Abstract

We present the first experimental results of reflectance Diffuse Optical Tomography (DOT) performed with a fast-gated single-photon avalanche diode (SPAD) coupled to a time-correlated single-photon counting system. The Mellin-Laplace transform was employed to process time-resolved data. We compare the performances of the SPAD operated in the gated mode vs. the non-gated mode for the detection and localization of an absorbing inclusion deeply embedded in a turbid medium for 5 and 15 mm interfiber distances. We demonstrate that, for a given acquisition time, the gated mode enables the detection and better localization of deeper absorbing inclusions than the non-gated mode. These results obtained on phantoms demonstrate the efficacy of time-resolved DOT at small interfiber distances. By achieving depth sensitivity with limited acquisition times, the gated mode increases the relevance of reflectance DOT at small interfiber distance for clinical applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Hebden, M. Varela, S. Magazov, N. Everdell, A. Gibson, J. Meek, and T. Austin, “Diffuse optical imaging of the newborn infant brain,” in 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI) (IEEE, 2012), pp. 503–505.
    [CrossRef]
  2. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
    [CrossRef]
  3. D. Contini, L. Zucchelli, L. Spinelli, M. Caffini, R. Re, A. Pifferi, R. Cubeddu, and A. Torricelli, “Review: Brain and muscle near infrared spectroscopy/imaging techniques,” J. Near Infrared Spectrosc.20(1), 15–27 (2012).
    [CrossRef]
  4. T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt.12(1), 014022 (2007).
    [CrossRef] [PubMed]
  5. T. Svensson, E. Alerstam, M. Einarsdóttír, K. Svanberg, and S. Andersson-Engels, “Towards accurate in vivo spectroscopy of the human prostate,” J Biophotonics1(3), 200–203 (2008).
    [CrossRef] [PubMed]
  6. J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
    [CrossRef] [PubMed]
  7. S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol.47(23), 4131–4144 (2002).
    [CrossRef] [PubMed]
  8. A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
    [CrossRef] [PubMed]
  9. J. C. Hebden, H. Veenstra, H. Dehghani, E. M. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt.40(19), 3278–3287 (2001).
    [CrossRef] [PubMed]
  10. F. E. Schmidt, M. E. Fry, E. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum.71(1), 256–265 (2000).
    [CrossRef]
  11. H. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt.12(6), 062107 (2007).
    [CrossRef] [PubMed]
  12. Y. Hoshi, I. Oda, Y. Wada, Y. Ito, M. Yutaka Yamashita, K. Oda, Y. Ohta, Yamada, and Mamoru Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Brain Res. Cogn. Brain Res.9(3), 339–342 (2000).
    [CrossRef] [PubMed]
  13. J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
    [CrossRef] [PubMed]
  14. J. Selb, A. M. Dale, and D. A. Boas, “Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution,” Opt. Express15(25), 16400–16412 (2007).
    [CrossRef] [PubMed]
  15. Q. Zhao, L. Spinelli, A. Bassi, G. Valentini, D. Contini, A. Torricelli, R. Cubeddu, G. Zaccanti, F. Martelli, and A. Pifferi, “Functional tomography using a time-gated ICCD camera,” Biomed. Opt. Express2(3), 705–716 (2011).
    [CrossRef] [PubMed]
  16. M. Schweiger and S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol.44(7), 1699–1717 (1999).
    [CrossRef] [PubMed]
  17. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt.43(15), 3037–3047 (2004).
    [CrossRef] [PubMed]
  18. L. Hervé, A. Puszka, A. Planat-Chrétien, and J.-M. Dinten, “Time-domain diffuse optical tomography processing by using the Mellin-Laplace transform,” Appl. Opt.51(25), 5978–5988 (2012).
    [CrossRef] [PubMed]
  19. F. Gao, H. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt.41(4), 778–791 (2002).
    [CrossRef] [PubMed]
  20. B. Montcel, R. Chabrier, and P. Poulet, “Time-resolved absorption and hemoglobin concentration difference maps: a method to retrieve depth-related information on cerebral hemodynamics,” Opt. Express14(25), 12271–12287 (2006).
    [CrossRef] [PubMed]
  21. P. Sawosz, N. Zolek, M. Kacprzak, R. Maniewski, and A. Liebert, “Application of time-gated CCD camera with image intensifier in contactless detection of absorbing inclusions buried in optically turbid medium which mimics local changes in oxygenation of the brain tissue,” Opto-Electron. Rev.20(4), 309–314 (2012).
    [CrossRef]
  22. A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett.100(13), 138101 (2008).
    [CrossRef] [PubMed]
  23. A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express19(11), 10735–10746 (2011).
    [CrossRef] [PubMed]
  24. A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy,” IEEE J. Sel. Top. Quantum Electron.16(4), 1023–1030 (2010).
    [CrossRef]
  25. E. Alerstam, T. Svensson, S. Andersson-Engels, L. Spinelli, D. Contini, A. Dalla Mora, A. Tosi, F. Zappa, and A. Pifferi, “Single-fiber diffuse optical time-of-flight spectroscopy,” Opt. Lett.37(14), 2877–2879 (2012).
    [CrossRef] [PubMed]
  26. M. Mazurenka, A. Jelzow, H. Wabnitz, D. Contini, L. Spinelli, A. Pifferi, R. Cubeddu, A. D. Mora, A. Tosi, F. Zappa, and R. Macdonald, “Non-contact time-resolved diffuse reflectance imaging at null source-detector separation,” Opt. Express20(1), 283–290 (2012).
    [CrossRef] [PubMed]
  27. G. Boso, A. Dalla Mora, A. Della Frera, and A. Tosi, “Fast-gating of single-photon avalanche diodes with 200 ps transitions and 30 ps timing jitter,” Sens. Actuators A Phys.191, 61–67 (2013).
    [CrossRef]
  28. A. Puszka, L. Hervé, A. Planat-Chrétien, A. Koenig, J. Derouard, and J.-M. Dinten, “Time-domain reflectance diffuse optical tomography with Mellin-Laplace transform for experimental detection and depth localization of a single absorbing inclusion,” Biomed. Opt. Express4(4), 569–583 (2013).
    [CrossRef] [PubMed]
  29. A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thinjunction silicon single-photon avalanche diode,” Appl. Phys. Lett.100(24), 241111 (2012).
    [CrossRef]
  30. J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol.46(3), 879–896 (2001).
    [CrossRef] [PubMed]
  31. A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt.16(4), 046011 (2011).
    [CrossRef] [PubMed]
  32. P. Poulet, W. Uhring, W. Hanselmann, R. Glazenborg, F. Nouizi, V. Zint, and W. Hirschi, “A time-gated near-infrared spectroscopic imaging device for clinical applications,” Proc. SPIE8565, 85654M (2013).
    [CrossRef]
  33. J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt.10(1), 011013 (2005).
    [CrossRef] [PubMed]
  34. M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt.12(3), 034019 (2007).
    [CrossRef] [PubMed]

2013 (3)

G. Boso, A. Dalla Mora, A. Della Frera, and A. Tosi, “Fast-gating of single-photon avalanche diodes with 200 ps transitions and 30 ps timing jitter,” Sens. Actuators A Phys.191, 61–67 (2013).
[CrossRef]

A. Puszka, L. Hervé, A. Planat-Chrétien, A. Koenig, J. Derouard, and J.-M. Dinten, “Time-domain reflectance diffuse optical tomography with Mellin-Laplace transform for experimental detection and depth localization of a single absorbing inclusion,” Biomed. Opt. Express4(4), 569–583 (2013).
[CrossRef] [PubMed]

P. Poulet, W. Uhring, W. Hanselmann, R. Glazenborg, F. Nouizi, V. Zint, and W. Hirschi, “A time-gated near-infrared spectroscopic imaging device for clinical applications,” Proc. SPIE8565, 85654M (2013).
[CrossRef]

2012 (6)

E. Alerstam, T. Svensson, S. Andersson-Engels, L. Spinelli, D. Contini, A. Dalla Mora, A. Tosi, F. Zappa, and A. Pifferi, “Single-fiber diffuse optical time-of-flight spectroscopy,” Opt. Lett.37(14), 2877–2879 (2012).
[CrossRef] [PubMed]

M. Mazurenka, A. Jelzow, H. Wabnitz, D. Contini, L. Spinelli, A. Pifferi, R. Cubeddu, A. D. Mora, A. Tosi, F. Zappa, and R. Macdonald, “Non-contact time-resolved diffuse reflectance imaging at null source-detector separation,” Opt. Express20(1), 283–290 (2012).
[CrossRef] [PubMed]

A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thinjunction silicon single-photon avalanche diode,” Appl. Phys. Lett.100(24), 241111 (2012).
[CrossRef]

P. Sawosz, N. Zolek, M. Kacprzak, R. Maniewski, and A. Liebert, “Application of time-gated CCD camera with image intensifier in contactless detection of absorbing inclusions buried in optically turbid medium which mimics local changes in oxygenation of the brain tissue,” Opto-Electron. Rev.20(4), 309–314 (2012).
[CrossRef]

D. Contini, L. Zucchelli, L. Spinelli, M. Caffini, R. Re, A. Pifferi, R. Cubeddu, and A. Torricelli, “Review: Brain and muscle near infrared spectroscopy/imaging techniques,” J. Near Infrared Spectrosc.20(1), 15–27 (2012).
[CrossRef]

L. Hervé, A. Puszka, A. Planat-Chrétien, and J.-M. Dinten, “Time-domain diffuse optical tomography processing by using the Mellin-Laplace transform,” Appl. Opt.51(25), 5978–5988 (2012).
[CrossRef] [PubMed]

2011 (3)

2010 (2)

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy,” IEEE J. Sel. Top. Quantum Electron.16(4), 1023–1030 (2010).
[CrossRef]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

2008 (2)

T. Svensson, E. Alerstam, M. Einarsdóttír, K. Svanberg, and S. Andersson-Engels, “Towards accurate in vivo spectroscopy of the human prostate,” J Biophotonics1(3), 200–203 (2008).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett.100(13), 138101 (2008).
[CrossRef] [PubMed]

2007 (4)

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt.12(3), 034019 (2007).
[CrossRef] [PubMed]

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt.12(1), 014022 (2007).
[CrossRef] [PubMed]

H. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt.12(6), 062107 (2007).
[CrossRef] [PubMed]

J. Selb, A. M. Dale, and D. A. Boas, “Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution,” Opt. Express15(25), 16400–16412 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (2)

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt.10(1), 011013 (2005).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
[CrossRef] [PubMed]

2004 (1)

2002 (4)

F. Gao, H. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt.41(4), 778–791 (2002).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol.47(23), 4131–4144 (2002).
[CrossRef] [PubMed]

2001 (2)

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt.40(19), 3278–3287 (2001).
[CrossRef] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol.46(3), 879–896 (2001).
[CrossRef] [PubMed]

2000 (2)

F. E. Schmidt, M. E. Fry, E. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum.71(1), 256–265 (2000).
[CrossRef]

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, M. Yutaka Yamashita, K. Oda, Y. Ohta, Yamada, and Mamoru Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Brain Res. Cogn. Brain Res.9(3), 339–342 (2000).
[CrossRef] [PubMed]

1999 (1)

M. Schweiger and S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol.44(7), 1699–1717 (1999).
[CrossRef] [PubMed]

Alerstam, E.

E. Alerstam, T. Svensson, S. Andersson-Engels, L. Spinelli, D. Contini, A. Dalla Mora, A. Tosi, F. Zappa, and A. Pifferi, “Single-fiber diffuse optical time-of-flight spectroscopy,” Opt. Lett.37(14), 2877–2879 (2012).
[CrossRef] [PubMed]

T. Svensson, E. Alerstam, M. Einarsdóttír, K. Svanberg, and S. Andersson-Engels, “Towards accurate in vivo spectroscopy of the human prostate,” J Biophotonics1(3), 200–203 (2008).
[CrossRef] [PubMed]

Andersson-Engels, S.

E. Alerstam, T. Svensson, S. Andersson-Engels, L. Spinelli, D. Contini, A. Dalla Mora, A. Tosi, F. Zappa, and A. Pifferi, “Single-fiber diffuse optical time-of-flight spectroscopy,” Opt. Lett.37(14), 2877–2879 (2012).
[CrossRef] [PubMed]

T. Svensson, E. Alerstam, M. Einarsdóttír, K. Svanberg, and S. Andersson-Engels, “Towards accurate in vivo spectroscopy of the human prostate,” J Biophotonics1(3), 200–203 (2008).
[CrossRef] [PubMed]

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt.12(1), 014022 (2007).
[CrossRef] [PubMed]

Arridge, S. R.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt.40(19), 3278–3287 (2001).
[CrossRef] [PubMed]

M. Schweiger and S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol.44(7), 1699–1717 (1999).
[CrossRef] [PubMed]

Austin, T.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Baker, W. B.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

Bassi, A.

Boas, D. A.

J. Selb, A. M. Dale, and D. A. Boas, “Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution,” Opt. Express15(25), 16400–16412 (2007).
[CrossRef] [PubMed]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt.10(1), 011013 (2005).
[CrossRef] [PubMed]

Boso, G.

G. Boso, A. Dalla Mora, A. Della Frera, and A. Tosi, “Fast-gating of single-photon avalanche diodes with 200 ps transitions and 30 ps timing jitter,” Sens. Actuators A Phys.191, 61–67 (2013).
[CrossRef]

Botwicz, M.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt.16(4), 046011 (2011).
[CrossRef] [PubMed]

Caffini, M.

D. Contini, L. Zucchelli, L. Spinelli, M. Caffini, R. Re, A. Pifferi, R. Cubeddu, and A. Torricelli, “Review: Brain and muscle near infrared spectroscopy/imaging techniques,” J. Near Infrared Spectrosc.20(1), 15–27 (2012).
[CrossRef]

Chabrier, R.

Choe, R.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

Contini, D.

D. Contini, L. Zucchelli, L. Spinelli, M. Caffini, R. Re, A. Pifferi, R. Cubeddu, and A. Torricelli, “Review: Brain and muscle near infrared spectroscopy/imaging techniques,” J. Near Infrared Spectrosc.20(1), 15–27 (2012).
[CrossRef]

A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thinjunction silicon single-photon avalanche diode,” Appl. Phys. Lett.100(24), 241111 (2012).
[CrossRef]

M. Mazurenka, A. Jelzow, H. Wabnitz, D. Contini, L. Spinelli, A. Pifferi, R. Cubeddu, A. D. Mora, A. Tosi, F. Zappa, and R. Macdonald, “Non-contact time-resolved diffuse reflectance imaging at null source-detector separation,” Opt. Express20(1), 283–290 (2012).
[CrossRef] [PubMed]

E. Alerstam, T. Svensson, S. Andersson-Engels, L. Spinelli, D. Contini, A. Dalla Mora, A. Tosi, F. Zappa, and A. Pifferi, “Single-fiber diffuse optical time-of-flight spectroscopy,” Opt. Lett.37(14), 2877–2879 (2012).
[CrossRef] [PubMed]

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express19(11), 10735–10746 (2011).
[CrossRef] [PubMed]

Q. Zhao, L. Spinelli, A. Bassi, G. Valentini, D. Contini, A. Torricelli, R. Cubeddu, G. Zaccanti, F. Martelli, and A. Pifferi, “Functional tomography using a time-gated ICCD camera,” Biomed. Opt. Express2(3), 705–716 (2011).
[CrossRef] [PubMed]

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy,” IEEE J. Sel. Top. Quantum Electron.16(4), 1023–1030 (2010).
[CrossRef]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett.100(13), 138101 (2008).
[CrossRef] [PubMed]

Cova, S.

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy,” IEEE J. Sel. Top. Quantum Electron.16(4), 1023–1030 (2010).
[CrossRef]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett.100(13), 138101 (2008).
[CrossRef] [PubMed]

Cubeddu, R.

D. Contini, L. Zucchelli, L. Spinelli, M. Caffini, R. Re, A. Pifferi, R. Cubeddu, and A. Torricelli, “Review: Brain and muscle near infrared spectroscopy/imaging techniques,” J. Near Infrared Spectrosc.20(1), 15–27 (2012).
[CrossRef]

M. Mazurenka, A. Jelzow, H. Wabnitz, D. Contini, L. Spinelli, A. Pifferi, R. Cubeddu, A. D. Mora, A. Tosi, F. Zappa, and R. Macdonald, “Non-contact time-resolved diffuse reflectance imaging at null source-detector separation,” Opt. Express20(1), 283–290 (2012).
[CrossRef] [PubMed]

A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thinjunction silicon single-photon avalanche diode,” Appl. Phys. Lett.100(24), 241111 (2012).
[CrossRef]

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express19(11), 10735–10746 (2011).
[CrossRef] [PubMed]

Q. Zhao, L. Spinelli, A. Bassi, G. Valentini, D. Contini, A. Torricelli, R. Cubeddu, G. Zaccanti, F. Martelli, and A. Pifferi, “Functional tomography using a time-gated ICCD camera,” Biomed. Opt. Express2(3), 705–716 (2011).
[CrossRef] [PubMed]

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy,” IEEE J. Sel. Top. Quantum Electron.16(4), 1023–1030 (2010).
[CrossRef]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett.100(13), 138101 (2008).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
[CrossRef] [PubMed]

Dale, A. M.

Dalla Mora, A.

G. Boso, A. Dalla Mora, A. Della Frera, and A. Tosi, “Fast-gating of single-photon avalanche diodes with 200 ps transitions and 30 ps timing jitter,” Sens. Actuators A Phys.191, 61–67 (2013).
[CrossRef]

E. Alerstam, T. Svensson, S. Andersson-Engels, L. Spinelli, D. Contini, A. Dalla Mora, A. Tosi, F. Zappa, and A. Pifferi, “Single-fiber diffuse optical time-of-flight spectroscopy,” Opt. Lett.37(14), 2877–2879 (2012).
[CrossRef] [PubMed]

A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thinjunction silicon single-photon avalanche diode,” Appl. Phys. Lett.100(24), 241111 (2012).
[CrossRef]

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express19(11), 10735–10746 (2011).
[CrossRef] [PubMed]

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy,” IEEE J. Sel. Top. Quantum Electron.16(4), 1023–1030 (2010).
[CrossRef]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett.100(13), 138101 (2008).
[CrossRef] [PubMed]

Dehghani, H.

Del Bianco, S.

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
[CrossRef] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol.47(23), 4131–4144 (2002).
[CrossRef] [PubMed]

Della Frera, A.

G. Boso, A. Dalla Mora, A. Della Frera, and A. Tosi, “Fast-gating of single-photon avalanche diodes with 200 ps transitions and 30 ps timing jitter,” Sens. Actuators A Phys.191, 61–67 (2013).
[CrossRef]

Delpy, D. T.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt.40(19), 3278–3287 (2001).
[CrossRef] [PubMed]

F. E. Schmidt, M. E. Fry, E. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum.71(1), 256–265 (2000).
[CrossRef]

Derouard, J.

Dinten, J.-M.

Durduran, T.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

Einarsdóttír, M.

T. Svensson, E. Alerstam, M. Einarsdóttír, K. Svanberg, and S. Andersson-Engels, “Towards accurate in vivo spectroscopy of the human prostate,” J Biophotonics1(3), 200–203 (2008).
[CrossRef] [PubMed]

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt.12(1), 014022 (2007).
[CrossRef] [PubMed]

Everdell, N.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Franceschini, M. A.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt.10(1), 011013 (2005).
[CrossRef] [PubMed]

Fronczewska, K.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt.16(4), 046011 (2011).
[CrossRef] [PubMed]

Fry, M. E.

F. E. Schmidt, M. E. Fry, E. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum.71(1), 256–265 (2000).
[CrossRef]

Gao, F.

H. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt.12(6), 062107 (2007).
[CrossRef] [PubMed]

F. Gao, H. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt.41(4), 778–791 (2002).
[CrossRef] [PubMed]

Gibson, A.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Glazenborg, R.

P. Poulet, W. Uhring, W. Hanselmann, R. Glazenborg, F. Nouizi, V. Zint, and W. Hirschi, “A time-gated near-infrared spectroscopic imaging device for clinical applications,” Proc. SPIE8565, 85654M (2013).
[CrossRef]

Gulinatti, A.

Hanselmann, W.

P. Poulet, W. Uhring, W. Hanselmann, R. Glazenborg, F. Nouizi, V. Zint, and W. Hirschi, “A time-gated near-infrared spectroscopic imaging device for clinical applications,” Proc. SPIE8565, 85654M (2013).
[CrossRef]

Hebden, J. C.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt.40(19), 3278–3287 (2001).
[CrossRef] [PubMed]

F. E. Schmidt, M. E. Fry, E. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum.71(1), 256–265 (2000).
[CrossRef]

Hervé, L.

Hillman, E.

F. E. Schmidt, M. E. Fry, E. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum.71(1), 256–265 (2000).
[CrossRef]

Hillman, E. M.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt.40(19), 3278–3287 (2001).
[CrossRef] [PubMed]

Hillman, E. M. C.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Hirschi, W.

P. Poulet, W. Uhring, W. Hanselmann, R. Glazenborg, F. Nouizi, V. Zint, and W. Hirschi, “A time-gated near-infrared spectroscopic imaging device for clinical applications,” Proc. SPIE8565, 85654M (2013).
[CrossRef]

Hoshi, Y.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, M. Yutaka Yamashita, K. Oda, Y. Ohta, Yamada, and Mamoru Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Brain Res. Cogn. Brain Res.9(3), 339–342 (2000).
[CrossRef] [PubMed]

Ito, Y.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, M. Yutaka Yamashita, K. Oda, Y. Ohta, Yamada, and Mamoru Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Brain Res. Cogn. Brain Res.9(3), 339–342 (2000).
[CrossRef] [PubMed]

Jelzow, A.

Kacprzak, M.

P. Sawosz, N. Zolek, M. Kacprzak, R. Maniewski, and A. Liebert, “Application of time-gated CCD camera with image intensifier in contactless detection of absorbing inclusions buried in optically turbid medium which mimics local changes in oxygenation of the brain tissue,” Opto-Electron. Rev.20(4), 309–314 (2012).
[CrossRef]

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt.16(4), 046011 (2011).
[CrossRef] [PubMed]

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt.12(3), 034019 (2007).
[CrossRef] [PubMed]

Koenig, A.

Królicki, L.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt.16(4), 046011 (2011).
[CrossRef] [PubMed]

Liebert, A.

P. Sawosz, N. Zolek, M. Kacprzak, R. Maniewski, and A. Liebert, “Application of time-gated CCD camera with image intensifier in contactless detection of absorbing inclusions buried in optically turbid medium which mimics local changes in oxygenation of the brain tissue,” Opto-Electron. Rev.20(4), 309–314 (2012).
[CrossRef]

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt.16(4), 046011 (2011).
[CrossRef] [PubMed]

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt.12(3), 034019 (2007).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt.43(15), 3037–3047 (2004).
[CrossRef] [PubMed]

Macdonald, R.

Maczewska, J.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt.16(4), 046011 (2011).
[CrossRef] [PubMed]

Mamoru Tamura,

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, M. Yutaka Yamashita, K. Oda, Y. Ohta, Yamada, and Mamoru Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Brain Res. Cogn. Brain Res.9(3), 339–342 (2000).
[CrossRef] [PubMed]

Maniewski, R.

P. Sawosz, N. Zolek, M. Kacprzak, R. Maniewski, and A. Liebert, “Application of time-gated CCD camera with image intensifier in contactless detection of absorbing inclusions buried in optically turbid medium which mimics local changes in oxygenation of the brain tissue,” Opto-Electron. Rev.20(4), 309–314 (2012).
[CrossRef]

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt.16(4), 046011 (2011).
[CrossRef] [PubMed]

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt.12(3), 034019 (2007).
[CrossRef] [PubMed]

Martelli, F.

Q. Zhao, L. Spinelli, A. Bassi, G. Valentini, D. Contini, A. Torricelli, R. Cubeddu, G. Zaccanti, F. Martelli, and A. Pifferi, “Functional tomography using a time-gated ICCD camera,” Biomed. Opt. Express2(3), 705–716 (2011).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett.100(13), 138101 (2008).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
[CrossRef] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol.47(23), 4131–4144 (2002).
[CrossRef] [PubMed]

Mayzner-Zawadzka, E.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt.16(4), 046011 (2011).
[CrossRef] [PubMed]

Mazurenka, M.

Meek, J. H.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Milej, D.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt.16(4), 046011 (2011).
[CrossRef] [PubMed]

Möller, M.

Montcel, B.

Mora, A. D.

Nouizi, F.

P. Poulet, W. Uhring, W. Hanselmann, R. Glazenborg, F. Nouizi, V. Zint, and W. Hirschi, “A time-gated near-infrared spectroscopic imaging device for clinical applications,” Proc. SPIE8565, 85654M (2013).
[CrossRef]

Obrig, H.

Oda, I.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, M. Yutaka Yamashita, K. Oda, Y. Ohta, Yamada, and Mamoru Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Brain Res. Cogn. Brain Res.9(3), 339–342 (2000).
[CrossRef] [PubMed]

Oda, K.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, M. Yutaka Yamashita, K. Oda, Y. Ohta, Yamada, and Mamoru Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Brain Res. Cogn. Brain Res.9(3), 339–342 (2000).
[CrossRef] [PubMed]

Ohta, Y.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, M. Yutaka Yamashita, K. Oda, Y. Ohta, Yamada, and Mamoru Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Brain Res. Cogn. Brain Res.9(3), 339–342 (2000).
[CrossRef] [PubMed]

Pifferi, A.

D. Contini, L. Zucchelli, L. Spinelli, M. Caffini, R. Re, A. Pifferi, R. Cubeddu, and A. Torricelli, “Review: Brain and muscle near infrared spectroscopy/imaging techniques,” J. Near Infrared Spectrosc.20(1), 15–27 (2012).
[CrossRef]

A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thinjunction silicon single-photon avalanche diode,” Appl. Phys. Lett.100(24), 241111 (2012).
[CrossRef]

M. Mazurenka, A. Jelzow, H. Wabnitz, D. Contini, L. Spinelli, A. Pifferi, R. Cubeddu, A. D. Mora, A. Tosi, F. Zappa, and R. Macdonald, “Non-contact time-resolved diffuse reflectance imaging at null source-detector separation,” Opt. Express20(1), 283–290 (2012).
[CrossRef] [PubMed]

E. Alerstam, T. Svensson, S. Andersson-Engels, L. Spinelli, D. Contini, A. Dalla Mora, A. Tosi, F. Zappa, and A. Pifferi, “Single-fiber diffuse optical time-of-flight spectroscopy,” Opt. Lett.37(14), 2877–2879 (2012).
[CrossRef] [PubMed]

Q. Zhao, L. Spinelli, A. Bassi, G. Valentini, D. Contini, A. Torricelli, R. Cubeddu, G. Zaccanti, F. Martelli, and A. Pifferi, “Functional tomography using a time-gated ICCD camera,” Biomed. Opt. Express2(3), 705–716 (2011).
[CrossRef] [PubMed]

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express19(11), 10735–10746 (2011).
[CrossRef] [PubMed]

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy,” IEEE J. Sel. Top. Quantum Electron.16(4), 1023–1030 (2010).
[CrossRef]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett.100(13), 138101 (2008).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
[CrossRef] [PubMed]

Planat-Chrétien, A.

Poulet, P.

P. Poulet, W. Uhring, W. Hanselmann, R. Glazenborg, F. Nouizi, V. Zint, and W. Hirschi, “A time-gated near-infrared spectroscopic imaging device for clinical applications,” Proc. SPIE8565, 85654M (2013).
[CrossRef]

B. Montcel, R. Chabrier, and P. Poulet, “Time-resolved absorption and hemoglobin concentration difference maps: a method to retrieve depth-related information on cerebral hemodynamics,” Opt. Express14(25), 12271–12287 (2006).
[CrossRef] [PubMed]

Puszka, A.

Re, R.

D. Contini, L. Zucchelli, L. Spinelli, M. Caffini, R. Re, A. Pifferi, R. Cubeddu, and A. Torricelli, “Review: Brain and muscle near infrared spectroscopy/imaging techniques,” J. Near Infrared Spectrosc.20(1), 15–27 (2012).
[CrossRef]

Rinneberg, H.

Sawosz, P.

P. Sawosz, N. Zolek, M. Kacprzak, R. Maniewski, and A. Liebert, “Application of time-gated CCD camera with image intensifier in contactless detection of absorbing inclusions buried in optically turbid medium which mimics local changes in oxygenation of the brain tissue,” Opto-Electron. Rev.20(4), 309–314 (2012).
[CrossRef]

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt.16(4), 046011 (2011).
[CrossRef] [PubMed]

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt.12(3), 034019 (2007).
[CrossRef] [PubMed]

Schmidt, F. E.

F. E. Schmidt, M. E. Fry, E. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum.71(1), 256–265 (2000).
[CrossRef]

Schweiger, M.

Selb, J.

J. Selb, A. M. Dale, and D. A. Boas, “Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution,” Opt. Express15(25), 16400–16412 (2007).
[CrossRef] [PubMed]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt.10(1), 011013 (2005).
[CrossRef] [PubMed]

Sorensen, A. G.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt.10(1), 011013 (2005).
[CrossRef] [PubMed]

Spinelli, L.

M. Mazurenka, A. Jelzow, H. Wabnitz, D. Contini, L. Spinelli, A. Pifferi, R. Cubeddu, A. D. Mora, A. Tosi, F. Zappa, and R. Macdonald, “Non-contact time-resolved diffuse reflectance imaging at null source-detector separation,” Opt. Express20(1), 283–290 (2012).
[CrossRef] [PubMed]

E. Alerstam, T. Svensson, S. Andersson-Engels, L. Spinelli, D. Contini, A. Dalla Mora, A. Tosi, F. Zappa, and A. Pifferi, “Single-fiber diffuse optical time-of-flight spectroscopy,” Opt. Lett.37(14), 2877–2879 (2012).
[CrossRef] [PubMed]

D. Contini, L. Zucchelli, L. Spinelli, M. Caffini, R. Re, A. Pifferi, R. Cubeddu, and A. Torricelli, “Review: Brain and muscle near infrared spectroscopy/imaging techniques,” J. Near Infrared Spectrosc.20(1), 15–27 (2012).
[CrossRef]

Q. Zhao, L. Spinelli, A. Bassi, G. Valentini, D. Contini, A. Torricelli, R. Cubeddu, G. Zaccanti, F. Martelli, and A. Pifferi, “Functional tomography using a time-gated ICCD camera,” Biomed. Opt. Express2(3), 705–716 (2011).
[CrossRef] [PubMed]

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express19(11), 10735–10746 (2011).
[CrossRef] [PubMed]

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy,” IEEE J. Sel. Top. Quantum Electron.16(4), 1023–1030 (2010).
[CrossRef]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett.100(13), 138101 (2008).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
[CrossRef] [PubMed]

Steinbrink, J.

Stott, J. J.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt.10(1), 011013 (2005).
[CrossRef] [PubMed]

Svanberg, K.

T. Svensson, E. Alerstam, M. Einarsdóttír, K. Svanberg, and S. Andersson-Engels, “Towards accurate in vivo spectroscopy of the human prostate,” J Biophotonics1(3), 200–203 (2008).
[CrossRef] [PubMed]

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt.12(1), 014022 (2007).
[CrossRef] [PubMed]

Svensson, T.

E. Alerstam, T. Svensson, S. Andersson-Engels, L. Spinelli, D. Contini, A. Dalla Mora, A. Tosi, F. Zappa, and A. Pifferi, “Single-fiber diffuse optical time-of-flight spectroscopy,” Opt. Lett.37(14), 2877–2879 (2012).
[CrossRef] [PubMed]

T. Svensson, E. Alerstam, M. Einarsdóttír, K. Svanberg, and S. Andersson-Engels, “Towards accurate in vivo spectroscopy of the human prostate,” J Biophotonics1(3), 200–203 (2008).
[CrossRef] [PubMed]

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt.12(1), 014022 (2007).
[CrossRef] [PubMed]

Tanikawa, Y.

H. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt.12(6), 062107 (2007).
[CrossRef] [PubMed]

Torricelli, A.

D. Contini, L. Zucchelli, L. Spinelli, M. Caffini, R. Re, A. Pifferi, R. Cubeddu, and A. Torricelli, “Review: Brain and muscle near infrared spectroscopy/imaging techniques,” J. Near Infrared Spectrosc.20(1), 15–27 (2012).
[CrossRef]

Q. Zhao, L. Spinelli, A. Bassi, G. Valentini, D. Contini, A. Torricelli, R. Cubeddu, G. Zaccanti, F. Martelli, and A. Pifferi, “Functional tomography using a time-gated ICCD camera,” Biomed. Opt. Express2(3), 705–716 (2011).
[CrossRef] [PubMed]

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express19(11), 10735–10746 (2011).
[CrossRef] [PubMed]

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy,” IEEE J. Sel. Top. Quantum Electron.16(4), 1023–1030 (2010).
[CrossRef]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett.100(13), 138101 (2008).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
[CrossRef] [PubMed]

Tosi, A.

G. Boso, A. Dalla Mora, A. Della Frera, and A. Tosi, “Fast-gating of single-photon avalanche diodes with 200 ps transitions and 30 ps timing jitter,” Sens. Actuators A Phys.191, 61–67 (2013).
[CrossRef]

M. Mazurenka, A. Jelzow, H. Wabnitz, D. Contini, L. Spinelli, A. Pifferi, R. Cubeddu, A. D. Mora, A. Tosi, F. Zappa, and R. Macdonald, “Non-contact time-resolved diffuse reflectance imaging at null source-detector separation,” Opt. Express20(1), 283–290 (2012).
[CrossRef] [PubMed]

E. Alerstam, T. Svensson, S. Andersson-Engels, L. Spinelli, D. Contini, A. Dalla Mora, A. Tosi, F. Zappa, and A. Pifferi, “Single-fiber diffuse optical time-of-flight spectroscopy,” Opt. Lett.37(14), 2877–2879 (2012).
[CrossRef] [PubMed]

A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thinjunction silicon single-photon avalanche diode,” Appl. Phys. Lett.100(24), 241111 (2012).
[CrossRef]

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express19(11), 10735–10746 (2011).
[CrossRef] [PubMed]

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy,” IEEE J. Sel. Top. Quantum Electron.16(4), 1023–1030 (2010).
[CrossRef]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett.100(13), 138101 (2008).
[CrossRef] [PubMed]

Uhring, W.

P. Poulet, W. Uhring, W. Hanselmann, R. Glazenborg, F. Nouizi, V. Zint, and W. Hirschi, “A time-gated near-infrared spectroscopic imaging device for clinical applications,” Proc. SPIE8565, 85654M (2013).
[CrossRef]

Valentini, G.

Veenstra, H.

Villringer, A.

Wabnitz, H.

Wada, Y.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, M. Yutaka Yamashita, K. Oda, Y. Ohta, Yamada, and Mamoru Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Brain Res. Cogn. Brain Res.9(3), 339–342 (2000).
[CrossRef] [PubMed]

Weigl, W.

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt.16(4), 046011 (2011).
[CrossRef] [PubMed]

Wyatt, J. S.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Yamada,

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, M. Yutaka Yamashita, K. Oda, Y. Ohta, Yamada, and Mamoru Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Brain Res. Cogn. Brain Res.9(3), 339–342 (2000).
[CrossRef] [PubMed]

Yamada, Y.

H. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt.12(6), 062107 (2007).
[CrossRef] [PubMed]

F. Gao, H. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt.41(4), 778–791 (2002).
[CrossRef] [PubMed]

Yodh, A. G.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

Yusof, R. M.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Yutaka Yamashita, M.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, M. Yutaka Yamashita, K. Oda, Y. Ohta, Yamada, and Mamoru Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Brain Res. Cogn. Brain Res.9(3), 339–342 (2000).
[CrossRef] [PubMed]

Zaccanti, G.

Q. Zhao, L. Spinelli, A. Bassi, G. Valentini, D. Contini, A. Torricelli, R. Cubeddu, G. Zaccanti, F. Martelli, and A. Pifferi, “Functional tomography using a time-gated ICCD camera,” Biomed. Opt. Express2(3), 705–716 (2011).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett.100(13), 138101 (2008).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
[CrossRef] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol.47(23), 4131–4144 (2002).
[CrossRef] [PubMed]

Zappa, F.

A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thinjunction silicon single-photon avalanche diode,” Appl. Phys. Lett.100(24), 241111 (2012).
[CrossRef]

E. Alerstam, T. Svensson, S. Andersson-Engels, L. Spinelli, D. Contini, A. Dalla Mora, A. Tosi, F. Zappa, and A. Pifferi, “Single-fiber diffuse optical time-of-flight spectroscopy,” Opt. Lett.37(14), 2877–2879 (2012).
[CrossRef] [PubMed]

M. Mazurenka, A. Jelzow, H. Wabnitz, D. Contini, L. Spinelli, A. Pifferi, R. Cubeddu, A. D. Mora, A. Tosi, F. Zappa, and R. Macdonald, “Non-contact time-resolved diffuse reflectance imaging at null source-detector separation,” Opt. Express20(1), 283–290 (2012).
[CrossRef] [PubMed]

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express19(11), 10735–10746 (2011).
[CrossRef] [PubMed]

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy,” IEEE J. Sel. Top. Quantum Electron.16(4), 1023–1030 (2010).
[CrossRef]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett.100(13), 138101 (2008).
[CrossRef] [PubMed]

Zhao, H.

H. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt.12(6), 062107 (2007).
[CrossRef] [PubMed]

F. Gao, H. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt.41(4), 778–791 (2002).
[CrossRef] [PubMed]

Zhao, Q.

Zint, V.

P. Poulet, W. Uhring, W. Hanselmann, R. Glazenborg, F. Nouizi, V. Zint, and W. Hirschi, “A time-gated near-infrared spectroscopic imaging device for clinical applications,” Proc. SPIE8565, 85654M (2013).
[CrossRef]

Zolek, N.

P. Sawosz, N. Zolek, M. Kacprzak, R. Maniewski, and A. Liebert, “Application of time-gated CCD camera with image intensifier in contactless detection of absorbing inclusions buried in optically turbid medium which mimics local changes in oxygenation of the brain tissue,” Opto-Electron. Rev.20(4), 309–314 (2012).
[CrossRef]

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt.12(3), 034019 (2007).
[CrossRef] [PubMed]

Zucchelli, L.

D. Contini, L. Zucchelli, L. Spinelli, M. Caffini, R. Re, A. Pifferi, R. Cubeddu, and A. Torricelli, “Review: Brain and muscle near infrared spectroscopy/imaging techniques,” J. Near Infrared Spectrosc.20(1), 15–27 (2012).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thinjunction silicon single-photon avalanche diode,” Appl. Phys. Lett.100(24), 241111 (2012).
[CrossRef]

Biomed. Opt. Express (2)

Brain Res. Cogn. Brain Res. (1)

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, M. Yutaka Yamashita, K. Oda, Y. Ohta, Yamada, and Mamoru Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Brain Res. Cogn. Brain Res.9(3), 339–342 (2000).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy,” IEEE J. Sel. Top. Quantum Electron.16(4), 1023–1030 (2010).
[CrossRef]

J Biophotonics (1)

T. Svensson, E. Alerstam, M. Einarsdóttír, K. Svanberg, and S. Andersson-Engels, “Towards accurate in vivo spectroscopy of the human prostate,” J Biophotonics1(3), 200–203 (2008).
[CrossRef] [PubMed]

J. Biomed. Opt. (5)

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt.12(1), 014022 (2007).
[CrossRef] [PubMed]

H. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt.12(6), 062107 (2007).
[CrossRef] [PubMed]

A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Królicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation,” J. Biomed. Opt.16(4), 046011 (2011).
[CrossRef] [PubMed]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt.10(1), 011013 (2005).
[CrossRef] [PubMed]

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt.12(3), 034019 (2007).
[CrossRef] [PubMed]

J. Near Infrared Spectrosc. (1)

D. Contini, L. Zucchelli, L. Spinelli, M. Caffini, R. Re, A. Pifferi, R. Cubeddu, and A. Torricelli, “Review: Brain and muscle near infrared spectroscopy/imaging techniques,” J. Near Infrared Spectrosc.20(1), 15–27 (2012).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Opto-Electron. Rev. (1)

P. Sawosz, N. Zolek, M. Kacprzak, R. Maniewski, and A. Liebert, “Application of time-gated CCD camera with image intensifier in contactless detection of absorbing inclusions buried in optically turbid medium which mimics local changes in oxygenation of the brain tissue,” Opto-Electron. Rev.20(4), 309–314 (2012).
[CrossRef]

Phys. Med. Biol. (5)

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol.46(3), 879–896 (2001).
[CrossRef] [PubMed]

M. Schweiger and S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol.44(7), 1699–1717 (1999).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol.47(23), 4131–4144 (2002).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett.100(13), 138101 (2008).
[CrossRef] [PubMed]

Proc. SPIE (1)

P. Poulet, W. Uhring, W. Hanselmann, R. Glazenborg, F. Nouizi, V. Zint, and W. Hirschi, “A time-gated near-infrared spectroscopic imaging device for clinical applications,” Proc. SPIE8565, 85654M (2013).
[CrossRef]

Rep. Prog. Phys. (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

Rev. Sci. Instrum. (1)

F. E. Schmidt, M. E. Fry, E. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum.71(1), 256–265 (2000).
[CrossRef]

Sens. Actuators A Phys. (1)

G. Boso, A. Dalla Mora, A. Della Frera, and A. Tosi, “Fast-gating of single-photon avalanche diodes with 200 ps transitions and 30 ps timing jitter,” Sens. Actuators A Phys.191, 61–67 (2013).
[CrossRef]

Other (1)

J. C. Hebden, M. Varela, S. Magazov, N. Everdell, A. Gibson, J. Meek, and T. Austin, “Diffuse optical imaging of the newborn infant brain,” in 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI) (IEEE, 2012), pp. 503–505.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic representation of the probe and phantom. A total of six pairs of sources and detectors are included in the probe with 2 possible interfiber distances: 5 mm for S1D1, S2D1, S2D2 and S3D2 and 15 mm for S1D2 and S3D1. The absorbing inclusion is positioned below S2 and moved at different depths. (b) Experimental setup with a pulsed laser, a variable optical attenuator (VOA), a SPAD and a TCSPC board. An electronic synchronization signal at the output of the laser is sent to the delayer and the TCSPC board.

Fig. 2
Fig. 2

Reconstitution of the full TPSF from gated measurements. The “bump” at the beginning of each gate (except gate 1 in dark blue) corresponds to distorted time channels which are discarded from the analysis. (a) Zoom on gates 1 and 2: illustration of the distorted zone on gate 2 and relevant portions to keep from gate 1 and 2 to reconstitute the final TPSF. (b) Portions of gates which can be kept in the analysis for gates 1 to 6 and final reconstituted TPSF in black superimposed to the measured gates. The vertical arrows show the temporal portion of each gate kept to build the final TPSF.

Fig. 3
Fig. 3

Pre-processing of one TPSF in the gated mode, (a) SD = 15 mm, (b) SD = 5 mm.

Fig. 4
Fig. 4

Comparison between non-gated and gated modes on acquired TPSFs, estimated variance and signal to noise ratio ( SN R t = D t / Var( D t ) ), (a) SD = 15 mm (data from S1D2), (b) SD = 5 mm (data from S2D1). The horizontal blue arrows indicated the temporal portion of the TPSFs used in the analysis for each interfiber distance and each acquisition mode.

Fig. 5
Fig. 5

Pre-processed TPSFs: references (homogeneous), inhomogeneous measurements for different depths of the inclusion and zoom on a late window of the inhomogeneous measurements, (a) SD = 15 mm (data from S1D2), (b) SD = 5 mm (data from S2D1). The horizontal blue arrows indicated the temporal portion of the TPSFs used in the analysis for each interfiber distance and each acquisition mode.

Fig. 6
Fig. 6

Contrast on MLT orders (p = 3 ns−1, orders n = 1 to n = 30) depending on the depth of the absorbing inclusion for non-gated and gated modes, (a) SD = 15 mm (S1D2), (b) SD = 5 mm (S2D1).

Fig. 7
Fig. 7

Reconstructed maps of µa at iteration 15 for each depth of the inclusion, for non-gated and gated modes including all pairs of source and detector at SD = 15 mm (S1D2 and S3D1). The red dotted circle depicts the true position and size of the absorbing inclusion. At each depth of the inclusion, the scale in µa is the same for the non-gated and gated mode.

Fig. 8
Fig. 8

Reconstructed maps of µa at iteration 15 for each depth of the inclusion, for non-gated and gated measurements including all pairs of source and detector at SD = 5 mm (S1D1, S2D1, S2D2 and S3D2). The red dotted circle depicts the true position and size of the absorbing inclusion. At each depth of the inclusion, the scale in µa is the same for the non-gated and gated mode.

Fig. 9
Fig. 9

Reconstructed depth versus true depth for the non-gated and gated modes, (a) SD = 15 mm, (b) SD = 5 mm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f (p,n) = M (p,n) [ f(t) ]= p n n! 0 + f(t) t n exp(pt)dt
Contrast= ML T without_inclusion ML T with_inclusion ML T without_inclusion ×100

Metrics