–6304 (2005).
    [CrossRef] [PubMed]
  4. P.R.T. Munro, L. Rigon, K. Ignatyev, F.C.M. Lopez, D. Dreissi, R.D. Speller, and A. Olivo, “A quantitative, non-interferometric X-ray phase contrast imaging techniques,” Opt. Express21, 647–661 (2012).
    [CrossRef]
  5. A. Maksimenko, M. Ando, S. Hiroshi, and T. Yausa, “Computed tomographic reconstruction based on x-ray refraction contrast,” Appl. Phys. Lett.86, 124105 (2005).
    [CrossRef]
  6. F. Pfeiffer, C. Kottler, O. Bunk, and C. Davis, “Hard X-Ray Phase Tomography with Low-Brilliance Sources,” Phys. Rev. Lett.98, 108105 (2007).
    [CrossRef] [PubMed]
  7. G. W. Faris and R. L. Byer, “Three-dimensional beam deflection optical tomography of a supersonic jet,” Appl. Opt.27, 5202–5212 (1988).
    [CrossRef] [PubMed]
  8. A. Maksimenko, “Nonlinear extension of the X-ray diffraction enhanced imaging,” Appl. Phys. Lett.90, 154106 (2007).
    [CrossRef]
  9. T. Matsushita and H. Hashizume, “X-Ray monochromators,” in Handbook on Synchrotron Radiation (North Holland Publishing Company, New York, 1983).
  10. H. Suhonen, M. Fernandez, A. Bravin, J. Keyrilainen, and P. Suortti, “Refraction and scattering of X-rays in analyzer-based imaging,” J. Synch. Rad.14, 512–521 (2007).
    [CrossRef]
  11. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd Edition (Elsevier, 1984), p. 267.
  12. E. M. Gullikson, “Mass absorption coefficients,” in X-ray data booklet (Lawrence Berkeley National Laboratory, 2001).
  13. Tissue Substitutes in Radiation Dosimetry and Measurement, ICRU Report 44 (1989).
  14. G. R. Hammerstein, D. W. Miller, D. R. White, M. E. Masterson, H. Q. Woodard, and J. S. Laughlin, “Absorbed radiation dose in mammography,” Radiology130, 485–491 (1979).
    [PubMed]
  15. A. Mittone, F. Baldacci, A. Bravin, E. Brun, F. Delaire, C. Ferrero, S. Gasilov, N. Freud, J. M. Letang, D. Sarrut, F. Smekens, and P. Coan, “An efficient numerical tool for dose deposition prediction applied to synchrotron medical imaging and radiation therapy,” J. Synch. Rad., in press.

2013

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol58, R1–R35 (2013).
[CrossRef]

2012

2007

F. Pfeiffer, C. Kottler, O. Bunk, and C. Davis, “Hard X-Ray Phase Tomography with Low-Brilliance Sources,” Phys. Rev. Lett.98, 108105 (2007).
[CrossRef] [PubMed]

A. Maksimenko, “Nonlinear extension of the X-ray diffraction enhanced imaging,” Appl. Phys. Lett.90, 154106 (2007).
[CrossRef]

H. Suhonen, M. Fernandez, A. Bravin, J. Keyrilainen, and P. Suortti, “Refraction and scattering of X-rays in analyzer-based imaging,” J. Synch. Rad.14, 512–521 (2007).
[CrossRef]

2005

T. Weitkamp, A. Diaz, Ch. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express.13, 6296–6304 (2005).
[CrossRef] [PubMed]

A. Maksimenko, M. Ando, S. Hiroshi, and T. Yausa, “Computed tomographic reconstruction based on x-ray refraction contrast,” Appl. Phys. Lett.86, 124105 (2005).
[CrossRef]

2000

F. A. Dilmanian, Z. Zhong, B. Ren, X. Y. Wu, L. D. Chapman, I. Orion, and W. C. Thomlinson, “Computed tomography of x-ray index of refraction using the diffraction enhanced imaging method,” Phys. Med. Biol.45, 933–946 (2000).
[CrossRef] [PubMed]

1988

1979

G. R. Hammerstein, D. W. Miller, D. R. White, M. E. Masterson, H. Q. Woodard, and J. S. Laughlin, “Absorbed radiation dose in mammography,” Radiology130, 485–491 (1979).
[PubMed]

Ando, M.

A. Maksimenko, M. Ando, S. Hiroshi, and T. Yausa, “Computed tomographic reconstruction based on x-ray refraction contrast,” Appl. Phys. Lett.86, 124105 (2005).
[CrossRef]

Baldacci, F.

A. Mittone, F. Baldacci, A. Bravin, E. Brun, F. Delaire, C. Ferrero, S. Gasilov, N. Freud, J. M. Letang, D. Sarrut, F. Smekens, and P. Coan, “An efficient numerical tool for dose deposition prediction applied to synchrotron medical imaging and radiation therapy,” J. Synch. Rad., in press.

Bravin, A.

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol58, R1–R35 (2013).
[CrossRef]

H. Suhonen, M. Fernandez, A. Bravin, J. Keyrilainen, and P. Suortti, “Refraction and scattering of X-rays in analyzer-based imaging,” J. Synch. Rad.14, 512–521 (2007).
[CrossRef]

A. Mittone, F. Baldacci, A. Bravin, E. Brun, F. Delaire, C. Ferrero, S. Gasilov, N. Freud, J. M. Letang, D. Sarrut, F. Smekens, and P. Coan, “An efficient numerical tool for dose deposition prediction applied to synchrotron medical imaging and radiation therapy,” J. Synch. Rad., in press.

Brun, E.

A. Mittone, F. Baldacci, A. Bravin, E. Brun, F. Delaire, C. Ferrero, S. Gasilov, N. Freud, J. M. Letang, D. Sarrut, F. Smekens, and P. Coan, “An efficient numerical tool for dose deposition prediction applied to synchrotron medical imaging and radiation therapy,” J. Synch. Rad., in press.

Bunk, O.

F. Pfeiffer, C. Kottler, O. Bunk, and C. Davis, “Hard X-Ray Phase Tomography with Low-Brilliance Sources,” Phys. Rev. Lett.98, 108105 (2007).
[CrossRef] [PubMed]

Byer, R. L.

Chapman, L. D.

F. A. Dilmanian, Z. Zhong, B. Ren, X. Y. Wu, L. D. Chapman, I. Orion, and W. C. Thomlinson, “Computed tomography of x-ray index of refraction using the diffraction enhanced imaging method,” Phys. Med. Biol.45, 933–946 (2000).
[CrossRef] [PubMed]

Cloetens, P.

T. Weitkamp, A. Diaz, Ch. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express.13, 6296–6304 (2005).
[CrossRef] [PubMed]

Coan, P.

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol58, R1–R35 (2013).
[CrossRef]

A. Mittone, F. Baldacci, A. Bravin, E. Brun, F. Delaire, C. Ferrero, S. Gasilov, N. Freud, J. M. Letang, D. Sarrut, F. Smekens, and P. Coan, “An efficient numerical tool for dose deposition prediction applied to synchrotron medical imaging and radiation therapy,” J. Synch. Rad., in press.

David, Ch.

T. Weitkamp, A. Diaz, Ch. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express.13, 6296–6304 (2005).
[CrossRef] [PubMed]

Davis, C.

F. Pfeiffer, C. Kottler, O. Bunk, and C. Davis, “Hard X-Ray Phase Tomography with Low-Brilliance Sources,” Phys. Rev. Lett.98, 108105 (2007).
[CrossRef] [PubMed]

Delaire, F.

A. Mittone, F. Baldacci, A. Bravin, E. Brun, F. Delaire, C. Ferrero, S. Gasilov, N. Freud, J. M. Letang, D. Sarrut, F. Smekens, and P. Coan, “An efficient numerical tool for dose deposition prediction applied to synchrotron medical imaging and radiation therapy,” J. Synch. Rad., in press.

Diaz, A.

T. Weitkamp, A. Diaz, Ch. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express.13, 6296–6304 (2005).
[CrossRef] [PubMed]

Dilmanian, F. A.

F. A. Dilmanian, Z. Zhong, B. Ren, X. Y. Wu, L. D. Chapman, I. Orion, and W. C. Thomlinson, “Computed tomography of x-ray index of refraction using the diffraction enhanced imaging method,” Phys. Med. Biol.45, 933–946 (2000).
[CrossRef] [PubMed]

Dreissi, D.

Faris, G. W.

Fernandez, M.

H. Suhonen, M. Fernandez, A. Bravin, J. Keyrilainen, and P. Suortti, “Refraction and scattering of X-rays in analyzer-based imaging,” J. Synch. Rad.14, 512–521 (2007).
[CrossRef]

Ferrero, C.

A. Mittone, F. Baldacci, A. Bravin, E. Brun, F. Delaire, C. Ferrero, S. Gasilov, N. Freud, J. M. Letang, D. Sarrut, F. Smekens, and P. Coan, “An efficient numerical tool for dose deposition prediction applied to synchrotron medical imaging and radiation therapy,” J. Synch. Rad., in press.

Freud, N.

A. Mittone, F. Baldacci, A. Bravin, E. Brun, F. Delaire, C. Ferrero, S. Gasilov, N. Freud, J. M. Letang, D. Sarrut, F. Smekens, and P. Coan, “An efficient numerical tool for dose deposition prediction applied to synchrotron medical imaging and radiation therapy,” J. Synch. Rad., in press.

Gasilov, S.

A. Mittone, F. Baldacci, A. Bravin, E. Brun, F. Delaire, C. Ferrero, S. Gasilov, N. Freud, J. M. Letang, D. Sarrut, F. Smekens, and P. Coan, “An efficient numerical tool for dose deposition prediction applied to synchrotron medical imaging and radiation therapy,” J. Synch. Rad., in press.

Gullikson, E. M.

E. M. Gullikson, “Mass absorption coefficients,” in X-ray data booklet (Lawrence Berkeley National Laboratory, 2001).

Hammerstein, G. R.

G. R. Hammerstein, D. W. Miller, D. R. White, M. E. Masterson, H. Q. Woodard, and J. S. Laughlin, “Absorbed radiation dose in mammography,” Radiology130, 485–491 (1979).
[PubMed]

Hashizume, H.

T. Matsushita and H. Hashizume, “X-Ray monochromators,” in Handbook on Synchrotron Radiation (North Holland Publishing Company, New York, 1983).

Hiroshi, S.

A. Maksimenko, M. Ando, S. Hiroshi, and T. Yausa, “Computed tomographic reconstruction based on x-ray refraction contrast,” Appl. Phys. Lett.86, 124105 (2005).
[CrossRef]

Ignatyev, K.

Keyrilainen, J.

H. Suhonen, M. Fernandez, A. Bravin, J. Keyrilainen, and P. Suortti, “Refraction and scattering of X-rays in analyzer-based imaging,” J. Synch. Rad.14, 512–521 (2007).
[CrossRef]

Kottler, C.

F. Pfeiffer, C. Kottler, O. Bunk, and C. Davis, “Hard X-Ray Phase Tomography with Low-Brilliance Sources,” Phys. Rev. Lett.98, 108105 (2007).
[CrossRef] [PubMed]

Landau, L. D.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd Edition (Elsevier, 1984), p. 267.

Laughlin, J. S.

G. R. Hammerstein, D. W. Miller, D. R. White, M. E. Masterson, H. Q. Woodard, and J. S. Laughlin, “Absorbed radiation dose in mammography,” Radiology130, 485–491 (1979).
[PubMed]

Letang, J. M.

A. Mittone, F. Baldacci, A. Bravin, E. Brun, F. Delaire, C. Ferrero, S. Gasilov, N. Freud, J. M. Letang, D. Sarrut, F. Smekens, and P. Coan, “An efficient numerical tool for dose deposition prediction applied to synchrotron medical imaging and radiation therapy,” J. Synch. Rad., in press.

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd Edition (Elsevier, 1984), p. 267.

Lopez, F.C.M.

Maksimenko, A.

A. Maksimenko, “Nonlinear extension of the X-ray diffraction enhanced imaging,” Appl. Phys. Lett.90, 154106 (2007).
[CrossRef]

A. Maksimenko, M. Ando, S. Hiroshi, and T. Yausa, “Computed tomographic reconstruction based on x-ray refraction contrast,” Appl. Phys. Lett.86, 124105 (2005).
[CrossRef]

Masterson, M. E.

G. R. Hammerstein, D. W. Miller, D. R. White, M. E. Masterson, H. Q. Woodard, and J. S. Laughlin, “Absorbed radiation dose in mammography,” Radiology130, 485–491 (1979).
[PubMed]

Matsushita, T.

T. Matsushita and H. Hashizume, “X-Ray monochromators,” in Handbook on Synchrotron Radiation (North Holland Publishing Company, New York, 1983).

Miller, D. W.

G. R. Hammerstein, D. W. Miller, D. R. White, M. E. Masterson, H. Q. Woodard, and J. S. Laughlin, “Absorbed radiation dose in mammography,” Radiology130, 485–491 (1979).
[PubMed]

Mittone, A.

A. Mittone, F. Baldacci, A. Bravin, E. Brun, F. Delaire, C. Ferrero, S. Gasilov, N. Freud, J. M. Letang, D. Sarrut, F. Smekens, and P. Coan, “An efficient numerical tool for dose deposition prediction applied to synchrotron medical imaging and radiation therapy,” J. Synch. Rad., in press.

Munro, P.R.T.

Olivo, A.

Orion, I.

F. A. Dilmanian, Z. Zhong, B. Ren, X. Y. Wu, L. D. Chapman, I. Orion, and W. C. Thomlinson, “Computed tomography of x-ray index of refraction using the diffraction enhanced imaging method,” Phys. Med. Biol.45, 933–946 (2000).
[CrossRef] [PubMed]

Pfeiffer, F.

F. Pfeiffer, C. Kottler, O. Bunk, and C. Davis, “Hard X-Ray Phase Tomography with Low-Brilliance Sources,” Phys. Rev. Lett.98, 108105 (2007).
[CrossRef] [PubMed]

T. Weitkamp, A. Diaz, Ch. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express.13, 6296–6304 (2005).
[CrossRef] [PubMed]

Ren, B.

F. A. Dilmanian, Z. Zhong, B. Ren, X. Y. Wu, L. D. Chapman, I. Orion, and W. C. Thomlinson, “Computed tomography of x-ray index of refraction using the diffraction enhanced imaging method,” Phys. Med. Biol.45, 933–946 (2000).
[CrossRef] [PubMed]

Rigon, L.

Sarrut, D.

A. Mittone, F. Baldacci, A. Bravin, E. Brun, F. Delaire, C. Ferrero, S. Gasilov, N. Freud, J. M. Letang, D. Sarrut, F. Smekens, and P. Coan, “An efficient numerical tool for dose deposition prediction applied to synchrotron medical imaging and radiation therapy,” J. Synch. Rad., in press.

Smekens, F.

A. Mittone, F. Baldacci, A. Bravin, E. Brun, F. Delaire, C. Ferrero, S. Gasilov, N. Freud, J. M. Letang, D. Sarrut, F. Smekens, and P. Coan, “An efficient numerical tool for dose deposition prediction applied to synchrotron medical imaging and radiation therapy,” J. Synch. Rad., in press.

Speller, R.D.

Stampanoni, M.

T. Weitkamp, A. Diaz, Ch. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express.13, 6296–6304 (2005).
[CrossRef] [PubMed]

Suhonen, H.

H. Suhonen, M. Fernandez, A. Bravin, J. Keyrilainen, and P. Suortti, “Refraction and scattering of X-rays in analyzer-based imaging,” J. Synch. Rad.14, 512–521 (2007).
[CrossRef]

Suortti, P.

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol58, R1–R35 (2013).
[CrossRef]

H. Suhonen, M. Fernandez, A. Bravin, J. Keyrilainen, and P. Suortti, “Refraction and scattering of X-rays in analyzer-based imaging,” J. Synch. Rad.14, 512–521 (2007).
[CrossRef]

Thomlinson, W. C.

F. A. Dilmanian, Z. Zhong, B. Ren, X. Y. Wu, L. D. Chapman, I. Orion, and W. C. Thomlinson, “Computed tomography of x-ray index of refraction using the diffraction enhanced imaging method,” Phys. Med. Biol.45, 933–946 (2000).
[CrossRef] [PubMed]

Weitkamp, T.

T. Weitkamp, A. Diaz, Ch. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express.13, 6296–6304 (2005).
[CrossRef] [PubMed]

White, D. R.

G. R. Hammerstein, D. W. Miller, D. R. White, M. E. Masterson, H. Q. Woodard, and J. S. Laughlin, “Absorbed radiation dose in mammography,” Radiology130, 485–491 (1979).
[PubMed]

Woodard, H. Q.

G. R. Hammerstein, D. W. Miller, D. R. White, M. E. Masterson, H. Q. Woodard, and J. S. Laughlin, “Absorbed radiation dose in mammography,” Radiology130, 485–491 (1979).
[PubMed]

Wu, X. Y.

F. A. Dilmanian, Z. Zhong, B. Ren, X. Y. Wu, L. D. Chapman, I. Orion, and W. C. Thomlinson, “Computed tomography of x-ray index of refraction using the diffraction enhanced imaging method,” Phys. Med. Biol.45, 933–946 (2000).
[CrossRef] [PubMed]

Yausa, T.

A. Maksimenko, M. Ando, S. Hiroshi, and T. Yausa, “Computed tomographic reconstruction based on x-ray refraction contrast,” Appl. Phys. Lett.86, 124105 (2005).
[CrossRef]

Zhong, Z.

F. A. Dilmanian, Z. Zhong, B. Ren, X. Y. Wu, L. D. Chapman, I. Orion, and W. C. Thomlinson, “Computed tomography of x-ray index of refraction using the diffraction enhanced imaging method,” Phys. Med. Biol.45, 933–946 (2000).
[CrossRef] [PubMed]

Ziegler, E.

T. Weitkamp, A. Diaz, Ch. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express.13, 6296–6304 (2005).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

A. Maksimenko, “Nonlinear extension of the X-ray diffraction enhanced imaging,” Appl. Phys. Lett.90, 154106 (2007).
[CrossRef]

A. Maksimenko, M. Ando, S. Hiroshi, and T. Yausa, “Computed tomographic reconstruction based on x-ray refraction contrast,” Appl. Phys. Lett.86, 124105 (2005).
[CrossRef]

J. Synch. Rad.

H. Suhonen, M. Fernandez, A. Bravin, J. Keyrilainen, and P. Suortti, “Refraction and scattering of X-rays in analyzer-based imaging,” J. Synch. Rad.14, 512–521 (2007).
[CrossRef]

A. Mittone, F. Baldacci, A. Bravin, E. Brun, F. Delaire, C. Ferrero, S. Gasilov, N. Freud, J. M. Letang, D. Sarrut, F. Smekens, and P. Coan, “An efficient numerical tool for dose deposition prediction applied to synchrotron medical imaging and radiation therapy,” J. Synch. Rad., in press.

Opt. Express

Opt. Express.

T. Weitkamp, A. Diaz, Ch. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express.13, 6296–6304 (2005).
[CrossRef] [PubMed]

Phys. Med. Biol

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol58, R1–R35 (2013).
[CrossRef]

Phys. Med. Biol.

F. A. Dilmanian, Z. Zhong, B. Ren, X. Y. Wu, L. D. Chapman, I. Orion, and W. C. Thomlinson, “Computed tomography of x-ray index of refraction using the diffraction enhanced imaging method,” Phys. Med. Biol.45, 933–946 (2000).
[CrossRef] [PubMed]

Phys. Rev. Lett.

F. Pfeiffer, C. Kottler, O. Bunk, and C. Davis, “Hard X-Ray Phase Tomography with Low-Brilliance Sources,” Phys. Rev. Lett.98, 108105 (2007).
[CrossRef] [PubMed]

Radiology

G. R. Hammerstein, D. W. Miller, D. R. White, M. E. Masterson, H. Q. Woodard, and J. S. Laughlin, “Absorbed radiation dose in mammography,” Radiology130, 485–491 (1979).
[PubMed]

Other

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd Edition (Elsevier, 1984), p. 267.

E. M. Gullikson, “Mass absorption coefficients,” in X-ray data booklet (Lawrence Berkeley National Laboratory, 2001).

Tissue Substitutes in Radiation Dosimetry and Measurement, ICRU Report 44 (1989).

T. Matsushita and H. Hashizume, “X-Ray monochromators,” in Handbook on Synchrotron Radiation (North Holland Publishing Company, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Sketch of the image formation process in a plane x = x0. (a) Dashed line indicates the propagation direction of the unperturbed X-ray that hits the AC surface (solid thick line) at the Bragg angle θ; the dotted line represents a ray at a point in the object exit plane re, which was deflected after propagation through the sample by an angle α. This ray impinges on the AC with an angle close to but not exactly equal to the Bragg angle, thus the intensity of the reflected ray decreases by a factor defined by the height of the RC at that angular point. (b) Normalized measured reflectivity (RC) of the AC (solid line) and its approximation by a Gaussian function (dashed line). The curves are drawn for φ = 0.

Fig. 2
Fig. 2

Distribution of the material density in a slice of the examined sample obtained using (a) refraction CT and (b) absorption CT. Darkest gray levels correspond to the fat tissue, brightest to the skin, intermediate gray values show other anatomical features. The group of black spots are air bubbles trapped inside the tissues. The unit of the colorbar values is g/cm3. To derive the density of the different materials several regions of an image were considered as it shown, for example, by triangles (formalin samples), and crosses (adipose tissue samples). In the inset (c), the 1D density profiles at the adipose-glandular-adipose tissue interfaces [indicated by dashed lines in (a) and (b)] for RCT and ACT correspondingly, are shown.

Tables (1)

Tables Icon

Table 1 Estimation of the density of different materials derived from RCT and ACT reconstructions

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

δ ( r ) = δ ¯ [ 1 + δ ˜ ( r ) ]
α d δ ˜ ( y , z ) d y d z .
δ ˜ ( y , z ) = 0 π [ α ( y , Θ ) * g ( y ) ] y = z sin Θ + ycos Θ d Θ ,
I z d ( x , y ) = I ( r e ) R [ φ α ( r e ) ] ,
I z d ( x , y ) = I ( r e ) exp [ ( φ α ( r e ) ) 2 / σ 2 ] .

Metrics