Abstract

The depth of field of an infinity-corrected microscope system is greatly extended by simply applying a specially designed phase mask between the objective and the tube lens. In comparison with the method of modifying the structure of objective, it is more cost effective and provides improved flexibility for assembling the system. Instead of using an ideal optical system for simulation which was the focus of the previous research, a practical wavefront-coded infinity-corrected microscope system is designed in this paper by considering the various aberrations. Two new optimization methods, based on the commercial optical design software, are proposed to design a wavefront-coded microscope using a non-symmetric phase mask and a symmetric phase mask, respectively. We use polynomial phase mask and rational phase mask as examples of the non-symmetric and symmetric phase masks respectively. Simulation results show that both optimization methods work well for a 32 × infinity-corrected microscope system with 0.6 numerical aperture. The depth of field is extended to about 13 times of the traditional one.

© 2013 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Depth of field extension with spherical optics

Pantazis Mouroulis
Opt. Express 16(17) 12995-13004 (2008)

Polynomial phase masks for extending the depth of field of a microscope

Nicolas Caron and Yunlong Sheng
Appl. Opt. 47(22) E39-E43 (2008)

Analytical computation of the derivative of PSF for the optimization of phase mask in wavefront coding system

Xinhua Chen, Jiankang Zhou, and Weimin Shen
Opt. Express 24(18) 21070-21080 (2016)

References

  • View by:
  • |
  • |
  • |

  1. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34(11), 1859–1866 (1995).
    [Crossref] [PubMed]
  2. T. Zhao and F. Yu, “Point spread function analysis of a cubic phase wavefront coding system with a circular pupil,” Opt. Express 20(3), 2408–2419 (2012).
    [Crossref] [PubMed]
  3. S. Chen, Z. Fan, Z. Xu, B. Zuo, S. Wang, and H. Xiao, “Wavefront coding technique for controlling thermal defocus aberration in an infrared imaging system,” Opt. Lett. 36(16), 3021–3023 (2011).
    [Crossref] [PubMed]
  4. T. Zhao, Z. Ye, W. Zhang, W. Huang, and F. Yu, “Design of objective lenses to extend the depth of field based on wavefront coding,” Proc. SPIE 6834, 683414, 683414-8 (2007).
    [Crossref]
  5. S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended-focus, aberration-corrected imaging systems,” Proc. SPIE 5559, 335–345 (2004).
    [Crossref]
  6. S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, “Engineering the pupil phase to improve image quality,” Proc. SPIE 5108, 1–12 (2003).
    [Crossref]
  7. Q. Yang, L. Liu, and J. Sun, “Optimized phase pupil masks for extended depth of field,” Opt. Commun. 272(1), 56–66 (2007).
    [Crossref]
  8. G. Carles, A. Carnicer, and S. Bosch, “Phase mask selection in wavefront coding systems: A design approach,” Opt. Commun. 48, 779–785 (2010).
  9. F. Zhou, R. Ye, G. Li, H. Zhang, and D. Wang, “Optimized circularly symmetric phase mask to extend the depth of focus,” J. Opt. Soc. Am. A 26(8), 1889–1895 (2009).
    [Crossref] [PubMed]
  10. M. Born and E. Wolf, Principles of Optics, 6th ed. (Oxford: Pergamon Press, 1980).
  11. Zemax 12 Optical design program user’s manual (Radiant Zemax, 2012).
  12. M. Liu, L. Dong, Y. Zhao, M. Hui, and W. Jia, “Stationary phase analysis of generalized cubic phase mask wavefront coding,” Opt. Commun. 298–299, 67–74 (2013).
    [Crossref]

2013 (1)

M. Liu, L. Dong, Y. Zhao, M. Hui, and W. Jia, “Stationary phase analysis of generalized cubic phase mask wavefront coding,” Opt. Commun. 298–299, 67–74 (2013).
[Crossref]

2012 (1)

2011 (1)

2010 (1)

G. Carles, A. Carnicer, and S. Bosch, “Phase mask selection in wavefront coding systems: A design approach,” Opt. Commun. 48, 779–785 (2010).

2009 (1)

2007 (2)

Q. Yang, L. Liu, and J. Sun, “Optimized phase pupil masks for extended depth of field,” Opt. Commun. 272(1), 56–66 (2007).
[Crossref]

T. Zhao, Z. Ye, W. Zhang, W. Huang, and F. Yu, “Design of objective lenses to extend the depth of field based on wavefront coding,” Proc. SPIE 6834, 683414, 683414-8 (2007).
[Crossref]

2004 (1)

S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended-focus, aberration-corrected imaging systems,” Proc. SPIE 5559, 335–345 (2004).
[Crossref]

2003 (1)

S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, “Engineering the pupil phase to improve image quality,” Proc. SPIE 5108, 1–12 (2003).
[Crossref]

1995 (1)

Bosch, S.

G. Carles, A. Carnicer, and S. Bosch, “Phase mask selection in wavefront coding systems: A design approach,” Opt. Commun. 48, 779–785 (2010).

Carles, G.

G. Carles, A. Carnicer, and S. Bosch, “Phase mask selection in wavefront coding systems: A design approach,” Opt. Commun. 48, 779–785 (2010).

Carnicer, A.

G. Carles, A. Carnicer, and S. Bosch, “Phase mask selection in wavefront coding systems: A design approach,” Opt. Commun. 48, 779–785 (2010).

Cathey, W. T.

Chen, S.

Dong, L.

M. Liu, L. Dong, Y. Zhao, M. Hui, and W. Jia, “Stationary phase analysis of generalized cubic phase mask wavefront coding,” Opt. Commun. 298–299, 67–74 (2013).
[Crossref]

Dowski, E. R.

Fan, Z.

Huang, W.

T. Zhao, Z. Ye, W. Zhang, W. Huang, and F. Yu, “Design of objective lenses to extend the depth of field based on wavefront coding,” Proc. SPIE 6834, 683414, 683414-8 (2007).
[Crossref]

Hui, M.

M. Liu, L. Dong, Y. Zhao, M. Hui, and W. Jia, “Stationary phase analysis of generalized cubic phase mask wavefront coding,” Opt. Commun. 298–299, 67–74 (2013).
[Crossref]

Jia, W.

M. Liu, L. Dong, Y. Zhao, M. Hui, and W. Jia, “Stationary phase analysis of generalized cubic phase mask wavefront coding,” Opt. Commun. 298–299, 67–74 (2013).
[Crossref]

Li, G.

Liu, L.

Q. Yang, L. Liu, and J. Sun, “Optimized phase pupil masks for extended depth of field,” Opt. Commun. 272(1), 56–66 (2007).
[Crossref]

Liu, M.

M. Liu, L. Dong, Y. Zhao, M. Hui, and W. Jia, “Stationary phase analysis of generalized cubic phase mask wavefront coding,” Opt. Commun. 298–299, 67–74 (2013).
[Crossref]

Pauca, V. P.

S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended-focus, aberration-corrected imaging systems,” Proc. SPIE 5559, 335–345 (2004).
[Crossref]

S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, “Engineering the pupil phase to improve image quality,” Proc. SPIE 5108, 1–12 (2003).
[Crossref]

Plemmons, R. J.

S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended-focus, aberration-corrected imaging systems,” Proc. SPIE 5559, 335–345 (2004).
[Crossref]

S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, “Engineering the pupil phase to improve image quality,” Proc. SPIE 5108, 1–12 (2003).
[Crossref]

Prasad, S.

S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended-focus, aberration-corrected imaging systems,” Proc. SPIE 5559, 335–345 (2004).
[Crossref]

S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, “Engineering the pupil phase to improve image quality,” Proc. SPIE 5108, 1–12 (2003).
[Crossref]

Sun, J.

Q. Yang, L. Liu, and J. Sun, “Optimized phase pupil masks for extended depth of field,” Opt. Commun. 272(1), 56–66 (2007).
[Crossref]

Torgersen, T. C.

S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended-focus, aberration-corrected imaging systems,” Proc. SPIE 5559, 335–345 (2004).
[Crossref]

S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, “Engineering the pupil phase to improve image quality,” Proc. SPIE 5108, 1–12 (2003).
[Crossref]

van der Gracht, J.

S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended-focus, aberration-corrected imaging systems,” Proc. SPIE 5559, 335–345 (2004).
[Crossref]

S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, “Engineering the pupil phase to improve image quality,” Proc. SPIE 5108, 1–12 (2003).
[Crossref]

Wang, D.

Wang, S.

Xiao, H.

Xu, Z.

Yang, Q.

Q. Yang, L. Liu, and J. Sun, “Optimized phase pupil masks for extended depth of field,” Opt. Commun. 272(1), 56–66 (2007).
[Crossref]

Ye, R.

Ye, Z.

T. Zhao, Z. Ye, W. Zhang, W. Huang, and F. Yu, “Design of objective lenses to extend the depth of field based on wavefront coding,” Proc. SPIE 6834, 683414, 683414-8 (2007).
[Crossref]

Yu, F.

T. Zhao and F. Yu, “Point spread function analysis of a cubic phase wavefront coding system with a circular pupil,” Opt. Express 20(3), 2408–2419 (2012).
[Crossref] [PubMed]

T. Zhao, Z. Ye, W. Zhang, W. Huang, and F. Yu, “Design of objective lenses to extend the depth of field based on wavefront coding,” Proc. SPIE 6834, 683414, 683414-8 (2007).
[Crossref]

Zhang, H.

Zhang, W.

T. Zhao, Z. Ye, W. Zhang, W. Huang, and F. Yu, “Design of objective lenses to extend the depth of field based on wavefront coding,” Proc. SPIE 6834, 683414, 683414-8 (2007).
[Crossref]

Zhao, T.

T. Zhao and F. Yu, “Point spread function analysis of a cubic phase wavefront coding system with a circular pupil,” Opt. Express 20(3), 2408–2419 (2012).
[Crossref] [PubMed]

T. Zhao, Z. Ye, W. Zhang, W. Huang, and F. Yu, “Design of objective lenses to extend the depth of field based on wavefront coding,” Proc. SPIE 6834, 683414, 683414-8 (2007).
[Crossref]

Zhao, Y.

M. Liu, L. Dong, Y. Zhao, M. Hui, and W. Jia, “Stationary phase analysis of generalized cubic phase mask wavefront coding,” Opt. Commun. 298–299, 67–74 (2013).
[Crossref]

Zhou, F.

Zuo, B.

Appl. Opt. (1)

J. Opt. Soc. Am. A (1)

Opt. Commun. (3)

Q. Yang, L. Liu, and J. Sun, “Optimized phase pupil masks for extended depth of field,” Opt. Commun. 272(1), 56–66 (2007).
[Crossref]

G. Carles, A. Carnicer, and S. Bosch, “Phase mask selection in wavefront coding systems: A design approach,” Opt. Commun. 48, 779–785 (2010).

M. Liu, L. Dong, Y. Zhao, M. Hui, and W. Jia, “Stationary phase analysis of generalized cubic phase mask wavefront coding,” Opt. Commun. 298–299, 67–74 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (3)

T. Zhao, Z. Ye, W. Zhang, W. Huang, and F. Yu, “Design of objective lenses to extend the depth of field based on wavefront coding,” Proc. SPIE 6834, 683414, 683414-8 (2007).
[Crossref]

S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended-focus, aberration-corrected imaging systems,” Proc. SPIE 5559, 335–345 (2004).
[Crossref]

S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, “Engineering the pupil phase to improve image quality,” Proc. SPIE 5108, 1–12 (2003).
[Crossref]

Other (2)

M. Born and E. Wolf, Principles of Optics, 6th ed. (Oxford: Pergamon Press, 1980).

Zemax 12 Optical design program user’s manual (Radiant Zemax, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic drawing of a wavefront-coded infinity-corrected microscope system; (b) The structure of an infinity-corrected objective lens.

Fig. 2
Fig. 2

MTF curves of the wavefront-coded microscope system with the specially designed polynomial phase mask at different object distances: (a) 0.355mm; (b) 0.358mm; (c) 0.362mm; (d) 0.365mm.

Fig. 3
Fig. 3

MTF curves of the wavefront-coded microscope system with rational phase mask at different object distances: (a) 0.358mm; (b) 0.361mm; (c) 0.364mm; (d) 0.367mm.

Tables (2)

Tables Icon

Table 1 Coefficients of the optimized polynomial phase mask

Tables Icon

Table 2 Coefficients of the optimized rational phase mask

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E= j=1 N v i=1 N u w( i,j ) n=1 N F m=1 N o [ MTF( D o ( m ),F( n ),u( i ),v( j ) ) MTF ¯ ( u( i ),v( j ) ) ] 2 N F N o j=1 N v i=1 N u w( i,j ) ,
MTF ¯ ( u( i ),v( j ) )= 1 N F N o n=1 N F m=1 N o MTF( D o ( m ),F( n ),u( i ),v( j ) ).
P(m,n)={ P 0 min i,j MTF( D o ( m ),F( n ),u( i ),v( j ) )T 0otherwise ,
E'=E+ w p n N F m N o P(m,n) .
z( x,y )= n=2 k m=0 n C m( nm ) x m y nm ,
ξ( m )= 1 N w N r n N w i N r [ Δ( D o ( m ),W(n),r( i ) ) Δ ¯ ( D o ( m ) ) ] 2 ,
Δ ¯ ( D o ( m ) )= 1 N w N r n N w i N r Δ( D o ( m ),W(n),r( i ) ) .
E= 1 N o m N o [ ξ( m ) ξ ¯ ] 2 ,
P= j=1 N j i=1 N i MT F 0 ( u( i ),v( j ) ) 1 N F N o j=1 N j i=1 N i n=1 N F m=1 N o MTF( D o ( m ),F( n ),u( i ),v( j ) ) ,
E'=E+ w p P.
z( r )= i=0 N p i r i i=0 N q i r i ,

Metrics