Abstract

A four dimensional data set of the cardiac cycle of a zebrafish embryo was acquired using postacquisition synchronization of real time photoacoustic b-scans. Utilizing an off-axis photoacoustic microscopy (OA-PAM) setup, we have expanded upon our previous work with OA-PAM to develop a system that can sustain 100 kHz line rates while demodulating the bipolar photoacoustic signal in real-time. Real-time processing was accomplished by quadrature demodulation on a Field Programmable Gate Array (FPGA) in line with the signal digitizer. Simulated data acquisition verified the system is capable of real-time processing up to a line rate of 1 MHz. Galvanometer-scanning of the excitation laser inside the focus of the ultrasonic transducer enables real data acquisition of a 200 by 200 by 200 pixel, volumetric data set across a 2 millimeter field of view at a rate of 2.5 Hz.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Luukkala and A. Penttinen, “Photoacoustic microscope,” Electron. Lett.15(11), 325–326 (1979).
    [CrossRef]
  2. C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett.35(19), 3195–3197 (2010).
    [CrossRef] [PubMed]
  3. K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett.30(6), 625–627 (2005).
    [CrossRef] [PubMed]
  4. L. D. Wang, K. Maslov, J. J. Yao, B. Rao, and L. V. Wang, “Fast voice-coil scanning optical-resolution photoacoustic microscopy,” Opt. Lett.36(2), 139–141 (2011).
    [CrossRef] [PubMed]
  5. S. L. Chen, Z. X. Xie, T. Ling, L. J. Guo, X. B. Wei, and X. D. Wang, “Miniaturized all-optical photoacoustic microscopy based on microelectromechanical systems mirror scanning,” Opt. Lett.37(20), 4263–4265 (2012).
    [CrossRef] [PubMed]
  6. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
    [CrossRef] [PubMed]
  7. H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt. Express14(20), 9317–9323 (2006).
    [CrossRef] [PubMed]
  8. J.-T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt.11(3), 034032 (2006).
    [CrossRef] [PubMed]
  9. C. Zhang, Y.-J. Cheng, J. Chen, S. Wickline, and L. V. Wang, “Label-free photoacoustic microscopy of myocardial sheet architecture,” J. Biomed. Opt.17(6), 060506 (2012).
    [CrossRef] [PubMed]
  10. R. G. M. Kolkman, M. J. Mulder, C. P. Glade, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic imaging of port-wine stains,” Lasers Surg. Med.40(3), 178–182 (2008).
    [CrossRef] [PubMed]
  11. V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J.-W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt.12(5), 051503 (2007).
    [CrossRef] [PubMed]
  12. K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt.13(5), 054033 (2008).
    [CrossRef] [PubMed]
  13. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett.33(9), 929–931 (2008).
    [CrossRef] [PubMed]
  14. Y. Hou, S.-W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt.13(6), 064033 (2008).
    [CrossRef] [PubMed]
  15. Z. Lin, C. Lin, X. Lu, R. Ye, and Y. Huang, “Study of photoacoustic imaging based on all-optical detection,” 71602K (2008).
  16. R. L. Shelton and B. E. Applegate, “Off-axis photoacoustic microscopy,” IEEE Trans. Biomed. Eng.57(8), 1835–1838 (2010).
    [CrossRef] [PubMed]
  17. W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt.18(2), 026001 (2013).
    [CrossRef] [PubMed]
  18. G. York and Y. Kim, “Ultrasound processing and computing: review and future directions,” Annu. Rev. Biomed. Eng.1(1), 559–588 (1999).
    [CrossRef] [PubMed]
  19. Y. Wang, D. Xing, Y. G. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol.49(14), 3117–3124 (2004).
    [CrossRef] [PubMed]
  20. Z. Li, Z. Zeng, W. Xie, and H. Li, “A method for simultaneously estimating acoustic and optical properties of heterogeneous absorber using focused photoacoustic imaging based on Hilbert transform,” 82232D (2012).
  21. J. H. Chang, J. T. Yen, and K. K. Shung, “A novel envelope detector for high-frame rate, high-frequency ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(9), 1792–1801 (2007).
    [CrossRef] [PubMed]
  22. S. A. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Accelerating compute-intensive applications with GPUs and FPGAs,” 2008 Symposium on Application Specific Processors, 101–107 (2008).
    [CrossRef]
  23. R. A. Colyer, C. Lee, and E. Gratton, “A novel fluorescence lifetime imaging system that optimizes photon efficiency,” Microsc. Res. Tech.71(3), 201–213 (2008).
    [CrossRef] [PubMed]
  24. M. C. Hemmsen, S. I. Nikolov, M. M. Pedersen, M. J. Pihl, M. S. Enevoldsen, J. M. Hansen, and J. A. Jensen, “Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59(7), 1487–1499 (2012).
    [CrossRef] [PubMed]
  25. T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008).
    [CrossRef] [PubMed]
  26. J. Karlsson, J. von Hofsten, and P. E. Olsson, “Generating transparent zebrafish: A refined method to improve detection of gene expression during embryonic development,” Mar. Biotechnol. (NY)3(6), 522–527 (2001).
    [CrossRef] [PubMed]
  27. C. Zhang, K. Maslov, J. J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt.17(11), 116016 (2012).
    [CrossRef] [PubMed]
  28. Z. X. Xie, S. L. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett.34(12), 1771–1773 (2009).
    [CrossRef] [PubMed]
  29. M. Liebling, A. S. Forouhar, M. Gharib, S. E. Fraser, and M. E. Dickinson, “Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences,” J. Biomed. Opt.10(5), 054001 (2005).
    [CrossRef] [PubMed]
  30. N. Rana, M. Moond, A. Marthi, S. Bapatla, T. Sarvepalli, K. Chatti, and A. K. Challa, “Caffeine-induced effects on heart rate in zebrafish embryos and possible mechanisms of action: An effective system for experiments in chemical biology,” Zebrafish7(1), 69–81 (2010).
    [CrossRef] [PubMed]

2013 (1)

W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt.18(2), 026001 (2013).
[CrossRef] [PubMed]

2012 (4)

C. Zhang, Y.-J. Cheng, J. Chen, S. Wickline, and L. V. Wang, “Label-free photoacoustic microscopy of myocardial sheet architecture,” J. Biomed. Opt.17(6), 060506 (2012).
[CrossRef] [PubMed]

S. L. Chen, Z. X. Xie, T. Ling, L. J. Guo, X. B. Wei, and X. D. Wang, “Miniaturized all-optical photoacoustic microscopy based on microelectromechanical systems mirror scanning,” Opt. Lett.37(20), 4263–4265 (2012).
[CrossRef] [PubMed]

M. C. Hemmsen, S. I. Nikolov, M. M. Pedersen, M. J. Pihl, M. S. Enevoldsen, J. M. Hansen, and J. A. Jensen, “Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59(7), 1487–1499 (2012).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, J. J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt.17(11), 116016 (2012).
[CrossRef] [PubMed]

2011 (1)

2010 (3)

C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett.35(19), 3195–3197 (2010).
[CrossRef] [PubMed]

R. L. Shelton and B. E. Applegate, “Off-axis photoacoustic microscopy,” IEEE Trans. Biomed. Eng.57(8), 1835–1838 (2010).
[CrossRef] [PubMed]

N. Rana, M. Moond, A. Marthi, S. Bapatla, T. Sarvepalli, K. Chatti, and A. K. Challa, “Caffeine-induced effects on heart rate in zebrafish embryos and possible mechanisms of action: An effective system for experiments in chemical biology,” Zebrafish7(1), 69–81 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (6)

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008).
[CrossRef] [PubMed]

R. A. Colyer, C. Lee, and E. Gratton, “A novel fluorescence lifetime imaging system that optimizes photon efficiency,” Microsc. Res. Tech.71(3), 201–213 (2008).
[CrossRef] [PubMed]

R. G. M. Kolkman, M. J. Mulder, C. P. Glade, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic imaging of port-wine stains,” Lasers Surg. Med.40(3), 178–182 (2008).
[CrossRef] [PubMed]

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt.13(5), 054033 (2008).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett.33(9), 929–931 (2008).
[CrossRef] [PubMed]

Y. Hou, S.-W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt.13(6), 064033 (2008).
[CrossRef] [PubMed]

2007 (2)

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J.-W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt.12(5), 051503 (2007).
[CrossRef] [PubMed]

J. H. Chang, J. T. Yen, and K. K. Shung, “A novel envelope detector for high-frame rate, high-frequency ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(9), 1792–1801 (2007).
[CrossRef] [PubMed]

2006 (3)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt. Express14(20), 9317–9323 (2006).
[CrossRef] [PubMed]

J.-T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt.11(3), 034032 (2006).
[CrossRef] [PubMed]

2005 (2)

K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett.30(6), 625–627 (2005).
[CrossRef] [PubMed]

M. Liebling, A. S. Forouhar, M. Gharib, S. E. Fraser, and M. E. Dickinson, “Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences,” J. Biomed. Opt.10(5), 054001 (2005).
[CrossRef] [PubMed]

2004 (1)

Y. Wang, D. Xing, Y. G. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol.49(14), 3117–3124 (2004).
[CrossRef] [PubMed]

2001 (1)

J. Karlsson, J. von Hofsten, and P. E. Olsson, “Generating transparent zebrafish: A refined method to improve detection of gene expression during embryonic development,” Mar. Biotechnol. (NY)3(6), 522–527 (2001).
[CrossRef] [PubMed]

1999 (1)

G. York and Y. Kim, “Ultrasound processing and computing: review and future directions,” Annu. Rev. Biomed. Eng.1(1), 559–588 (1999).
[CrossRef] [PubMed]

1979 (1)

M. Luukkala and A. Penttinen, “Photoacoustic microscope,” Electron. Lett.15(11), 325–326 (1979).
[CrossRef]

Applegate, B. E.

R. L. Shelton and B. E. Applegate, “Off-axis photoacoustic microscopy,” IEEE Trans. Biomed. Eng.57(8), 1835–1838 (2010).
[CrossRef] [PubMed]

Ashkenazi, S.

Y. Hou, S.-W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt.13(6), 064033 (2008).
[CrossRef] [PubMed]

Bapatla, S.

N. Rana, M. Moond, A. Marthi, S. Bapatla, T. Sarvepalli, K. Chatti, and A. K. Challa, “Caffeine-induced effects on heart rate in zebrafish embryos and possible mechanisms of action: An effective system for experiments in chemical biology,” Zebrafish7(1), 69–81 (2010).
[CrossRef] [PubMed]

Challa, A. K.

N. Rana, M. Moond, A. Marthi, S. Bapatla, T. Sarvepalli, K. Chatti, and A. K. Challa, “Caffeine-induced effects on heart rate in zebrafish embryos and possible mechanisms of action: An effective system for experiments in chemical biology,” Zebrafish7(1), 69–81 (2010).
[CrossRef] [PubMed]

Chang, J. H.

J. H. Chang, J. T. Yen, and K. K. Shung, “A novel envelope detector for high-frame rate, high-frequency ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(9), 1792–1801 (2007).
[CrossRef] [PubMed]

Chatti, K.

N. Rana, M. Moond, A. Marthi, S. Bapatla, T. Sarvepalli, K. Chatti, and A. K. Challa, “Caffeine-induced effects on heart rate in zebrafish embryos and possible mechanisms of action: An effective system for experiments in chemical biology,” Zebrafish7(1), 69–81 (2010).
[CrossRef] [PubMed]

Che, S. A.

S. A. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Accelerating compute-intensive applications with GPUs and FPGAs,” 2008 Symposium on Application Specific Processors, 101–107 (2008).
[CrossRef]

Chen, J.

C. Zhang, Y.-J. Cheng, J. Chen, S. Wickline, and L. V. Wang, “Label-free photoacoustic microscopy of myocardial sheet architecture,” J. Biomed. Opt.17(6), 060506 (2012).
[CrossRef] [PubMed]

Chen, Q.

Y. Wang, D. Xing, Y. G. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol.49(14), 3117–3124 (2004).
[CrossRef] [PubMed]

Chen, S. L.

Cheng, Y.-J.

C. Zhang, Y.-J. Cheng, J. Chen, S. Wickline, and L. V. Wang, “Label-free photoacoustic microscopy of myocardial sheet architecture,” J. Biomed. Opt.17(6), 060506 (2012).
[CrossRef] [PubMed]

Colyer, R. A.

R. A. Colyer, C. Lee, and E. Gratton, “A novel fluorescence lifetime imaging system that optimizes photon efficiency,” Microsc. Res. Tech.71(3), 201–213 (2008).
[CrossRef] [PubMed]

Dickinson, M. E.

M. Liebling, A. S. Forouhar, M. Gharib, S. E. Fraser, and M. E. Dickinson, “Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences,” J. Biomed. Opt.10(5), 054001 (2005).
[CrossRef] [PubMed]

Enevoldsen, M. S.

M. C. Hemmsen, S. I. Nikolov, M. M. Pedersen, M. J. Pihl, M. S. Enevoldsen, J. M. Hansen, and J. A. Jensen, “Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59(7), 1487–1499 (2012).
[CrossRef] [PubMed]

Ferguson, R. D.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008).
[CrossRef] [PubMed]

Forbrich, A.

W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt.18(2), 026001 (2013).
[CrossRef] [PubMed]

Forouhar, A. S.

M. Liebling, A. S. Forouhar, M. Gharib, S. E. Fraser, and M. E. Dickinson, “Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences,” J. Biomed. Opt.10(5), 054001 (2005).
[CrossRef] [PubMed]

Fraser, S. E.

M. Liebling, A. S. Forouhar, M. Gharib, S. E. Fraser, and M. E. Dickinson, “Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences,” J. Biomed. Opt.10(5), 054001 (2005).
[CrossRef] [PubMed]

Galanzha, E. I.

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J.-W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt.12(5), 051503 (2007).
[CrossRef] [PubMed]

Gharib, M.

M. Liebling, A. S. Forouhar, M. Gharib, S. E. Fraser, and M. E. Dickinson, “Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences,” J. Biomed. Opt.10(5), 054001 (2005).
[CrossRef] [PubMed]

Glade, C. P.

R. G. M. Kolkman, M. J. Mulder, C. P. Glade, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic imaging of port-wine stains,” Lasers Surg. Med.40(3), 178–182 (2008).
[CrossRef] [PubMed]

Gratton, E.

R. A. Colyer, C. Lee, and E. Gratton, “A novel fluorescence lifetime imaging system that optimizes photon efficiency,” Microsc. Res. Tech.71(3), 201–213 (2008).
[CrossRef] [PubMed]

Guo, L. J.

Hajireza, P.

W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt.18(2), 026001 (2013).
[CrossRef] [PubMed]

Hammer, D. X.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008).
[CrossRef] [PubMed]

Hansen, J. M.

M. C. Hemmsen, S. I. Nikolov, M. M. Pedersen, M. J. Pihl, M. S. Enevoldsen, J. M. Hansen, and J. A. Jensen, “Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59(7), 1487–1499 (2012).
[CrossRef] [PubMed]

Hemmsen, M. C.

M. C. Hemmsen, S. I. Nikolov, M. M. Pedersen, M. J. Pihl, M. S. Enevoldsen, J. M. Hansen, and J. A. Jensen, “Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59(7), 1487–1499 (2012).
[CrossRef] [PubMed]

Hou, Y.

Y. Hou, S.-W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt.13(6), 064033 (2008).
[CrossRef] [PubMed]

Hu, S.

Huang, S.-W.

Y. Hou, S.-W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt.13(6), 064033 (2008).
[CrossRef] [PubMed]

Iftimia, N. V.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008).
[CrossRef] [PubMed]

Jensen, J. A.

M. C. Hemmsen, S. I. Nikolov, M. M. Pedersen, M. J. Pihl, M. S. Enevoldsen, J. M. Hansen, and J. A. Jensen, “Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59(7), 1487–1499 (2012).
[CrossRef] [PubMed]

Jiao, S. L.

Karlsson, J.

J. Karlsson, J. von Hofsten, and P. E. Olsson, “Generating transparent zebrafish: A refined method to improve detection of gene expression during embryonic development,” Mar. Biotechnol. (NY)3(6), 522–527 (2001).
[CrossRef] [PubMed]

Khlebtsov, N. G.

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J.-W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt.12(5), 051503 (2007).
[CrossRef] [PubMed]

Kim, J.-W.

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J.-W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt.12(5), 051503 (2007).
[CrossRef] [PubMed]

Kim, Y.

G. York and Y. Kim, “Ultrasound processing and computing: review and future directions,” Annu. Rev. Biomed. Eng.1(1), 559–588 (1999).
[CrossRef] [PubMed]

Kolkman, R. G. M.

R. G. M. Kolkman, M. J. Mulder, C. P. Glade, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic imaging of port-wine stains,” Lasers Surg. Med.40(3), 178–182 (2008).
[CrossRef] [PubMed]

Lach, J.

S. A. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Accelerating compute-intensive applications with GPUs and FPGAs,” 2008 Symposium on Application Specific Processors, 101–107 (2008).
[CrossRef]

Lee, C.

R. A. Colyer, C. Lee, and E. Gratton, “A novel fluorescence lifetime imaging system that optimizes photon efficiency,” Microsc. Res. Tech.71(3), 201–213 (2008).
[CrossRef] [PubMed]

Li, J.

S. A. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Accelerating compute-intensive applications with GPUs and FPGAs,” 2008 Symposium on Application Specific Processors, 101–107 (2008).
[CrossRef]

Li, M. L.

H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt. Express14(20), 9317–9323 (2006).
[CrossRef] [PubMed]

J.-T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt.11(3), 034032 (2006).
[CrossRef] [PubMed]

Liebling, M.

M. Liebling, A. S. Forouhar, M. Gharib, S. E. Fraser, and M. E. Dickinson, “Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences,” J. Biomed. Opt.10(5), 054001 (2005).
[CrossRef] [PubMed]

Ling, T.

Luukkala, M.

M. Luukkala and A. Penttinen, “Photoacoustic microscope,” Electron. Lett.15(11), 325–326 (1979).
[CrossRef]

Margenthaler, J. A.

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt.13(5), 054033 (2008).
[CrossRef] [PubMed]

Marthi, A.

N. Rana, M. Moond, A. Marthi, S. Bapatla, T. Sarvepalli, K. Chatti, and A. K. Challa, “Caffeine-induced effects on heart rate in zebrafish embryos and possible mechanisms of action: An effective system for experiments in chemical biology,” Zebrafish7(1), 69–81 (2010).
[CrossRef] [PubMed]

Maslov, K.

C. Zhang, K. Maslov, J. J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt.17(11), 116016 (2012).
[CrossRef] [PubMed]

L. D. Wang, K. Maslov, J. J. Yao, B. Rao, and L. V. Wang, “Fast voice-coil scanning optical-resolution photoacoustic microscopy,” Opt. Lett.36(2), 139–141 (2011).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett.35(19), 3195–3197 (2010).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett.33(9), 929–931 (2008).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt. Express14(20), 9317–9323 (2006).
[CrossRef] [PubMed]

J.-T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt.11(3), 034032 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett.30(6), 625–627 (2005).
[CrossRef] [PubMed]

Moond, M.

N. Rana, M. Moond, A. Marthi, S. Bapatla, T. Sarvepalli, K. Chatti, and A. K. Challa, “Caffeine-induced effects on heart rate in zebrafish embryos and possible mechanisms of action: An effective system for experiments in chemical biology,” Zebrafish7(1), 69–81 (2010).
[CrossRef] [PubMed]

Mulder, M. J.

R. G. M. Kolkman, M. J. Mulder, C. P. Glade, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic imaging of port-wine stains,” Lasers Surg. Med.40(3), 178–182 (2008).
[CrossRef] [PubMed]

Nikolov, S. I.

M. C. Hemmsen, S. I. Nikolov, M. M. Pedersen, M. J. Pihl, M. S. Enevoldsen, J. M. Hansen, and J. A. Jensen, “Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59(7), 1487–1499 (2012).
[CrossRef] [PubMed]

O’Donnell, M.

Y. Hou, S.-W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt.13(6), 064033 (2008).
[CrossRef] [PubMed]

Oh, J.-T.

J.-T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt.11(3), 034032 (2006).
[CrossRef] [PubMed]

Olsson, P. E.

J. Karlsson, J. von Hofsten, and P. E. Olsson, “Generating transparent zebrafish: A refined method to improve detection of gene expression during embryonic development,” Mar. Biotechnol. (NY)3(6), 522–527 (2001).
[CrossRef] [PubMed]

Pedersen, M. M.

M. C. Hemmsen, S. I. Nikolov, M. M. Pedersen, M. J. Pihl, M. S. Enevoldsen, J. M. Hansen, and J. A. Jensen, “Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59(7), 1487–1499 (2012).
[CrossRef] [PubMed]

Penttinen, A.

M. Luukkala and A. Penttinen, “Photoacoustic microscope,” Electron. Lett.15(11), 325–326 (1979).
[CrossRef]

Pihl, M. J.

M. C. Hemmsen, S. I. Nikolov, M. M. Pedersen, M. J. Pihl, M. S. Enevoldsen, J. M. Hansen, and J. A. Jensen, “Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59(7), 1487–1499 (2012).
[CrossRef] [PubMed]

Puliafito, C. A.

Rana, N.

N. Rana, M. Moond, A. Marthi, S. Bapatla, T. Sarvepalli, K. Chatti, and A. K. Challa, “Caffeine-induced effects on heart rate in zebrafish embryos and possible mechanisms of action: An effective system for experiments in chemical biology,” Zebrafish7(1), 69–81 (2010).
[CrossRef] [PubMed]

Rao, B.

Sarvepalli, T.

N. Rana, M. Moond, A. Marthi, S. Bapatla, T. Sarvepalli, K. Chatti, and A. K. Challa, “Caffeine-induced effects on heart rate in zebrafish embryos and possible mechanisms of action: An effective system for experiments in chemical biology,” Zebrafish7(1), 69–81 (2010).
[CrossRef] [PubMed]

Shao, P.

W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt.18(2), 026001 (2013).
[CrossRef] [PubMed]

Shashkov, E. V.

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J.-W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt.12(5), 051503 (2007).
[CrossRef] [PubMed]

Sheaffer, J. W.

S. A. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Accelerating compute-intensive applications with GPUs and FPGAs,” 2008 Symposium on Application Specific Processors, 101–107 (2008).
[CrossRef]

Shelton, R. L.

R. L. Shelton and B. E. Applegate, “Off-axis photoacoustic microscopy,” IEEE Trans. Biomed. Eng.57(8), 1835–1838 (2010).
[CrossRef] [PubMed]

Shi, W.

W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt.18(2), 026001 (2013).
[CrossRef] [PubMed]

Shung, K. K.

J. H. Chang, J. T. Yen, and K. K. Shung, “A novel envelope detector for high-frame rate, high-frequency ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(9), 1792–1801 (2007).
[CrossRef] [PubMed]

Skadron, K.

S. A. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Accelerating compute-intensive applications with GPUs and FPGAs,” 2008 Symposium on Application Specific Processors, 101–107 (2008).
[CrossRef]

Song, K. H.

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt.13(5), 054033 (2008).
[CrossRef] [PubMed]

Steenbergen, W.

R. G. M. Kolkman, M. J. Mulder, C. P. Glade, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic imaging of port-wine stains,” Lasers Surg. Med.40(3), 178–182 (2008).
[CrossRef] [PubMed]

Stein, E. W.

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt.13(5), 054033 (2008).
[CrossRef] [PubMed]

Stoica, G.

J.-T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt.11(3), 034032 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt. Express14(20), 9317–9323 (2006).
[CrossRef] [PubMed]

K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett.30(6), 625–627 (2005).
[CrossRef] [PubMed]

Tuchin, V. V.

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J.-W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt.12(5), 051503 (2007).
[CrossRef] [PubMed]

Ustun, T. E.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008).
[CrossRef] [PubMed]

van Leeuwen, T. G.

R. G. M. Kolkman, M. J. Mulder, C. P. Glade, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic imaging of port-wine stains,” Lasers Surg. Med.40(3), 178–182 (2008).
[CrossRef] [PubMed]

von Hofsten, J.

J. Karlsson, J. von Hofsten, and P. E. Olsson, “Generating transparent zebrafish: A refined method to improve detection of gene expression during embryonic development,” Mar. Biotechnol. (NY)3(6), 522–527 (2001).
[CrossRef] [PubMed]

Wang, L. D.

Wang, L. V.

C. Zhang, Y.-J. Cheng, J. Chen, S. Wickline, and L. V. Wang, “Label-free photoacoustic microscopy of myocardial sheet architecture,” J. Biomed. Opt.17(6), 060506 (2012).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, J. J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt.17(11), 116016 (2012).
[CrossRef] [PubMed]

L. D. Wang, K. Maslov, J. J. Yao, B. Rao, and L. V. Wang, “Fast voice-coil scanning optical-resolution photoacoustic microscopy,” Opt. Lett.36(2), 139–141 (2011).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett.35(19), 3195–3197 (2010).
[CrossRef] [PubMed]

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt.13(5), 054033 (2008).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett.33(9), 929–931 (2008).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt. Express14(20), 9317–9323 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

J.-T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt.11(3), 034032 (2006).
[CrossRef] [PubMed]

K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett.30(6), 625–627 (2005).
[CrossRef] [PubMed]

Wang, X. D.

Wang, Y.

Y. Wang, D. Xing, Y. G. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol.49(14), 3117–3124 (2004).
[CrossRef] [PubMed]

Wei, X. B.

Wickline, S.

C. Zhang, Y.-J. Cheng, J. Chen, S. Wickline, and L. V. Wang, “Label-free photoacoustic microscopy of myocardial sheet architecture,” J. Biomed. Opt.17(6), 060506 (2012).
[CrossRef] [PubMed]

Witte, R.

Y. Hou, S.-W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt.13(6), 064033 (2008).
[CrossRef] [PubMed]

Xie, Z. X.

Xing, D.

Y. Wang, D. Xing, Y. G. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol.49(14), 3117–3124 (2004).
[CrossRef] [PubMed]

Yao, J. J.

C. Zhang, K. Maslov, J. J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt.17(11), 116016 (2012).
[CrossRef] [PubMed]

L. D. Wang, K. Maslov, J. J. Yao, B. Rao, and L. V. Wang, “Fast voice-coil scanning optical-resolution photoacoustic microscopy,” Opt. Lett.36(2), 139–141 (2011).
[CrossRef] [PubMed]

Yen, J. T.

J. H. Chang, J. T. Yen, and K. K. Shung, “A novel envelope detector for high-frame rate, high-frequency ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(9), 1792–1801 (2007).
[CrossRef] [PubMed]

York, G.

G. York and Y. Kim, “Ultrasound processing and computing: review and future directions,” Annu. Rev. Biomed. Eng.1(1), 559–588 (1999).
[CrossRef] [PubMed]

Zemp, R. J.

W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt.18(2), 026001 (2013).
[CrossRef] [PubMed]

Zeng, Y. G.

Y. Wang, D. Xing, Y. G. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol.49(14), 3117–3124 (2004).
[CrossRef] [PubMed]

Zhang, C.

C. Zhang, K. Maslov, J. J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt.17(11), 116016 (2012).
[CrossRef] [PubMed]

C. Zhang, Y.-J. Cheng, J. Chen, S. Wickline, and L. V. Wang, “Label-free photoacoustic microscopy of myocardial sheet architecture,” J. Biomed. Opt.17(6), 060506 (2012).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett.35(19), 3195–3197 (2010).
[CrossRef] [PubMed]

Zhang, H. F.

Zharov, V. P.

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J.-W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt.12(5), 051503 (2007).
[CrossRef] [PubMed]

Annu. Rev. Biomed. Eng. (1)

G. York and Y. Kim, “Ultrasound processing and computing: review and future directions,” Annu. Rev. Biomed. Eng.1(1), 559–588 (1999).
[CrossRef] [PubMed]

Electron. Lett. (1)

M. Luukkala and A. Penttinen, “Photoacoustic microscope,” Electron. Lett.15(11), 325–326 (1979).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

R. L. Shelton and B. E. Applegate, “Off-axis photoacoustic microscopy,” IEEE Trans. Biomed. Eng.57(8), 1835–1838 (2010).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2)

J. H. Chang, J. T. Yen, and K. K. Shung, “A novel envelope detector for high-frame rate, high-frequency ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(9), 1792–1801 (2007).
[CrossRef] [PubMed]

M. C. Hemmsen, S. I. Nikolov, M. M. Pedersen, M. J. Pihl, M. S. Enevoldsen, J. M. Hansen, and J. A. Jensen, “Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59(7), 1487–1499 (2012).
[CrossRef] [PubMed]

J. Biomed. Opt. (8)

C. Zhang, K. Maslov, J. J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt.17(11), 116016 (2012).
[CrossRef] [PubMed]

M. Liebling, A. S. Forouhar, M. Gharib, S. E. Fraser, and M. E. Dickinson, “Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences,” J. Biomed. Opt.10(5), 054001 (2005).
[CrossRef] [PubMed]

W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt.18(2), 026001 (2013).
[CrossRef] [PubMed]

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J.-W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt.12(5), 051503 (2007).
[CrossRef] [PubMed]

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt.13(5), 054033 (2008).
[CrossRef] [PubMed]

Y. Hou, S.-W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt.13(6), 064033 (2008).
[CrossRef] [PubMed]

J.-T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt.11(3), 034032 (2006).
[CrossRef] [PubMed]

C. Zhang, Y.-J. Cheng, J. Chen, S. Wickline, and L. V. Wang, “Label-free photoacoustic microscopy of myocardial sheet architecture,” J. Biomed. Opt.17(6), 060506 (2012).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

R. G. M. Kolkman, M. J. Mulder, C. P. Glade, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic imaging of port-wine stains,” Lasers Surg. Med.40(3), 178–182 (2008).
[CrossRef] [PubMed]

Mar. Biotechnol. (NY) (1)

J. Karlsson, J. von Hofsten, and P. E. Olsson, “Generating transparent zebrafish: A refined method to improve detection of gene expression during embryonic development,” Mar. Biotechnol. (NY)3(6), 522–527 (2001).
[CrossRef] [PubMed]

Microsc. Res. Tech. (1)

R. A. Colyer, C. Lee, and E. Gratton, “A novel fluorescence lifetime imaging system that optimizes photon efficiency,” Microsc. Res. Tech.71(3), 201–213 (2008).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (6)

Phys. Med. Biol. (1)

Y. Wang, D. Xing, Y. G. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol.49(14), 3117–3124 (2004).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008).
[CrossRef] [PubMed]

Zebrafish (1)

N. Rana, M. Moond, A. Marthi, S. Bapatla, T. Sarvepalli, K. Chatti, and A. K. Challa, “Caffeine-induced effects on heart rate in zebrafish embryos and possible mechanisms of action: An effective system for experiments in chemical biology,” Zebrafish7(1), 69–81 (2010).
[CrossRef] [PubMed]

Other (3)

S. A. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Accelerating compute-intensive applications with GPUs and FPGAs,” 2008 Symposium on Application Specific Processors, 101–107 (2008).
[CrossRef]

Z. Li, Z. Zeng, W. Xie, and H. Li, “A method for simultaneously estimating acoustic and optical properties of heterogeneous absorber using focused photoacoustic imaging based on Hilbert transform,” 82232D (2012).

Z. Lin, C. Lin, X. Lu, R. Ye, and Y. Huang, “Study of photoacoustic imaging based on all-optical detection,” 71602K (2008).

Supplementary Material (2)

» Media 1: AVI (2073 KB)     
» Media 2: AVI (842 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Photoacoustic b-scan of a Syrian hamster cheek pouch with no post processing. (b) B-scan of a hamster cheek pouch processed using QD. (c) B-scan of a hamster check pouch processed using HT.

Fig. 2
Fig. 2

The movement of data from the photoacoustic signal as it is demodulated by the FPGA. Each clock cycle, a single data point is read in via a digitizer. The point is passed to a processing loop where it undergoes QD. Time points indicate latency for steps

Fig. 3
Fig. 3

(a) Off-axis setup of the objective and ultrasound transducer. (b) Isometric view of the off axis PAM system. (c) Schematic of PAM system. G is an x-y galvanometer scanning pair, MH is the microscope head consisting of the objective and ultrasound transducer. TL and SL are the telescoping and scanning lenses used to image the scanning laser onto the back plane of the objective.

Fig. 4
Fig. 4

(a) Volume of ink mark on the coverslip. (b) B-scan of ink mark taken from volume. Note the reflection of the PAM signal from the far side of the coverslip. (c) A-line of demodulated PAM signal, FWHM corresponds to axial resolution of the system. Scale bar is 100 µm.

Fig. 5
Fig. 5

(a) Modified off-axis design of the objective and transducer. Black dot indicates focal spot of transducer. Arrows show the direction of transducer displacement. (b) Increase in field of view with respect to position in the near field of the transducer. (c) Loss of signal to noise ratio in dB with respect to position in the near field of the transducer. (d) Loss of signal to noise ratio in dB with respect to increased field of view.

Fig. 6
Fig. 6

(a) Near field fluctuations of the transducer in the lateral dimension. (b) Near field fluctuations of the transducer in the axial dimension characterized by SNR.

Fig. 7
Fig. 7

Frames of demodulated b-scan captured using OA-PAM system capturing dynamic heartbeat of zebrafish embryo heart. Diastole and systole of both chambers are shown. Lateral scale bar is 100 µm. (Media 1).

Fig. 8
Fig. 8

Above are three dimensional volumes taken from a four-dimensional data set of a zebrafish heart. In order to show the progression of a single heartbeat, the figure shows every third volume from the data set of a single cardiac cycle. Chamber 1, on the left, starts in diastole while Chamber 2, on the right, is in systole. As the heartbeat progresses, chamber 2 relaxes while chamber 1 begins to contract. At 0.1760 seconds, chamber 1 is in systole while chamber 2 is in diastole. The heartbeat finishes at 0.3344s as chamber 1 returns to diastole. Key frames are marked by an asterisk for clarity. (Media 2).

Tables (1)

Tables Icon

Table 1 Steps for QD of raw photoacoustic signal

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

PA(t)=2 ( {Lowpass[sin(ωt)signal(t)]} 2 + {Lowpass[cos(ωt)signal(t)]} 2 ) 1 2
AxialResolution =0.88 ν Δfcosθ

Metrics