Abstract

Femtosecond laser processes were optimized for nonlinear interactions with various optical materials to develop a novel biophotonic lab-on-a-chip device that integrates laser-formed waveguides (WGs), microfluidic channels and photonic crystals (PCs). Such integration seeks the unique demonstration of dual PC functionalities: (1) efficient chromatographic separation and filtration of analytes through a porous PC embedded inside a microfluidic channel and (2) optofluidic spectroscopy through embedded WGs that probe PC stopband shifts as varying analyte concentrations flow and separate. The building blocks together with their integration were demonstrated, providing embedded porous PCs through which electrochromatography drove an accelerated mobile phase of analyte and an optical stopband was probed via integrated buried WGs. Together, these laboratory results underpin the promise of simultaneous chromatographic and spectroscopic capabilities in a single PC optofluidic device.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
    [CrossRef] [PubMed]
  2. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics1(2), 106–114 (2007).
    [CrossRef]
  3. P. S. Nunes, N. A. Mortensen, J. P. Kutter, and K. B. Mogensen, “Photonic crystal resonator integrated in a microfluidic system,” Opt. Lett.33(14), 1623–1625 (2008).
    [CrossRef] [PubMed]
  4. V. Maselli, J. R. Grenier, S. Ho, and P. R. Herman, “Femtosecond laser written optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel,” Opt. Express17(14), 11719–11729 (2009).
    [CrossRef] [PubMed]
  5. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett.31(1), 59–61 (2006).
    [CrossRef] [PubMed]
  6. C. L. Smith, U. Bog, S. Tomljenovic-Hanic, M. W. Lee, D. K. Wu, L. O’Faolain, C. Monat, C. Grillet, T. F. Krauss, C. Karnutsch, R. C. McPhedran, and B. J. Eggleton, “Reconfigurable microfluidic photonic crystal slab cavities,” Opt. Express16(20), 15887–15896 (2008).
    [CrossRef] [PubMed]
  7. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
    [CrossRef] [PubMed]
  8. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional structuring of resists and resins by direct laser writing and holographic recording,” Adv. Polym. Sci.213, 157–206 (2008).
  9. J. Wu, D. Day, and M. Gu, “A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal,” Appl. Phys. Lett.92(7), 071108 (2008).
    [CrossRef]
  10. J. Wu and M. Gu, “Microfluidic sensing: state of the art fabrication and detection techniques,” J. Biomed. Opt.16(8), 080901 (2011).
    [CrossRef] [PubMed]
  11. C. J. Choi and B. T. Cunningham, “A 96-well microplate incorporating a replica molded microfluidic network integrated with photonic crystal biosensors for high throughput kinetic biomolecular interaction analysis,” Lab Chip7(5), 550–556 (2007).
    [CrossRef] [PubMed]
  12. L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, “Label-free imaging of cancer cells using photonic crystal biosensors and application to cytotoxicity screening of a natural compound library,” Sens. Actuators B Chem.132(2), 418–425 (2008).
    [CrossRef]
  13. B. R. Schudel, C. J. Choi, B. T. Cunningham, and P. J. A. Kenis, “Microfluidic chip for combinatorial mixing and screening of assays,” Lab Chip9(12), 1676–1680 (2009).
    [CrossRef] [PubMed]
  14. H. J. Kim, S. Kim, H. Jeon, J. Ma, S. H. Choi, S. Lee, C. Ko, and W. Park, “Fluorescence amplification using colloidal photonic crystal platform in sensing dye-labeled deoxyribonucleic acids,” Sens. Actuators B Chem.124(1), 147–152 (2007).
    [CrossRef]
  15. U. Kamp, V. Kitaev, G. von Freymann, G. A. Ozin, and S. A. Mabury, “Colloidal crystal capillary columns - towards optical chromatography,” Adv. Mater.17(4), 438–443 (2005).
    [CrossRef]
  16. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  17. R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev.5(3), 442–463 (2011).
    [CrossRef]
  18. J. Bhawalkar, G. He, and P. Prasad, “Nonlinear multiphoton processes in organic and polymeric materials,” Rep. Prog. Phys.59(9), 1041–1070 (1996).
    [CrossRef]
  19. J. Chan, T. Huser, S. Risbud, J. Hayden, and D. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett.82(15), 2371–2373 (2003).
    [CrossRef]
  20. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13(12), 4708–4716 (2005).
    [CrossRef] [PubMed]
  21. R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the c-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron.12(2), 277–285 (2006).
    [CrossRef]
  22. H. Zhang, S. M. Eaton, J. Li, A. H. Nejadmalayeri, and P. R. Herman, “Type II high-strength Bragg grating waveguides photowritten with ultrashort laser pulses,” Opt. Express15(7), 4182–4191 (2007).
    [CrossRef] [PubMed]
  23. N. D. Psaila, R. Thomson, H. Bookey, A. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett.90(13), 131102 (2007).
    [CrossRef]
  24. H. Zhang, S. Ho, S. M. Eaton, J. Li, and P. R. Herman, “Three-dimensional optical sensing network written in fused silica glass with femtosecond laser,” Opt. Express16(18), 14015–14023 (2008).
    [CrossRef] [PubMed]
  25. W. J. Chen, S. M. Eaton, H. Zhang, and P. R. Herman, “Broadband directional couplers fabricated in bulk glass with high repetition rate femtosecond laser pulses,” Opt. Express16(15), 11470–11480 (2008).
    [CrossRef] [PubMed]
  26. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
    [CrossRef] [PubMed]
  27. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express12(10), 2120–2129 (2004).
    [CrossRef] [PubMed]
  28. C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process.84(1–2), 47–61 (2006).
    [CrossRef]
  29. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett.26(5), 277–279 (2001).
    [CrossRef] [PubMed]
  30. V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett.88(19), 191107 (2006).
    [CrossRef]
  31. S. Ho, P. R. Herman, and J. S. Aitchison, “Single- and multi-scan femtosecond laser writing for selective chemical etching of cross section patternable glass micro-channels,” Appl. Phys., A Mater. Sci. Process.106(1), 5–13 (2012).
    [CrossRef]
  32. R. A. Borisov, G. N. Dorojkina, N. I. Koroteev, V. M. Kozenkov, S. A. Magnitskii, D. V. Malakhov, A. V. Tarasishin, and A. M. Zheltikov, “Femtosecond two-photon photopolymerization: a method to fabricate optical photonic crystals with controllable parameters,” Laser Phys.8(5), 1105–1108 (1998).
  33. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett.28(5), 301–303 (2003).
    [CrossRef] [PubMed]
  34. M. Straub, M. Ventura, and M. Gu, “Multiple higher-order stop gaps in infrared polymer photonic crystals,” Phys. Rev. Lett.91(4), 043901 (2003).
    [CrossRef] [PubMed]
  35. K. D. Altria, “Overview of capillary electrophoresis and capillary electrochromatography,” J. Chromatogr. A856(1-2), 443–463 (1999).
    [CrossRef] [PubMed]
  36. J. P. Landers, “Molecular diagnostics on electrophoretic microchips,” Anal. Chem.75(12), 2919–2927 (2003).
    [CrossRef] [PubMed]
  37. D. Chanda, L. Abolghasemi, and P. R. Herman, “One-dimensional diffractive optical element based fabrication and spectral characterization of three-dimensional photonic crystal templates,” Opt. Express14(19), 8568–8577 (2006).
    [CrossRef] [PubMed]
  38. D. C. Meisel, M. Diem, M. Deubel, F. Perez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater.18(22), 2964–2968 (2006).
    [CrossRef]
  39. J. Jang, C. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater.17(16), 3027–3041 (2007).
    [CrossRef]
  40. D. Chanda, N. Zachari, M. Haque, M. Ng, and P. R. Herman, “Flexible fabrication of three-dimensional optical-domain photonic crystals using a combination of single-laser-exposure diffractive-optics lithography and template inversion,” Opt. Lett.34(24), 3920–3922 (2009).
    [CrossRef] [PubMed]
  41. R. G. Denning, C. F. Blanford, H. Urban, H. Bharaj, D. N. Sharp, and A. J. Turberfield, “The control of shrinkage and thermal instability in SU-8 photoresists for holographic lithography,” Adv. Funct. Mater.21(9), 1593–1601 (2011).
    [CrossRef]
  42. X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuators A Phys.133(2), 349–354 (2006).
  43. D. H. Luo, R. A. Levy, Y. F. Hor, J. F. Federici, and R. M. Pafchek, “An integrated photonic sensor for in situ monitoring of hazardous organics,” Sens. Actuators B Chem.92(1–2), 121–126 (2003).
    [CrossRef]
  44. L. Shah, A. Arai, S. Eaton, and P. R. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express13(6), 1999–2006 (2005).
    [CrossRef] [PubMed]
  45. P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
    [CrossRef]
  46. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16(13), 9443–9458 (2008).
    [CrossRef] [PubMed]
  47. D. Chanda, L. E. Abolghasemi, M. Haque, M. L. Ng, and P. R. Herman, “Multi-level diffractive optics for single laser exposure fabrication of telecom-band diamond-like 3-dimensional photonic crystals,” Opt. Express16(20), 15402–15414 (2008).
    [CrossRef] [PubMed]
  48. N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater.18(4), 457–460 (2006).
    [CrossRef]
  49. H. J. Crabtree, E. C. Cheong, D. A. Tilroe, and C. J. Backhouse, “Microchip injection and separation anomalies due to pressure effects,” Anal. Chem.73(17), 4079–4086 (2001).
    [CrossRef] [PubMed]
  50. A. Plecis and Y. Chen, “Fabrication of microfluidic devices based on glass-PDMS-glass technology,” Microelectron. Eng.84(5–8), 1265–1269 (2007).
    [CrossRef]
  51. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am.55(10), 1205–1208 (1965).
    [CrossRef]
  52. H. Abu-Safia, R. Al-Tahtamouni, I. Abu-Aljarayesh, and N. A. Yusuf, “Transmission of a Gaussian beam through a Fabry-Perot interferometer,” Appl. Opt.33(18), 3805–3811 (1994).
    [CrossRef] [PubMed]
  53. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. Ozin, M. Wegener, and G. V. Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
    [CrossRef]
  54. A. Hayek, Y. Xu, T. Okada, S. Barlow, X. Zhu, J. H. Moon, S. R. Marder, and S. Yang, “Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography,” J. Mater. Chem.18(28), 3316–3318 (2008).
    [CrossRef]
  55. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
    [CrossRef] [PubMed]
  56. S. Zheng, E. Ross, M. A. Legg, and M. J. Wirth, “High-speed electroseparations inside silica colloidal crystals,” J. Am. Chem. Soc.128(28), 9016–9017 (2006).
    [CrossRef] [PubMed]
  57. S. Ho, M. Haque, P. R. Herman, and J. S. Aitchison, “Femtosecond laser-assisted etching of three-dimensional inverted-woodpile structures in fused silica,” Opt. Lett.37(10), 1682–1684 (2012).
    [CrossRef] [PubMed]
  58. P. C. Ashok, R. F. Marchington, P. Mthunzi, T. F. Krauss, and K. Dholakia, “Optical chromatography using a photonic crystal fiber with on-chip fluorescence excitation,” Opt. Express18(6), 6396–6407 (2010).
    [CrossRef] [PubMed]

2012

S. Ho, P. R. Herman, and J. S. Aitchison, “Single- and multi-scan femtosecond laser writing for selective chemical etching of cross section patternable glass micro-channels,” Appl. Phys., A Mater. Sci. Process.106(1), 5–13 (2012).
[CrossRef]

S. Ho, M. Haque, P. R. Herman, and J. S. Aitchison, “Femtosecond laser-assisted etching of three-dimensional inverted-woodpile structures in fused silica,” Opt. Lett.37(10), 1682–1684 (2012).
[CrossRef] [PubMed]

2011

R. G. Denning, C. F. Blanford, H. Urban, H. Bharaj, D. N. Sharp, and A. J. Turberfield, “The control of shrinkage and thermal instability in SU-8 photoresists for holographic lithography,” Adv. Funct. Mater.21(9), 1593–1601 (2011).
[CrossRef]

J. Wu and M. Gu, “Microfluidic sensing: state of the art fabrication and detection techniques,” J. Biomed. Opt.16(8), 080901 (2011).
[CrossRef] [PubMed]

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev.5(3), 442–463 (2011).
[CrossRef]

2010

2009

2008

L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, “Label-free imaging of cancer cells using photonic crystal biosensors and application to cytotoxicity screening of a natural compound library,” Sens. Actuators B Chem.132(2), 418–425 (2008).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional structuring of resists and resins by direct laser writing and holographic recording,” Adv. Polym. Sci.213, 157–206 (2008).

J. Wu, D. Day, and M. Gu, “A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal,” Appl. Phys. Lett.92(7), 071108 (2008).
[CrossRef]

A. Hayek, Y. Xu, T. Okada, S. Barlow, X. Zhu, J. H. Moon, S. R. Marder, and S. Yang, “Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography,” J. Mater. Chem.18(28), 3316–3318 (2008).
[CrossRef]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16(13), 9443–9458 (2008).
[CrossRef] [PubMed]

P. S. Nunes, N. A. Mortensen, J. P. Kutter, and K. B. Mogensen, “Photonic crystal resonator integrated in a microfluidic system,” Opt. Lett.33(14), 1623–1625 (2008).
[CrossRef] [PubMed]

W. J. Chen, S. M. Eaton, H. Zhang, and P. R. Herman, “Broadband directional couplers fabricated in bulk glass with high repetition rate femtosecond laser pulses,” Opt. Express16(15), 11470–11480 (2008).
[CrossRef] [PubMed]

H. Zhang, S. Ho, S. M. Eaton, J. Li, and P. R. Herman, “Three-dimensional optical sensing network written in fused silica glass with femtosecond laser,” Opt. Express16(18), 14015–14023 (2008).
[CrossRef] [PubMed]

D. Chanda, L. E. Abolghasemi, M. Haque, M. L. Ng, and P. R. Herman, “Multi-level diffractive optics for single laser exposure fabrication of telecom-band diamond-like 3-dimensional photonic crystals,” Opt. Express16(20), 15402–15414 (2008).
[CrossRef] [PubMed]

C. L. Smith, U. Bog, S. Tomljenovic-Hanic, M. W. Lee, D. K. Wu, L. O’Faolain, C. Monat, C. Grillet, T. F. Krauss, C. Karnutsch, R. C. McPhedran, and B. J. Eggleton, “Reconfigurable microfluidic photonic crystal slab cavities,” Opt. Express16(20), 15887–15896 (2008).
[CrossRef] [PubMed]

2007

A. Plecis and Y. Chen, “Fabrication of microfluidic devices based on glass-PDMS-glass technology,” Microelectron. Eng.84(5–8), 1265–1269 (2007).
[CrossRef]

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

J. Jang, C. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater.17(16), 3027–3041 (2007).
[CrossRef]

H. Zhang, S. M. Eaton, J. Li, A. H. Nejadmalayeri, and P. R. Herman, “Type II high-strength Bragg grating waveguides photowritten with ultrashort laser pulses,” Opt. Express15(7), 4182–4191 (2007).
[CrossRef] [PubMed]

C. J. Choi and B. T. Cunningham, “A 96-well microplate incorporating a replica molded microfluidic network integrated with photonic crystal biosensors for high throughput kinetic biomolecular interaction analysis,” Lab Chip7(5), 550–556 (2007).
[CrossRef] [PubMed]

H. J. Kim, S. Kim, H. Jeon, J. Ma, S. H. Choi, S. Lee, C. Ko, and W. Park, “Fluorescence amplification using colloidal photonic crystal platform in sensing dye-labeled deoxyribonucleic acids,” Sens. Actuators B Chem.124(1), 147–152 (2007).
[CrossRef]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

N. D. Psaila, R. Thomson, H. Bookey, A. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett.90(13), 131102 (2007).
[CrossRef]

2006

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the c-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron.12(2), 277–285 (2006).
[CrossRef]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

S. Zheng, E. Ross, M. A. Legg, and M. J. Wirth, “High-speed electroseparations inside silica colloidal crystals,” J. Am. Chem. Soc.128(28), 9016–9017 (2006).
[CrossRef] [PubMed]

X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuators A Phys.133(2), 349–354 (2006).

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater.18(4), 457–460 (2006).
[CrossRef]

V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett.88(19), 191107 (2006).
[CrossRef]

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process.84(1–2), 47–61 (2006).
[CrossRef]

D. C. Meisel, M. Diem, M. Deubel, F. Perez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater.18(22), 2964–2968 (2006).
[CrossRef]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. Ozin, M. Wegener, and G. V. Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
[CrossRef]

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett.31(1), 59–61 (2006).
[CrossRef] [PubMed]

D. Chanda, L. Abolghasemi, and P. R. Herman, “One-dimensional diffractive optical element based fabrication and spectral characterization of three-dimensional photonic crystal templates,” Opt. Express14(19), 8568–8577 (2006).
[CrossRef] [PubMed]

2005

2004

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express12(10), 2120–2129 (2004).
[CrossRef] [PubMed]

2003

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett.28(5), 301–303 (2003).
[CrossRef] [PubMed]

J. Chan, T. Huser, S. Risbud, J. Hayden, and D. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett.82(15), 2371–2373 (2003).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

J. P. Landers, “Molecular diagnostics on electrophoretic microchips,” Anal. Chem.75(12), 2919–2927 (2003).
[CrossRef] [PubMed]

M. Straub, M. Ventura, and M. Gu, “Multiple higher-order stop gaps in infrared polymer photonic crystals,” Phys. Rev. Lett.91(4), 043901 (2003).
[CrossRef] [PubMed]

D. H. Luo, R. A. Levy, Y. F. Hor, J. F. Federici, and R. M. Pafchek, “An integrated photonic sensor for in situ monitoring of hazardous organics,” Sens. Actuators B Chem.92(1–2), 121–126 (2003).
[CrossRef]

2001

H. J. Crabtree, E. C. Cheong, D. A. Tilroe, and C. J. Backhouse, “Microchip injection and separation anomalies due to pressure effects,” Anal. Chem.73(17), 4079–4086 (2001).
[CrossRef] [PubMed]

A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett.26(5), 277–279 (2001).
[CrossRef] [PubMed]

1999

K. D. Altria, “Overview of capillary electrophoresis and capillary electrochromatography,” J. Chromatogr. A856(1-2), 443–463 (1999).
[CrossRef] [PubMed]

1998

R. A. Borisov, G. N. Dorojkina, N. I. Koroteev, V. M. Kozenkov, S. A. Magnitskii, D. V. Malakhov, A. V. Tarasishin, and A. M. Zheltikov, “Femtosecond two-photon photopolymerization: a method to fabricate optical photonic crystals with controllable parameters,” Laser Phys.8(5), 1105–1108 (1998).

1996

J. Bhawalkar, G. He, and P. Prasad, “Nonlinear multiphoton processes in organic and polymeric materials,” Rep. Prog. Phys.59(9), 1041–1070 (1996).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

1994

1965

Abolghasemi, L.

Abolghasemi, L. E.

Abu-Aljarayesh, I.

Abu-Safia, H.

Aitchison, J. S.

S. Ho, P. R. Herman, and J. S. Aitchison, “Single- and multi-scan femtosecond laser writing for selective chemical etching of cross section patternable glass micro-channels,” Appl. Phys., A Mater. Sci. Process.106(1), 5–13 (2012).
[CrossRef]

S. Ho, M. Haque, P. R. Herman, and J. S. Aitchison, “Femtosecond laser-assisted etching of three-dimensional inverted-woodpile structures in fused silica,” Opt. Lett.37(10), 1682–1684 (2012).
[CrossRef] [PubMed]

Al-Tahtamouni, R.

Altria, K. D.

K. D. Altria, “Overview of capillary electrophoresis and capillary electrochromatography,” J. Chromatogr. A856(1-2), 443–463 (1999).
[CrossRef] [PubMed]

Arai, A.

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

L. Shah, A. Arai, S. Eaton, and P. R. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express13(6), 1999–2006 (2005).
[CrossRef] [PubMed]

Arai, A. Y.

Ashok, P. C.

Ayi, T. C.

X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuators A Phys.133(2), 349–354 (2006).

Backhouse, C. J.

H. J. Crabtree, E. C. Cheong, D. A. Tilroe, and C. J. Backhouse, “Microchip injection and separation anomalies due to pressure effects,” Anal. Chem.73(17), 4079–4086 (2001).
[CrossRef] [PubMed]

Bado, P.

Barlow, S.

A. Hayek, Y. Xu, T. Okada, S. Barlow, X. Zhu, J. H. Moon, S. R. Marder, and S. Yang, “Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography,” J. Mater. Chem.18(28), 3316–3318 (2008).
[CrossRef]

Bellouard, Y.

Bharaj, H.

R. G. Denning, C. F. Blanford, H. Urban, H. Bharaj, D. N. Sharp, and A. J. Turberfield, “The control of shrinkage and thermal instability in SU-8 photoresists for holographic lithography,” Adv. Funct. Mater.21(9), 1593–1601 (2011).
[CrossRef]

Bhardwaj, V.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process.84(1–2), 47–61 (2006).
[CrossRef]

Bhawalkar, J.

J. Bhawalkar, G. He, and P. Prasad, “Nonlinear multiphoton processes in organic and polymeric materials,” Rep. Prog. Phys.59(9), 1041–1070 (1996).
[CrossRef]

Blanford, C. F.

R. G. Denning, C. F. Blanford, H. Urban, H. Bharaj, D. N. Sharp, and A. J. Turberfield, “The control of shrinkage and thermal instability in SU-8 photoresists for holographic lithography,” Adv. Funct. Mater.21(9), 1593–1601 (2011).
[CrossRef]

Bog, U.

Bookey, H.

N. D. Psaila, R. Thomson, H. Bookey, A. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett.90(13), 131102 (2007).
[CrossRef]

Borisov, R. A.

R. A. Borisov, G. N. Dorojkina, N. I. Koroteev, V. M. Kozenkov, S. A. Magnitskii, D. V. Malakhov, A. V. Tarasishin, and A. M. Zheltikov, “Femtosecond two-photon photopolymerization: a method to fabricate optical photonic crystals with controllable parameters,” Laser Phys.8(5), 1105–1108 (1998).

Bovatsek, J.

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13(12), 4708–4716 (2005).
[CrossRef] [PubMed]

Bricchi, E.

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

Busch, K.

D. C. Meisel, M. Diem, M. Deubel, F. Perez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater.18(22), 2964–2968 (2006).
[CrossRef]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

Cavallotti, P. L.

V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett.88(19), 191107 (2006).
[CrossRef]

Cerullo, G.

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev.5(3), 442–463 (2011).
[CrossRef]

N. D. Psaila, R. Thomson, H. Bookey, A. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett.90(13), 131102 (2007).
[CrossRef]

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the c-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron.12(2), 277–285 (2006).
[CrossRef]

V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett.88(19), 191107 (2006).
[CrossRef]

Chan, J.

J. Chan, T. Huser, S. Risbud, J. Hayden, and D. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett.82(15), 2371–2373 (2003).
[CrossRef]

Chan, L. L.

L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, “Label-free imaging of cancer cells using photonic crystal biosensors and application to cytotoxicity screening of a natural compound library,” Sens. Actuators B Chem.132(2), 418–425 (2008).
[CrossRef]

Chanda, D.

Chen, W. J.

Chen, Y.

A. Plecis and Y. Chen, “Fabrication of microfluidic devices based on glass-PDMS-glass technology,” Microelectron. Eng.84(5–8), 1265–1269 (2007).
[CrossRef]

Cheong, E. C.

H. J. Crabtree, E. C. Cheong, D. A. Tilroe, and C. J. Backhouse, “Microchip injection and separation anomalies due to pressure effects,” Anal. Chem.73(17), 4079–4086 (2001).
[CrossRef] [PubMed]

Chichkov, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Chichkov, B. N.

Chiodo, N.

N. D. Psaila, R. Thomson, H. Bookey, A. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett.90(13), 131102 (2007).
[CrossRef]

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the c-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron.12(2), 277–285 (2006).
[CrossRef]

Choi, C. J.

B. R. Schudel, C. J. Choi, B. T. Cunningham, and P. J. A. Kenis, “Microfluidic chip for combinatorial mixing and screening of assays,” Lab Chip9(12), 1676–1680 (2009).
[CrossRef] [PubMed]

C. J. Choi and B. T. Cunningham, “A 96-well microplate incorporating a replica molded microfluidic network integrated with photonic crystal biosensors for high throughput kinetic biomolecular interaction analysis,” Lab Chip7(5), 550–556 (2007).
[CrossRef] [PubMed]

Choi, S. H.

H. J. Kim, S. Kim, H. Jeon, J. Ma, S. H. Choi, S. Lee, C. Ko, and W. Park, “Fluorescence amplification using colloidal photonic crystal platform in sensing dye-labeled deoxyribonucleic acids,” Sens. Actuators B Chem.124(1), 147–152 (2007).
[CrossRef]

Corkum, P.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process.84(1–2), 47–61 (2006).
[CrossRef]

Crabtree, H. J.

H. J. Crabtree, E. C. Cheong, D. A. Tilroe, and C. J. Backhouse, “Microchip injection and separation anomalies due to pressure effects,” Anal. Chem.73(17), 4079–4086 (2001).
[CrossRef] [PubMed]

Cronauer, C.

Cunningham, B. T.

B. R. Schudel, C. J. Choi, B. T. Cunningham, and P. J. A. Kenis, “Microfluidic chip for combinatorial mixing and screening of assays,” Lab Chip9(12), 1676–1680 (2009).
[CrossRef] [PubMed]

L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, “Label-free imaging of cancer cells using photonic crystal biosensors and application to cytotoxicity screening of a natural compound library,” Sens. Actuators B Chem.132(2), 418–425 (2008).
[CrossRef]

C. J. Choi and B. T. Cunningham, “A 96-well microplate incorporating a replica molded microfluidic network integrated with photonic crystal biosensors for high throughput kinetic biomolecular interaction analysis,” Lab Chip7(5), 550–556 (2007).
[CrossRef] [PubMed]

Davis, K. M.

Day, D.

J. Wu, D. Day, and M. Gu, “A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal,” Appl. Phys. Lett.92(7), 071108 (2008).
[CrossRef]

Della Valle, G.

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the c-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron.12(2), 277–285 (2006).
[CrossRef]

Denning, R. G.

R. G. Denning, C. F. Blanford, H. Urban, H. Bharaj, D. N. Sharp, and A. J. Turberfield, “The control of shrinkage and thermal instability in SU-8 photoresists for holographic lithography,” Adv. Funct. Mater.21(9), 1593–1601 (2011).
[CrossRef]

Deubel, M.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. Ozin, M. Wegener, and G. V. Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
[CrossRef]

D. C. Meisel, M. Diem, M. Deubel, F. Perez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater.18(22), 2964–2968 (2006).
[CrossRef]

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater.18(4), 457–460 (2006).
[CrossRef]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

Dholakia, K.

Diem, M.

D. C. Meisel, M. Diem, M. Deubel, F. Perez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater.18(22), 2964–2968 (2006).
[CrossRef]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

Domann, G.

Dorojkina, G. N.

R. A. Borisov, G. N. Dorojkina, N. I. Koroteev, V. M. Kozenkov, S. A. Magnitskii, D. V. Malakhov, A. V. Tarasishin, and A. M. Zheltikov, “Femtosecond two-photon photopolymerization: a method to fabricate optical photonic crystals with controllable parameters,” Laser Phys.8(5), 1105–1108 (1998).

Dugan, M.

Eaton, S.

Eaton, S. M.

Egbert, A.

Eggleton, B. J.

Emery, T.

Erickson, D.

Farsari, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Federici, J. F.

D. H. Luo, R. A. Levy, Y. F. Hor, J. F. Federici, and R. M. Pafchek, “An integrated photonic sensor for in situ monitoring of hazardous organics,” Sens. Actuators B Chem.92(1–2), 121–126 (2003).
[CrossRef]

Fotakis, C.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Freymann, G. V.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. Ozin, M. Wegener, and G. V. Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
[CrossRef]

Fröhlich, L.

Gerthsen, D.

D. C. Meisel, M. Diem, M. Deubel, F. Perez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater.18(22), 2964–2968 (2006).
[CrossRef]

Giakoumaki, A.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Gorishnyy, T.

J. Jang, C. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater.17(16), 3027–3041 (2007).
[CrossRef]

Gosangari, S. L.

L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, “Label-free imaging of cancer cells using photonic crystal biosensors and application to cytotoxicity screening of a natural compound library,” Sens. Actuators B Chem.132(2), 418–425 (2008).
[CrossRef]

Gray, D.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Grenier, J. R.

Grillet, C.

Gu, M.

J. Wu and M. Gu, “Microfluidic sensing: state of the art fabrication and detection techniques,” J. Biomed. Opt.16(8), 080901 (2011).
[CrossRef] [PubMed]

J. Wu, D. Day, and M. Gu, “A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal,” Appl. Phys. Lett.92(7), 071108 (2008).
[CrossRef]

M. Straub, M. Ventura, and M. Gu, “Multiple higher-order stop gaps in infrared polymer photonic crystals,” Phys. Rev. Lett.91(4), 043901 (2003).
[CrossRef] [PubMed]

Haque, M.

Hayden, J.

J. Chan, T. Huser, S. Risbud, J. Hayden, and D. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett.82(15), 2371–2373 (2003).
[CrossRef]

Hayek, A.

A. Hayek, Y. Xu, T. Okada, S. Barlow, X. Zhu, J. H. Moon, S. R. Marder, and S. Yang, “Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography,” J. Mater. Chem.18(28), 3316–3318 (2008).
[CrossRef]

He, G.

J. Bhawalkar, G. He, and P. Prasad, “Nonlinear multiphoton processes in organic and polymeric materials,” Rep. Prog. Phys.59(9), 1041–1070 (1996).
[CrossRef]

Herman, P. R.

S. Ho, P. R. Herman, and J. S. Aitchison, “Single- and multi-scan femtosecond laser writing for selective chemical etching of cross section patternable glass micro-channels,” Appl. Phys., A Mater. Sci. Process.106(1), 5–13 (2012).
[CrossRef]

S. Ho, M. Haque, P. R. Herman, and J. S. Aitchison, “Femtosecond laser-assisted etching of three-dimensional inverted-woodpile structures in fused silica,” Opt. Lett.37(10), 1682–1684 (2012).
[CrossRef] [PubMed]

D. Chanda, N. Zachari, M. Haque, M. Ng, and P. R. Herman, “Flexible fabrication of three-dimensional optical-domain photonic crystals using a combination of single-laser-exposure diffractive-optics lithography and template inversion,” Opt. Lett.34(24), 3920–3922 (2009).
[CrossRef] [PubMed]

V. Maselli, J. R. Grenier, S. Ho, and P. R. Herman, “Femtosecond laser written optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel,” Opt. Express17(14), 11719–11729 (2009).
[CrossRef] [PubMed]

W. J. Chen, S. M. Eaton, H. Zhang, and P. R. Herman, “Broadband directional couplers fabricated in bulk glass with high repetition rate femtosecond laser pulses,” Opt. Express16(15), 11470–11480 (2008).
[CrossRef] [PubMed]

D. Chanda, L. E. Abolghasemi, M. Haque, M. L. Ng, and P. R. Herman, “Multi-level diffractive optics for single laser exposure fabrication of telecom-band diamond-like 3-dimensional photonic crystals,” Opt. Express16(20), 15402–15414 (2008).
[CrossRef] [PubMed]

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16(13), 9443–9458 (2008).
[CrossRef] [PubMed]

H. Zhang, S. Ho, S. M. Eaton, J. Li, and P. R. Herman, “Three-dimensional optical sensing network written in fused silica glass with femtosecond laser,” Opt. Express16(18), 14015–14023 (2008).
[CrossRef] [PubMed]

H. Zhang, S. M. Eaton, J. Li, A. H. Nejadmalayeri, and P. R. Herman, “Type II high-strength Bragg grating waveguides photowritten with ultrashort laser pulses,” Opt. Express15(7), 4182–4191 (2007).
[CrossRef] [PubMed]

D. Chanda, L. Abolghasemi, and P. R. Herman, “One-dimensional diffractive optical element based fabrication and spectral characterization of three-dimensional photonic crystal templates,” Opt. Express14(19), 8568–8577 (2006).
[CrossRef] [PubMed]

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13(12), 4708–4716 (2005).
[CrossRef] [PubMed]

L. Shah, A. Arai, S. Eaton, and P. R. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express13(6), 1999–2006 (2005).
[CrossRef] [PubMed]

Hermatschweiler, M.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater.18(4), 457–460 (2006).
[CrossRef]

Hirao, K.

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Hnatovsky, C.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process.84(1–2), 47–61 (2006).
[CrossRef]

Ho, S.

Hoekstra, H. J. W. M.

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev.5(3), 442–463 (2011).
[CrossRef]

Hor, Y. F.

D. H. Luo, R. A. Levy, Y. F. Hor, J. F. Federici, and R. M. Pafchek, “An integrated photonic sensor for in situ monitoring of hazardous organics,” Sens. Actuators B Chem.92(1–2), 121–126 (2003).
[CrossRef]

Houbertz, R.

Huser, T.

J. Chan, T. Huser, S. Risbud, J. Hayden, and D. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett.82(15), 2371–2373 (2003).
[CrossRef]

Jang, J.

J. Jang, C. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater.17(16), 3027–3041 (2007).
[CrossRef]

Jeon, H.

H. J. Kim, S. Kim, H. Jeon, J. Ma, S. H. Choi, S. Lee, C. Ko, and W. Park, “Fluorescence amplification using colloidal photonic crystal platform in sensing dye-labeled deoxyribonucleic acids,” Sens. Actuators B Chem.124(1), 147–152 (2007).
[CrossRef]

Jha, A.

N. D. Psaila, R. Thomson, H. Bookey, A. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett.90(13), 131102 (2007).
[CrossRef]

John, S.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. Ozin, M. Wegener, and G. V. Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
[CrossRef]

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater.18(4), 457–460 (2006).
[CrossRef]

Juodkazis, S.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional structuring of resists and resins by direct laser writing and holographic recording,” Adv. Polym. Sci.213, 157–206 (2008).

A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett.26(5), 277–279 (2001).
[CrossRef] [PubMed]

Kamp, U.

U. Kamp, V. Kitaev, G. von Freymann, G. A. Ozin, and S. A. Mabury, “Colloidal crystal capillary columns - towards optical chromatography,” Adv. Mater.17(4), 438–443 (2005).
[CrossRef]

Kar, A.

N. D. Psaila, R. Thomson, H. Bookey, A. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett.90(13), 131102 (2007).
[CrossRef]

Karnutsch, C.

Kazansky, P.

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Kenis, P. J. A.

B. R. Schudel, C. J. Choi, B. T. Cunningham, and P. J. A. Kenis, “Microfluidic chip for combinatorial mixing and screening of assays,” Lab Chip9(12), 1676–1680 (2009).
[CrossRef] [PubMed]

Killi, A.

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the c-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron.12(2), 277–285 (2006).
[CrossRef]

Kim, H. J.

H. J. Kim, S. Kim, H. Jeon, J. Ma, S. H. Choi, S. Lee, C. Ko, and W. Park, “Fluorescence amplification using colloidal photonic crystal platform in sensing dye-labeled deoxyribonucleic acids,” Sens. Actuators B Chem.124(1), 147–152 (2007).
[CrossRef]

Kim, S.

H. J. Kim, S. Kim, H. Jeon, J. Ma, S. H. Choi, S. Lee, C. Ko, and W. Park, “Fluorescence amplification using colloidal photonic crystal platform in sensing dye-labeled deoxyribonucleic acids,” Sens. Actuators B Chem.124(1), 147–152 (2007).
[CrossRef]

Kitaev, V.

U. Kamp, V. Kitaev, G. von Freymann, G. A. Ozin, and S. A. Mabury, “Colloidal crystal capillary columns - towards optical chromatography,” Adv. Mater.17(4), 438–443 (2005).
[CrossRef]

Ko, C.

H. J. Kim, S. Kim, H. Jeon, J. Ma, S. H. Choi, S. Lee, C. Ko, and W. Park, “Fluorescence amplification using colloidal photonic crystal platform in sensing dye-labeled deoxyribonucleic acids,” Sens. Actuators B Chem.124(1), 147–152 (2007).
[CrossRef]

Koh, C.

J. Jang, C. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater.17(16), 3027–3041 (2007).
[CrossRef]

Kooi, S.

J. Jang, C. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater.17(16), 3027–3041 (2007).
[CrossRef]

Koroteev, N. I.

R. A. Borisov, G. N. Dorojkina, N. I. Koroteev, V. M. Kozenkov, S. A. Magnitskii, D. V. Malakhov, A. V. Tarasishin, and A. M. Zheltikov, “Femtosecond two-photon photopolymerization: a method to fabricate optical photonic crystals with controllable parameters,” Laser Phys.8(5), 1105–1108 (1998).

Kozenkov, V. M.

R. A. Borisov, G. N. Dorojkina, N. I. Koroteev, V. M. Kozenkov, S. A. Magnitskii, D. V. Malakhov, A. V. Tarasishin, and A. M. Zheltikov, “Femtosecond two-photon photopolymerization: a method to fabricate optical photonic crystals with controllable parameters,” Laser Phys.8(5), 1105–1108 (1998).

Krauss, T. F.

Krol, D.

J. Chan, T. Huser, S. Risbud, J. Hayden, and D. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett.82(15), 2371–2373 (2003).
[CrossRef]

Kutter, J. P.

Landers, J. P.

J. P. Landers, “Molecular diagnostics on electrophoretic microchips,” Anal. Chem.75(12), 2919–2927 (2003).
[CrossRef] [PubMed]

Laporta, P.

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the c-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron.12(2), 277–285 (2006).
[CrossRef]

V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett.88(19), 191107 (2006).
[CrossRef]

Lee, M. W.

Lee, S.

H. J. Kim, S. Kim, H. Jeon, J. Ma, S. H. Choi, S. Lee, C. Ko, and W. Park, “Fluorescence amplification using colloidal photonic crystal platform in sensing dye-labeled deoxyribonucleic acids,” Sens. Actuators B Chem.124(1), 147–152 (2007).
[CrossRef]

Legg, M. A.

S. Zheng, E. Ross, M. A. Legg, and M. J. Wirth, “High-speed electroseparations inside silica colloidal crystals,” J. Am. Chem. Soc.128(28), 9016–9017 (2006).
[CrossRef] [PubMed]

Levy, R. A.

D. H. Luo, R. A. Levy, Y. F. Hor, J. F. Federici, and R. M. Pafchek, “An integrated photonic sensor for in situ monitoring of hazardous organics,” Sens. Actuators B Chem.92(1–2), 121–126 (2003).
[CrossRef]

Li, J.

Liang, X. J.

X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuators A Phys.133(2), 349–354 (2006).

Lim, C. S.

X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuators A Phys.133(2), 349–354 (2006).

Linden, S.

D. C. Meisel, M. Diem, M. Deubel, F. Perez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater.18(22), 2964–2968 (2006).
[CrossRef]

Liu, A. Q.

X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuators A Phys.133(2), 349–354 (2006).

Luo, D. H.

D. H. Luo, R. A. Levy, Y. F. Hor, J. F. Federici, and R. M. Pafchek, “An integrated photonic sensor for in situ monitoring of hazardous organics,” Sens. Actuators B Chem.92(1–2), 121–126 (2003).
[CrossRef]

Ma, J.

H. J. Kim, S. Kim, H. Jeon, J. Ma, S. H. Choi, S. Lee, C. Ko, and W. Park, “Fluorescence amplification using colloidal photonic crystal platform in sensing dye-labeled deoxyribonucleic acids,” Sens. Actuators B Chem.124(1), 147–152 (2007).
[CrossRef]

Mabury, S. A.

U. Kamp, V. Kitaev, G. von Freymann, G. A. Ozin, and S. A. Mabury, “Colloidal crystal capillary columns - towards optical chromatography,” Adv. Mater.17(4), 438–443 (2005).
[CrossRef]

MacCraith, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Magagnin, L.

V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett.88(19), 191107 (2006).
[CrossRef]

Magnitskii, S. A.

R. A. Borisov, G. N. Dorojkina, N. I. Koroteev, V. M. Kozenkov, S. A. Magnitskii, D. V. Malakhov, A. V. Tarasishin, and A. M. Zheltikov, “Femtosecond two-photon photopolymerization: a method to fabricate optical photonic crystals with controllable parameters,” Laser Phys.8(5), 1105–1108 (1998).

Malakhov, D. V.

R. A. Borisov, G. N. Dorojkina, N. I. Koroteev, V. M. Kozenkov, S. A. Magnitskii, D. V. Malakhov, A. V. Tarasishin, and A. M. Zheltikov, “Femtosecond two-photon photopolymerization: a method to fabricate optical photonic crystals with controllable parameters,” Laser Phys.8(5), 1105–1108 (1998).

Maldovan, M.

J. Jang, C. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater.17(16), 3027–3041 (2007).
[CrossRef]

Malitson, I. H.

Marchington, R. F.

Marcinkevicius, A.

Marder, S. R.

A. Hayek, Y. Xu, T. Okada, S. Barlow, X. Zhu, J. H. Moon, S. R. Marder, and S. Yang, “Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography,” J. Mater. Chem.18(28), 3316–3318 (2008).
[CrossRef]

Maselli, V.

V. Maselli, J. R. Grenier, S. Ho, and P. R. Herman, “Femtosecond laser written optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel,” Opt. Express17(14), 11719–11729 (2009).
[CrossRef] [PubMed]

V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett.88(19), 191107 (2006).
[CrossRef]

Matsuo, S.

McPhedran, R. C.

Meisel, D. C.

D. C. Meisel, M. Diem, M. Deubel, F. Perez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater.18(22), 2964–2968 (2006).
[CrossRef]

Misawa, H.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional structuring of resists and resins by direct laser writing and holographic recording,” Adv. Polym. Sci.213, 157–206 (2008).

A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett.26(5), 277–279 (2001).
[CrossRef] [PubMed]

Miura, K.

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Miwa, M.

Mizeikis, V.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional structuring of resists and resins by direct laser writing and holographic recording,” Adv. Polym. Sci.213, 157–206 (2008).

Mogensen, K. B.

Monat, C.

Moon, J. H.

A. Hayek, Y. Xu, T. Okada, S. Barlow, X. Zhu, J. H. Moon, S. R. Marder, and S. Yang, “Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography,” J. Mater. Chem.18(28), 3316–3318 (2008).
[CrossRef]

Morgner, U.

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the c-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron.12(2), 277–285 (2006).
[CrossRef]

Mortensen, N. A.

Mthunzi, P.

Nejadmalayeri, A. H.

Ng, M.

Ng, M. L.

Nishii, J.

Nunes, P. S.

O’Faolain, L.

Okada, T.

A. Hayek, Y. Xu, T. Okada, S. Barlow, X. Zhu, J. H. Moon, S. R. Marder, and S. Yang, “Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography,” J. Mater. Chem.18(28), 3316–3318 (2008).
[CrossRef]

Osellame, R.

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev.5(3), 442–463 (2011).
[CrossRef]

N. D. Psaila, R. Thomson, H. Bookey, A. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett.90(13), 131102 (2007).
[CrossRef]

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the c-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron.12(2), 277–285 (2006).
[CrossRef]

V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett.88(19), 191107 (2006).
[CrossRef]

Ostendorf, A.

Oubaha, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Ovsianikov, A.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Ozin, G.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. Ozin, M. Wegener, and G. V. Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
[CrossRef]

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater.18(4), 457–460 (2006).
[CrossRef]

Ozin, G. A.

U. Kamp, V. Kitaev, G. von Freymann, G. A. Ozin, and S. A. Mabury, “Colloidal crystal capillary columns - towards optical chromatography,” Adv. Mater.17(4), 438–443 (2005).
[CrossRef]

Pafchek, R. M.

D. H. Luo, R. A. Levy, Y. F. Hor, J. F. Federici, and R. M. Pafchek, “An integrated photonic sensor for in situ monitoring of hazardous organics,” Sens. Actuators B Chem.92(1–2), 121–126 (2003).
[CrossRef]

Park, W.

H. J. Kim, S. Kim, H. Jeon, J. Ma, S. H. Choi, S. Lee, C. Ko, and W. Park, “Fluorescence amplification using colloidal photonic crystal platform in sensing dye-labeled deoxyribonucleic acids,” Sens. Actuators B Chem.124(1), 147–152 (2007).
[CrossRef]

Pereira, S.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

Perez-Willard, F.

D. C. Meisel, M. Diem, M. Deubel, F. Perez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater.18(22), 2964–2968 (2006).
[CrossRef]

Pérez-Willard, F.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. Ozin, M. Wegener, and G. V. Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
[CrossRef]

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater.18(4), 457–460 (2006).
[CrossRef]

Plecis, A.

A. Plecis and Y. Chen, “Fabrication of microfluidic devices based on glass-PDMS-glass technology,” Microelectron. Eng.84(5–8), 1265–1269 (2007).
[CrossRef]

Pollnau, M.

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev.5(3), 442–463 (2011).
[CrossRef]

Popall, M.

Prasad, P.

J. Bhawalkar, G. He, and P. Prasad, “Nonlinear multiphoton processes in organic and polymeric materials,” Rep. Prog. Phys.59(9), 1041–1070 (1996).
[CrossRef]

Psaila, N. D.

N. D. Psaila, R. Thomson, H. Bookey, A. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett.90(13), 131102 (2007).
[CrossRef]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett.31(1), 59–61 (2006).
[CrossRef] [PubMed]

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Rajeev, P.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process.84(1–2), 47–61 (2006).
[CrossRef]

Ramponi, R.

V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett.88(19), 191107 (2006).
[CrossRef]

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the c-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron.12(2), 277–285 (2006).
[CrossRef]

Rayner, D.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process.84(1–2), 47–61 (2006).
[CrossRef]

Risbud, S.

J. Chan, T. Huser, S. Risbud, J. Hayden, and D. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett.82(15), 2371–2373 (2003).
[CrossRef]

Rockwood, T.

Ross, E.

S. Zheng, E. Ross, M. A. Legg, and M. J. Wirth, “High-speed electroseparations inside silica colloidal crystals,” J. Am. Chem. Soc.128(28), 9016–9017 (2006).
[CrossRef] [PubMed]

Said, A.

Sakellari, I.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Scherer, A.

Schudel, B. R.

B. R. Schudel, C. J. Choi, B. T. Cunningham, and P. J. A. Kenis, “Microfluidic chip for combinatorial mixing and screening of assays,” Lab Chip9(12), 1676–1680 (2009).
[CrossRef] [PubMed]

Schulz, J.

Serbin, J.

Shah, L.

Sharp, D. N.

R. G. Denning, C. F. Blanford, H. Urban, H. Bharaj, D. N. Sharp, and A. J. Turberfield, “The control of shrinkage and thermal instability in SU-8 photoresists for holographic lithography,” Adv. Funct. Mater.21(9), 1593–1601 (2011).
[CrossRef]

Shen, S.

N. D. Psaila, R. Thomson, H. Bookey, A. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett.90(13), 131102 (2007).
[CrossRef]

Shimotsuma, Y.

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Simova, E.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process.84(1–2), 47–61 (2006).
[CrossRef]

Smith, C. L.

Soukoulis, C. M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

Straub, M.

M. Straub, M. Ventura, and M. Gu, “Multiple higher-order stop gaps in infrared polymer photonic crystals,” Phys. Rev. Lett.91(4), 043901 (2003).
[CrossRef] [PubMed]

Sugimoto, N.

Svelto, O.

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the c-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron.12(2), 277–285 (2006).
[CrossRef]

Tarasishin, A. V.

R. A. Borisov, G. N. Dorojkina, N. I. Koroteev, V. M. Kozenkov, S. A. Magnitskii, D. V. Malakhov, A. V. Tarasishin, and A. M. Zheltikov, “Femtosecond two-photon photopolymerization: a method to fabricate optical photonic crystals with controllable parameters,” Laser Phys.8(5), 1105–1108 (1998).

Taylor, R.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process.84(1–2), 47–61 (2006).
[CrossRef]

Tétreault, N.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater.18(4), 457–460 (2006).
[CrossRef]

Thomas, E.

J. Jang, C. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater.17(16), 3027–3041 (2007).
[CrossRef]

Thomson, R.

N. D. Psaila, R. Thomson, H. Bookey, A. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett.90(13), 131102 (2007).
[CrossRef]

Tilroe, D. A.

H. J. Crabtree, E. C. Cheong, D. A. Tilroe, and C. J. Backhouse, “Microchip injection and separation anomalies due to pressure effects,” Anal. Chem.73(17), 4079–4086 (2001).
[CrossRef] [PubMed]

Tomljenovic-Hanic, S.

Turberfield, A. J.

R. G. Denning, C. F. Blanford, H. Urban, H. Bharaj, D. N. Sharp, and A. J. Turberfield, “The control of shrinkage and thermal instability in SU-8 photoresists for holographic lithography,” Adv. Funct. Mater.21(9), 1593–1601 (2011).
[CrossRef]

Ullal, C.

J. Jang, C. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater.17(16), 3027–3041 (2007).
[CrossRef]

Urban, H.

R. G. Denning, C. F. Blanford, H. Urban, H. Bharaj, D. N. Sharp, and A. J. Turberfield, “The control of shrinkage and thermal instability in SU-8 photoresists for holographic lithography,” Adv. Funct. Mater.21(9), 1593–1601 (2011).
[CrossRef]

Vamvakaki, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Ventura, M.

M. Straub, M. Ventura, and M. Gu, “Multiple higher-order stop gaps in infrared polymer photonic crystals,” Phys. Rev. Lett.91(4), 043901 (2003).
[CrossRef] [PubMed]

Viertl, J.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

von Freymann, G.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater.18(4), 457–460 (2006).
[CrossRef]

U. Kamp, V. Kitaev, G. von Freymann, G. A. Ozin, and S. A. Mabury, “Colloidal crystal capillary columns - towards optical chromatography,” Adv. Mater.17(4), 438–443 (2005).
[CrossRef]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

Watanabe, M.

Watkin, K. L.

L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, “Label-free imaging of cancer cells using photonic crystal biosensors and application to cytotoxicity screening of a natural compound library,” Sens. Actuators B Chem.132(2), 418–425 (2008).
[CrossRef]

Wegener, M.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater.18(4), 457–460 (2006).
[CrossRef]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. Ozin, M. Wegener, and G. V. Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
[CrossRef]

D. C. Meisel, M. Diem, M. Deubel, F. Perez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater.18(22), 2964–2968 (2006).
[CrossRef]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

Wirth, M. J.

S. Zheng, E. Ross, M. A. Legg, and M. J. Wirth, “High-speed electroseparations inside silica colloidal crystals,” J. Am. Chem. Soc.128(28), 9016–9017 (2006).
[CrossRef] [PubMed]

Wong, S.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. Ozin, M. Wegener, and G. V. Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
[CrossRef]

Wu, D. K.

Wu, J.

J. Wu and M. Gu, “Microfluidic sensing: state of the art fabrication and detection techniques,” J. Biomed. Opt.16(8), 080901 (2011).
[CrossRef] [PubMed]

J. Wu, D. Day, and M. Gu, “A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal,” Appl. Phys. Lett.92(7), 071108 (2008).
[CrossRef]

Xu, Y.

A. Hayek, Y. Xu, T. Okada, S. Barlow, X. Zhu, J. H. Moon, S. R. Marder, and S. Yang, “Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography,” J. Mater. Chem.18(28), 3316–3318 (2008).
[CrossRef]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Yang, S.

A. Hayek, Y. Xu, T. Okada, S. Barlow, X. Zhu, J. H. Moon, S. R. Marder, and S. Yang, “Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography,” J. Mater. Chem.18(28), 3316–3318 (2008).
[CrossRef]

Yang, W.

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

Yap, P. H.

X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuators A Phys.133(2), 349–354 (2006).

Yoshino, F.

Yusuf, N. A.

Zachari, N.

Zhang, H.

Zheltikov, A. M.

R. A. Borisov, G. N. Dorojkina, N. I. Koroteev, V. M. Kozenkov, S. A. Magnitskii, D. V. Malakhov, A. V. Tarasishin, and A. M. Zheltikov, “Femtosecond two-photon photopolymerization: a method to fabricate optical photonic crystals with controllable parameters,” Laser Phys.8(5), 1105–1108 (1998).

Zheng, S.

S. Zheng, E. Ross, M. A. Legg, and M. J. Wirth, “High-speed electroseparations inside silica colloidal crystals,” J. Am. Chem. Soc.128(28), 9016–9017 (2006).
[CrossRef] [PubMed]

Zhu, X.

A. Hayek, Y. Xu, T. Okada, S. Barlow, X. Zhu, J. H. Moon, S. R. Marder, and S. Yang, “Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography,” J. Mater. Chem.18(28), 3316–3318 (2008).
[CrossRef]

ACS Nano

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Adv. Funct. Mater.

J. Jang, C. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater.17(16), 3027–3041 (2007).
[CrossRef]

R. G. Denning, C. F. Blanford, H. Urban, H. Bharaj, D. N. Sharp, and A. J. Turberfield, “The control of shrinkage and thermal instability in SU-8 photoresists for holographic lithography,” Adv. Funct. Mater.21(9), 1593–1601 (2011).
[CrossRef]

Adv. Mater.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater.18(4), 457–460 (2006).
[CrossRef]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. Ozin, M. Wegener, and G. V. Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
[CrossRef]

D. C. Meisel, M. Diem, M. Deubel, F. Perez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater.18(22), 2964–2968 (2006).
[CrossRef]

U. Kamp, V. Kitaev, G. von Freymann, G. A. Ozin, and S. A. Mabury, “Colloidal crystal capillary columns - towards optical chromatography,” Adv. Mater.17(4), 438–443 (2005).
[CrossRef]

Adv. Polym. Sci.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional structuring of resists and resins by direct laser writing and holographic recording,” Adv. Polym. Sci.213, 157–206 (2008).

Anal. Chem.

J. P. Landers, “Molecular diagnostics on electrophoretic microchips,” Anal. Chem.75(12), 2919–2927 (2003).
[CrossRef] [PubMed]

H. J. Crabtree, E. C. Cheong, D. A. Tilroe, and C. J. Backhouse, “Microchip injection and separation anomalies due to pressure effects,” Anal. Chem.73(17), 4079–4086 (2001).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “Quill writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett.88(19), 191107 (2006).
[CrossRef]

J. Wu, D. Day, and M. Gu, “A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal,” Appl. Phys. Lett.92(7), 071108 (2008).
[CrossRef]

J. Chan, T. Huser, S. Risbud, J. Hayden, and D. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett.82(15), 2371–2373 (2003).
[CrossRef]

N. D. Psaila, R. Thomson, H. Bookey, A. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett.90(13), 131102 (2007).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

S. Ho, P. R. Herman, and J. S. Aitchison, “Single- and multi-scan femtosecond laser writing for selective chemical etching of cross section patternable glass micro-channels,” Appl. Phys., A Mater. Sci. Process.106(1), 5–13 (2012).
[CrossRef]

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process.84(1–2), 47–61 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the c-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron.12(2), 277–285 (2006).
[CrossRef]

J. Am. Chem. Soc.

S. Zheng, E. Ross, M. A. Legg, and M. J. Wirth, “High-speed electroseparations inside silica colloidal crystals,” J. Am. Chem. Soc.128(28), 9016–9017 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt.

J. Wu and M. Gu, “Microfluidic sensing: state of the art fabrication and detection techniques,” J. Biomed. Opt.16(8), 080901 (2011).
[CrossRef] [PubMed]

J. Chromatogr. A

K. D. Altria, “Overview of capillary electrophoresis and capillary electrochromatography,” J. Chromatogr. A856(1-2), 443–463 (1999).
[CrossRef] [PubMed]

J. Mater. Chem.

A. Hayek, Y. Xu, T. Okada, S. Barlow, X. Zhu, J. H. Moon, S. R. Marder, and S. Yang, “Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography,” J. Mater. Chem.18(28), 3316–3318 (2008).
[CrossRef]

J. Opt. Soc. Am.

Lab Chip

C. J. Choi and B. T. Cunningham, “A 96-well microplate incorporating a replica molded microfluidic network integrated with photonic crystal biosensors for high throughput kinetic biomolecular interaction analysis,” Lab Chip7(5), 550–556 (2007).
[CrossRef] [PubMed]

B. R. Schudel, C. J. Choi, B. T. Cunningham, and P. J. A. Kenis, “Microfluidic chip for combinatorial mixing and screening of assays,” Lab Chip9(12), 1676–1680 (2009).
[CrossRef] [PubMed]

Laser Photon. Rev.

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev.5(3), 442–463 (2011).
[CrossRef]

Laser Phys.

R. A. Borisov, G. N. Dorojkina, N. I. Koroteev, V. M. Kozenkov, S. A. Magnitskii, D. V. Malakhov, A. V. Tarasishin, and A. M. Zheltikov, “Femtosecond two-photon photopolymerization: a method to fabricate optical photonic crystals with controllable parameters,” Laser Phys.8(5), 1105–1108 (1998).

Microelectron. Eng.

A. Plecis and Y. Chen, “Fabrication of microfluidic devices based on glass-PDMS-glass technology,” Microelectron. Eng.84(5–8), 1265–1269 (2007).
[CrossRef]

Nat. Mater.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

Nat. Photonics

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

Nature

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Opt. Express

P. C. Ashok, R. F. Marchington, P. Mthunzi, T. F. Krauss, and K. Dholakia, “Optical chromatography using a photonic crystal fiber with on-chip fluorescence excitation,” Opt. Express18(6), 6396–6407 (2010).
[CrossRef] [PubMed]

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express12(10), 2120–2129 (2004).
[CrossRef] [PubMed]

L. Shah, A. Arai, S. Eaton, and P. R. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express13(6), 1999–2006 (2005).
[CrossRef] [PubMed]

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13(12), 4708–4716 (2005).
[CrossRef] [PubMed]

D. Chanda, L. Abolghasemi, and P. R. Herman, “One-dimensional diffractive optical element based fabrication and spectral characterization of three-dimensional photonic crystal templates,” Opt. Express14(19), 8568–8577 (2006).
[CrossRef] [PubMed]

H. Zhang, S. M. Eaton, J. Li, A. H. Nejadmalayeri, and P. R. Herman, “Type II high-strength Bragg grating waveguides photowritten with ultrashort laser pulses,” Opt. Express15(7), 4182–4191 (2007).
[CrossRef] [PubMed]

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16(13), 9443–9458 (2008).
[CrossRef] [PubMed]

W. J. Chen, S. M. Eaton, H. Zhang, and P. R. Herman, “Broadband directional couplers fabricated in bulk glass with high repetition rate femtosecond laser pulses,” Opt. Express16(15), 11470–11480 (2008).
[CrossRef] [PubMed]

H. Zhang, S. Ho, S. M. Eaton, J. Li, and P. R. Herman, “Three-dimensional optical sensing network written in fused silica glass with femtosecond laser,” Opt. Express16(18), 14015–14023 (2008).
[CrossRef] [PubMed]

D. Chanda, L. E. Abolghasemi, M. Haque, M. L. Ng, and P. R. Herman, “Multi-level diffractive optics for single laser exposure fabrication of telecom-band diamond-like 3-dimensional photonic crystals,” Opt. Express16(20), 15402–15414 (2008).
[CrossRef] [PubMed]

C. L. Smith, U. Bog, S. Tomljenovic-Hanic, M. W. Lee, D. K. Wu, L. O’Faolain, C. Monat, C. Grillet, T. F. Krauss, C. Karnutsch, R. C. McPhedran, and B. J. Eggleton, “Reconfigurable microfluidic photonic crystal slab cavities,” Opt. Express16(20), 15887–15896 (2008).
[CrossRef] [PubMed]

V. Maselli, J. R. Grenier, S. Ho, and P. R. Herman, “Femtosecond laser written optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel,” Opt. Express17(14), 11719–11729 (2009).
[CrossRef] [PubMed]

Opt. Lett.

D. Chanda, N. Zachari, M. Haque, M. Ng, and P. R. Herman, “Flexible fabrication of three-dimensional optical-domain photonic crystals using a combination of single-laser-exposure diffractive-optics lithography and template inversion,” Opt. Lett.34(24), 3920–3922 (2009).
[CrossRef] [PubMed]

P. S. Nunes, N. A. Mortensen, J. P. Kutter, and K. B. Mogensen, “Photonic crystal resonator integrated in a microfluidic system,” Opt. Lett.33(14), 1623–1625 (2008).
[CrossRef] [PubMed]

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett.31(1), 59–61 (2006).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

S. Ho, M. Haque, P. R. Herman, and J. S. Aitchison, “Femtosecond laser-assisted etching of three-dimensional inverted-woodpile structures in fused silica,” Opt. Lett.37(10), 1682–1684 (2012).
[CrossRef] [PubMed]

A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett.26(5), 277–279 (2001).
[CrossRef] [PubMed]

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett.28(5), 301–303 (2003).
[CrossRef] [PubMed]

Phys. Rev. Lett.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

M. Straub, M. Ventura, and M. Gu, “Multiple higher-order stop gaps in infrared polymer photonic crystals,” Phys. Rev. Lett.91(4), 043901 (2003).
[CrossRef] [PubMed]

Rep. Prog. Phys.

J. Bhawalkar, G. He, and P. Prasad, “Nonlinear multiphoton processes in organic and polymeric materials,” Rep. Prog. Phys.59(9), 1041–1070 (1996).
[CrossRef]

Sens. Actuators A Phys.

X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuators A Phys.133(2), 349–354 (2006).

Sens. Actuators B Chem.

D. H. Luo, R. A. Levy, Y. F. Hor, J. F. Federici, and R. M. Pafchek, “An integrated photonic sensor for in situ monitoring of hazardous organics,” Sens. Actuators B Chem.92(1–2), 121–126 (2003).
[CrossRef]

H. J. Kim, S. Kim, H. Jeon, J. Ma, S. H. Choi, S. Lee, C. Ko, and W. Park, “Fluorescence amplification using colloidal photonic crystal platform in sensing dye-labeled deoxyribonucleic acids,” Sens. Actuators B Chem.124(1), 147–152 (2007).
[CrossRef]

L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, “Label-free imaging of cancer cells using photonic crystal biosensors and application to cytotoxicity screening of a natural compound library,” Sens. Actuators B Chem.132(2), 418–425 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of a CE chip defined by mutually perpendicular injection and separation channels. (b) Schematic of the proposed optofluidic device showing two embedded PC geometries probed by external optics or laser-formed WGs coupled to optical fiber. (c) A rotated woodpile PC embedded inside the microfluidic channel with stopband sensing facilitated laterally by a laser-formed WG. (d) Corresponding rotated woodpile unit cell with periodicities a, b and c and features sizes rV, rHb and rHc labelled. Directions for laser propagation, Γ–Z and fluid flow are labelled. (e) An embedded conventional woodpile PC. (f) Corresponding conventional woodpile unit cell with periodicities a, b and c and features sizes RH and RV labelled.

Fig. 2
Fig. 2

(a) Normalized transmission spectrum along Γ–Z direction through 10 rotated woodpile unit cells (a = b = 1.9 μm, c = 1.0 μm, nSU-8 = 1.6, nw = 1.33, rV = 0.4 μm and rHb = 3rHc = 0.45 μm) modelled with FDTD. The 1st and 2nd order stopbands appear near 2.4 μm and 1.5 μm wavelengths, respectively, for Ea (red) and Eb (blue) polarized light. The 2nd order stopband's center wavelength and bandwidth are labelled for each polarization. (b) Contour plots showing the center wavelength, bandwidth and reflection for the 2nd order stopband calculated along Γ–Z through 10 rotated woodpile unit cells (a = b = 1.9 μm, c = 1.0 μm, nSU-8 = 1.6, nw = 1.33). (c) FDTD simulation showing the tuning of the 2nd order stopband's center wavelength of a rotated woodpile (a = b = 1.9 μm, c = 1.0 μm, nSU-8 = 1.6, rV = 0.22 μm and rHb = 3rHc = 0.36 μm) with the changing background fluid refractive index. A line of best fit indicates a sensitivity of 725 nm / RIU.

Fig. 3
Fig. 3

A rotated woodpile PC (a = 1.9 μm, c = 1.0 μm) embedded inside a DLW microchannel observed with an optical (a, b) and scanning electron (c) microscope. The PC's Γ–Z stopband is probed by the buried laser-formed WGs. The inset in (c) shows the top view of 2 × 2 rotated woodpile unit cell design from Fig. 1(c).

Fig. 4
Fig. 4

(a) Single-mode profile of the laser-formed WG at 1.55 μm wavelength with horizontal and vertical mode diameter (1/e2 intensity) of 12.3 μm and 12.8 μm, respectively. (b) Optical transmission spectra through (1) a straight continuous WG (blue), (2) an air-filled channel probed by a WG (red) and (3) the air-filled PC-integrated optofluidic device (purple). The PC's 2nd order stopband is observed at 1.57 μm wavelength (3.5 dB peak reflection, 65 nm FWHM) and 3rd order at 1.43 μm wavelength. Both stopband wavelengths match the FDTD simulation for an air-filled PC with 85% filling fraction (green). The 1.38 μm bands are due to OH group absorption in fused silica [51]. The noisy spectral measurements coincide with spectral regions of low source power.

Fig. 5
Fig. 5

(a, b) Top view SEM images of a conventional woodpile (a = b = 10 μm, c = 19.5 μm, RH = 0.9 μm, RV = 4.6 μm) embedded inside a Micralyne channel and coated with SiO2 via CVD before sealing with PDMS. (c, d) Optical microscope images of a fluorescein plug incident on a porous silica-coated woodpile PC are shown before (c) and after (d) plug interaction with the PC column. The flow rate increased from 140 μm/s to 285 μm/s inside the porous PC.

Tables (1)

Tables Icon

Table 1 Summary of laser exposure values for writing each component of the optofluidic device.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R V > c 8
R H < a 2 , R H < b 2 , R V < c 2
r V + r Hc > c 4
r Hb < b 2 , r Hc < c 2 , r V < a 2 , r V < c 2

Metrics