Abstract

Optical coherence tomography (OCT) has a tremendous global impact upon the ability to diagnose, treat, and monitor eye diseases. A miniature 25-gauge forward-imaging OCT probe with a disposable tip was developed for real-time intraoperative ocular imaging of posterior pole and peripheral structures to improve vitreoretinal surgery. The scanning range was 2 mm when the probe tip was held 3-4 mm from the tissue surface. The axial resolution was 4-6 µm and the lateral resolution was 25-35 µm. The probe was used to image cellophane tape and multiple ocular structures.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. V. Sarunic, B. E. Applegate, and J. A. Izatt, “Spectral domain second-harmonic optical coherence tomography,” Opt. Lett.30(18), 2391–2393 (2005).
    [CrossRef] [PubMed]
  2. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004).
    [CrossRef] [PubMed]
  3. Y. K. Tao, M. Zhao, and J. A. Izatt, “High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation,” Opt. Lett.32(20), 2918–2920 (2007).
    [CrossRef] [PubMed]
  4. M. Stopa, B. A. Bower, E. Davies, J. A. Izatt, and C. A. Toth, “Correlation of pathologic features in spectral domain optical coherence tomography with conventional retinal studies,” Retina28(2), 298–308 (2008).
    [CrossRef] [PubMed]
  5. G. Savini, M. Zanini, and P. Barboni, “Influence of pupil size and cataract on retinal nerve fiber layer thickness measurements by Stratus OCT,” J. Glaucoma15(4), 336–340 (2006).
    [CrossRef] [PubMed]
  6. A. Almony, E. Nudleman, G. K. Shah, K. J. Blinder, D. B. Eliott, R. A. Mittra, and A. Tewari, “Techniques, rationale, and outcomes of internal limiting membrane peeling,” Retina32(5), 877–891 (2012).
    [CrossRef] [PubMed]
  7. C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M. H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J. I. Verdaguer-Diaz, R. Milan-Navarro, J. F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: Results of the Pan-American Collaborative Retina Study Group,” Retina (Apr): 22 (2013) (Epub ahead of print).
    [PubMed]
  8. A. M. Rollins, R. Ung-Arunyawee, A. Chak, R. C. Wong, K. Kobayashi, M. V. Sivak, and J. A. Izatt, “Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design,” Opt. Lett.24(19), 1358–1360 (1999).
    [CrossRef] [PubMed]
  9. A. M. Klein, M. C. Pierce, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. Shishkov, and J. F. de Boer, “Imaging the human vocal folds in vivo with optical coherence tomography: a preliminary experience,” Ann. Otol. Rhinol. Laryngol.115(4), 277–284 (2006).
    [PubMed]
  10. B. J. F. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope115(11), 1904–1911 (2005).
    [CrossRef] [PubMed]
  11. A. F. Low, G. J. Tearney, B. E. Bouma, and I. K. Jang, “Technology Insight: optical coherence tomography--current status and future development,” Nat. Clin. Prac. Cardiovasc. Med.3(3), 154–162, quiz 172 (2006).
    [CrossRef] [PubMed]
  12. M. Kawasaki, B. E. Bouma, J. Bressner, S. L. Houser, S. K. Nadkarni, B. D. MacNeill, I. K. Jang, H. Fujiwara, and G. J. Tearney, “Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques,” J. Am. Coll. Cardiol.48(1), 81–88 (2006).
    [CrossRef] [PubMed]
  13. M. S. Jafri, R. Tang, and C. M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods176(2), 85–95 (2009).
    [CrossRef] [PubMed]
  14. Y. T. Pan, T. Q. Xie, C. W. Du, S. Bastacky, S. Meyers, and M. L. Zeidel, “Enhancing early bladder cancer detection with fluorescence-guided endoscopic optical coherence tomography,” Opt. Lett.28(24), 2485–2487 (2003).
    [CrossRef] [PubMed]
  15. A. Jain, A. Kopa, Y. Pan, G. K. Fedder, and H. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.10(3), 636–642 (2004).
    [CrossRef]
  16. S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, and M. E. Brezinski, “Forward-imaging instruments for optical coherence tomography,” Opt. Lett.22(21), 1618–1620 (1997).
    [CrossRef] [PubMed]
  17. X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett.29(15), 1763–1765 (2004).
    [CrossRef] [PubMed]
  18. T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett.30(14), 1803–1805 (2005).
    [CrossRef] [PubMed]
  19. J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, and C. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett.31(9), 1265–1267 (2006).
    [CrossRef] [PubMed]
  20. N. R. Munce, A. Mariampillai, B. A. Standish, M. Pop, K. J. Anderson, G. Y. Liu, T. Luk, B. K. Courtney, G. A. Wright, I. A. Vitkin, and V. X. D. Yang, “Electrostatic forward-viewing scanning probe for Doppler optical coherence tomography using a dissipative polymer catheter,” Opt. Lett.33(7), 657–659 (2008).
    [CrossRef] [PubMed]
  21. C. Sun, K. K. C. Lee, B. Vuong, M. D. Cusimano, A. Brukson, A. Mauro, N. Munce, B. K. Courtney, B. A. Standish, and V. X. D. Yang, “Intraoperative handheld optical coherence tomography forward-viewing probe: physical performance and preliminary animal imaging,” Biomed. Opt. Express3(6), 1404–1412 (2012).
    [CrossRef] [PubMed]
  22. S. Han, M.V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt.13(2), 020505 (2008).
  23. N.V. Iftimia, B.E. Bouma, M.B. Pitman, B. Goldberg, J. Bressner, and G.J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum.76(6), 064301 (2005).
  24. S. Yang, M. Balicki, R. A. MacLachlan, X. Liu, J. U. Kang, R. H. Taylor, and C. N. Riviere, “Optical coherence tomography scanning with a handheld vitreoretinal micromanipulator,” in Proceedings of 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2012), pp. 948–951.
    [CrossRef]
  25. Y. Huang, X. Liu, C. Song, and J. U. Kang, “Motion-compensated hand-held common-path Fourier-domain optical coherence tomography probe for image-guided intervention,” Biomed. Opt. Express3(12), 3105–3118 (2012).
    [CrossRef] [PubMed]
  26. D. Wright, P. Greve, J. Fleischer, and L. Austin, “Laser beam width, divergence and beam propagation factor: an international standardization approach,” Opt. Quantum Electron.24(9), S993–S1000 (1992).
    [CrossRef]
  27. P. Hahn, J. Migacz, R. O’Connell, J. A. Izatt, and C. A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol.251(1), 213–220 (2013).
    [CrossRef] [PubMed]
  28. J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci.52(6), 3153–3159 (2011).
    [CrossRef] [PubMed]
  29. P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging42(4Suppl), S85–S94 (2011).
    [CrossRef] [PubMed]
  30. R. Ray, D. E. Barañano, J. A. Fortun, B. J. Schwent, B. E. Cribbs, C. S. Bergstrom, G. B. Hubbard, and S. K. Srivastava, “Intraoperative microscope-mounted spectral domain optical coherence tomography for evaluation of retinal anatomy during macular surgery,” Ophthalmology118(11), 2212–2217 (2011).
    [CrossRef] [PubMed]
  31. J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina33(1), 232–236 (2013).
    [CrossRef] [PubMed]
  32. P. Hahn, J. Migacz, R. Oʼconnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina33(7), 1328–1337 (2013).
    [CrossRef] [PubMed]
  33. J. P. Ehlers, M. P. Ohr, P. K. Kaiser, and S. K. Srivastava, “Novel microarchitectural dynamics in rhegmatogenous retinal detachments identified with intraoperative optical coherence tomography,” Retina33(7), 1428–1434 (2013).
    [CrossRef] [PubMed]

2013 (5)

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M. H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J. I. Verdaguer-Diaz, R. Milan-Navarro, J. F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: Results of the Pan-American Collaborative Retina Study Group,” Retina (Apr): 22 (2013) (Epub ahead of print).
[PubMed]

P. Hahn, J. Migacz, R. O’Connell, J. A. Izatt, and C. A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol.251(1), 213–220 (2013).
[CrossRef] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina33(1), 232–236 (2013).
[CrossRef] [PubMed]

P. Hahn, J. Migacz, R. Oʼconnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina33(7), 1328–1337 (2013).
[CrossRef] [PubMed]

J. P. Ehlers, M. P. Ohr, P. K. Kaiser, and S. K. Srivastava, “Novel microarchitectural dynamics in rhegmatogenous retinal detachments identified with intraoperative optical coherence tomography,” Retina33(7), 1428–1434 (2013).
[CrossRef] [PubMed]

2012 (3)

2011 (3)

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci.52(6), 3153–3159 (2011).
[CrossRef] [PubMed]

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging42(4Suppl), S85–S94 (2011).
[CrossRef] [PubMed]

R. Ray, D. E. Barañano, J. A. Fortun, B. J. Schwent, B. E. Cribbs, C. S. Bergstrom, G. B. Hubbard, and S. K. Srivastava, “Intraoperative microscope-mounted spectral domain optical coherence tomography for evaluation of retinal anatomy during macular surgery,” Ophthalmology118(11), 2212–2217 (2011).
[CrossRef] [PubMed]

2009 (1)

M. S. Jafri, R. Tang, and C. M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods176(2), 85–95 (2009).
[CrossRef] [PubMed]

2008 (3)

M. Stopa, B. A. Bower, E. Davies, J. A. Izatt, and C. A. Toth, “Correlation of pathologic features in spectral domain optical coherence tomography with conventional retinal studies,” Retina28(2), 298–308 (2008).
[CrossRef] [PubMed]

N. R. Munce, A. Mariampillai, B. A. Standish, M. Pop, K. J. Anderson, G. Y. Liu, T. Luk, B. K. Courtney, G. A. Wright, I. A. Vitkin, and V. X. D. Yang, “Electrostatic forward-viewing scanning probe for Doppler optical coherence tomography using a dissipative polymer catheter,” Opt. Lett.33(7), 657–659 (2008).
[CrossRef] [PubMed]

S. Han, M.V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt.13(2), 020505 (2008).

2007 (1)

2006 (5)

J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, and C. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett.31(9), 1265–1267 (2006).
[CrossRef] [PubMed]

G. Savini, M. Zanini, and P. Barboni, “Influence of pupil size and cataract on retinal nerve fiber layer thickness measurements by Stratus OCT,” J. Glaucoma15(4), 336–340 (2006).
[CrossRef] [PubMed]

A. M. Klein, M. C. Pierce, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. Shishkov, and J. F. de Boer, “Imaging the human vocal folds in vivo with optical coherence tomography: a preliminary experience,” Ann. Otol. Rhinol. Laryngol.115(4), 277–284 (2006).
[PubMed]

A. F. Low, G. J. Tearney, B. E. Bouma, and I. K. Jang, “Technology Insight: optical coherence tomography--current status and future development,” Nat. Clin. Prac. Cardiovasc. Med.3(3), 154–162, quiz 172 (2006).
[CrossRef] [PubMed]

M. Kawasaki, B. E. Bouma, J. Bressner, S. L. Houser, S. K. Nadkarni, B. D. MacNeill, I. K. Jang, H. Fujiwara, and G. J. Tearney, “Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques,” J. Am. Coll. Cardiol.48(1), 81–88 (2006).
[CrossRef] [PubMed]

2005 (4)

B. J. F. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope115(11), 1904–1911 (2005).
[CrossRef] [PubMed]

N.V. Iftimia, B.E. Bouma, M.B. Pitman, B. Goldberg, J. Bressner, and G.J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum.76(6), 064301 (2005).

T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett.30(14), 1803–1805 (2005).
[CrossRef] [PubMed]

M. V. Sarunic, B. E. Applegate, and J. A. Izatt, “Spectral domain second-harmonic optical coherence tomography,” Opt. Lett.30(18), 2391–2393 (2005).
[CrossRef] [PubMed]

2004 (3)

2003 (1)

1999 (1)

1997 (1)

1992 (1)

D. Wright, P. Greve, J. Fleischer, and L. Austin, “Laser beam width, divergence and beam propagation factor: an international standardization approach,” Opt. Quantum Electron.24(9), S993–S1000 (1992).
[CrossRef]

Almony, A.

A. Almony, E. Nudleman, G. K. Shah, K. J. Blinder, D. B. Eliott, R. A. Mittra, and A. Tewari, “Techniques, rationale, and outcomes of internal limiting membrane peeling,” Retina32(5), 877–891 (2012).
[CrossRef] [PubMed]

Anderson, K. J.

Anderson, R. R.

A. M. Klein, M. C. Pierce, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. Shishkov, and J. F. de Boer, “Imaging the human vocal folds in vivo with optical coherence tomography: a preliminary experience,” Ann. Otol. Rhinol. Laryngol.115(4), 277–284 (2006).
[PubMed]

Applegate, B. E.

Arevalo, J. F.

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M. H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J. I. Verdaguer-Diaz, R. Milan-Navarro, J. F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: Results of the Pan-American Collaborative Retina Study Group,” Retina (Apr): 22 (2013) (Epub ahead of print).
[PubMed]

Armstrong, W. B.

B. J. F. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope115(11), 1904–1911 (2005).
[CrossRef] [PubMed]

Austin, L.

D. Wright, P. Greve, J. Fleischer, and L. Austin, “Laser beam width, divergence and beam propagation factor: an international standardization approach,” Opt. Quantum Electron.24(9), S993–S1000 (1992).
[CrossRef]

Balicki, M.

S. Yang, M. Balicki, R. A. MacLachlan, X. Liu, J. U. Kang, R. H. Taylor, and C. N. Riviere, “Optical coherence tomography scanning with a handheld vitreoretinal micromanipulator,” in Proceedings of 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2012), pp. 948–951.
[CrossRef]

Barañano, D. E.

R. Ray, D. E. Barañano, J. A. Fortun, B. J. Schwent, B. E. Cribbs, C. S. Bergstrom, G. B. Hubbard, and S. K. Srivastava, “Intraoperative microscope-mounted spectral domain optical coherence tomography for evaluation of retinal anatomy during macular surgery,” Ophthalmology118(11), 2212–2217 (2011).
[CrossRef] [PubMed]

Barboni, P.

G. Savini, M. Zanini, and P. Barboni, “Influence of pupil size and cataract on retinal nerve fiber layer thickness measurements by Stratus OCT,” J. Glaucoma15(4), 336–340 (2006).
[CrossRef] [PubMed]

Bastacky, S.

Bergstrom, C. S.

R. Ray, D. E. Barañano, J. A. Fortun, B. J. Schwent, B. E. Cribbs, C. S. Bergstrom, G. B. Hubbard, and S. K. Srivastava, “Intraoperative microscope-mounted spectral domain optical coherence tomography for evaluation of retinal anatomy during macular surgery,” Ophthalmology118(11), 2212–2217 (2011).
[CrossRef] [PubMed]

Berrocal, M. H.

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M. H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J. I. Verdaguer-Diaz, R. Milan-Navarro, J. F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: Results of the Pan-American Collaborative Retina Study Group,” Retina (Apr): 22 (2013) (Epub ahead of print).
[PubMed]

Blinder, K. J.

A. Almony, E. Nudleman, G. K. Shah, K. J. Blinder, D. B. Eliott, R. A. Mittra, and A. Tewari, “Techniques, rationale, and outcomes of internal limiting membrane peeling,” Retina32(5), 877–891 (2012).
[CrossRef] [PubMed]

Boppart, S. A.

Bouma, B. E.

A. F. Low, G. J. Tearney, B. E. Bouma, and I. K. Jang, “Technology Insight: optical coherence tomography--current status and future development,” Nat. Clin. Prac. Cardiovasc. Med.3(3), 154–162, quiz 172 (2006).
[CrossRef] [PubMed]

M. Kawasaki, B. E. Bouma, J. Bressner, S. L. Houser, S. K. Nadkarni, B. D. MacNeill, I. K. Jang, H. Fujiwara, and G. J. Tearney, “Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques,” J. Am. Coll. Cardiol.48(1), 81–88 (2006).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004).
[CrossRef] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, and M. E. Brezinski, “Forward-imaging instruments for optical coherence tomography,” Opt. Lett.22(21), 1618–1620 (1997).
[CrossRef] [PubMed]

Bouma, B.E.

N.V. Iftimia, B.E. Bouma, M.B. Pitman, B. Goldberg, J. Bressner, and G.J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum.76(6), 064301 (2005).

Bower, B. A.

M. Stopa, B. A. Bower, E. Davies, J. A. Izatt, and C. A. Toth, “Correlation of pathologic features in spectral domain optical coherence tomography with conventional retinal studies,” Retina28(2), 298–308 (2008).
[CrossRef] [PubMed]

Brenner, M.

Bressner, J.

M. Kawasaki, B. E. Bouma, J. Bressner, S. L. Houser, S. K. Nadkarni, B. D. MacNeill, I. K. Jang, H. Fujiwara, and G. J. Tearney, “Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques,” J. Am. Coll. Cardiol.48(1), 81–88 (2006).
[CrossRef] [PubMed]

N.V. Iftimia, B.E. Bouma, M.B. Pitman, B. Goldberg, J. Bressner, and G.J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum.76(6), 064301 (2005).

Brezinski, M. E.

Brukson, A.

Carpentier, C.

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M. H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J. I. Verdaguer-Diaz, R. Milan-Navarro, J. F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: Results of the Pan-American Collaborative Retina Study Group,” Retina (Apr): 22 (2013) (Epub ahead of print).
[PubMed]

Cense, B.

Chak, A.

Chen, T. C.

Chen, Y.

Chen, Z.

B. J. F. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope115(11), 1904–1911 (2005).
[CrossRef] [PubMed]

T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett.30(14), 1803–1805 (2005).
[CrossRef] [PubMed]

Cobb, M. J.

Conry, M.

Courtney, B. K.

Cribbs, B. E.

R. Ray, D. E. Barañano, J. A. Fortun, B. J. Schwent, B. E. Cribbs, C. S. Bergstrom, G. B. Hubbard, and S. K. Srivastava, “Intraoperative microscope-mounted spectral domain optical coherence tomography for evaluation of retinal anatomy during macular surgery,” Ophthalmology118(11), 2212–2217 (2011).
[CrossRef] [PubMed]

Crumley, R. L.

B. J. F. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope115(11), 1904–1911 (2005).
[CrossRef] [PubMed]

Cusimano, M. D.

Davies, E.

M. Stopa, B. A. Bower, E. Davies, J. A. Izatt, and C. A. Toth, “Correlation of pathologic features in spectral domain optical coherence tomography with conventional retinal studies,” Retina28(2), 298–308 (2008).
[CrossRef] [PubMed]

Day, S.

P. Hahn, J. Migacz, R. Oʼconnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina33(7), 1328–1337 (2013).
[CrossRef] [PubMed]

de Boer, J. F.

A. M. Klein, M. C. Pierce, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. Shishkov, and J. F. de Boer, “Imaging the human vocal folds in vivo with optical coherence tomography: a preliminary experience,” Ann. Otol. Rhinol. Laryngol.115(4), 277–284 (2006).
[PubMed]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004).
[CrossRef] [PubMed]

Diaz-Llopis, M.

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M. H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J. I. Verdaguer-Diaz, R. Milan-Navarro, J. F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: Results of the Pan-American Collaborative Retina Study Group,” Retina (Apr): 22 (2013) (Epub ahead of print).
[PubMed]

Du, C. W.

Ehlers, J. P.

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina33(1), 232–236 (2013).
[CrossRef] [PubMed]

J. P. Ehlers, M. P. Ohr, P. K. Kaiser, and S. K. Srivastava, “Novel microarchitectural dynamics in rhegmatogenous retinal detachments identified with intraoperative optical coherence tomography,” Retina33(7), 1428–1434 (2013).
[CrossRef] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci.52(6), 3153–3159 (2011).
[CrossRef] [PubMed]

Eliott, D. B.

A. Almony, E. Nudleman, G. K. Shah, K. J. Blinder, D. B. Eliott, R. A. Mittra, and A. Tewari, “Techniques, rationale, and outcomes of internal limiting membrane peeling,” Retina32(5), 877–891 (2012).
[CrossRef] [PubMed]

Farsiu, S.

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina33(1), 232–236 (2013).
[CrossRef] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci.52(6), 3153–3159 (2011).
[CrossRef] [PubMed]

Fedder, G. K.

A. Jain, A. Kopa, Y. Pan, G. K. Fedder, and H. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.10(3), 636–642 (2004).
[CrossRef]

Fekrat, S.

P. Hahn, J. Migacz, R. Oʼconnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina33(7), 1328–1337 (2013).
[CrossRef] [PubMed]

Filsecker, L.

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M. H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J. I. Verdaguer-Diaz, R. Milan-Navarro, J. F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: Results of the Pan-American Collaborative Retina Study Group,” Retina (Apr): 22 (2013) (Epub ahead of print).
[PubMed]

Fleischer, J.

D. Wright, P. Greve, J. Fleischer, and L. Austin, “Laser beam width, divergence and beam propagation factor: an international standardization approach,” Opt. Quantum Electron.24(9), S993–S1000 (1992).
[CrossRef]

Fortun, J. A.

R. Ray, D. E. Barañano, J. A. Fortun, B. J. Schwent, B. E. Cribbs, C. S. Bergstrom, G. B. Hubbard, and S. K. Srivastava, “Intraoperative microscope-mounted spectral domain optical coherence tomography for evaluation of retinal anatomy during macular surgery,” Ophthalmology118(11), 2212–2217 (2011).
[CrossRef] [PubMed]

Fujimoto, J. G.

Fujiwara, H.

M. Kawasaki, B. E. Bouma, J. Bressner, S. L. Houser, S. K. Nadkarni, B. D. MacNeill, I. K. Jang, H. Fujiwara, and G. J. Tearney, “Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques,” J. Am. Coll. Cardiol.48(1), 81–88 (2006).
[CrossRef] [PubMed]

Gallego-Pinazo, R.

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M. H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J. I. Verdaguer-Diaz, R. Milan-Navarro, J. F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: Results of the Pan-American Collaborative Retina Study Group,” Retina (Apr): 22 (2013) (Epub ahead of print).
[PubMed]

Goldberg, B.

N.V. Iftimia, B.E. Bouma, M.B. Pitman, B. Goldberg, J. Bressner, and G.J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum.76(6), 064301 (2005).

Greve, P.

D. Wright, P. Greve, J. Fleischer, and L. Austin, “Laser beam width, divergence and beam propagation factor: an international standardization approach,” Opt. Quantum Electron.24(9), S993–S1000 (1992).
[CrossRef]

Gu, C.

Gu, M.

B. J. F. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope115(11), 1904–1911 (2005).
[CrossRef] [PubMed]

Guo, S.

B. J. F. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope115(11), 1904–1911 (2005).
[CrossRef] [PubMed]

T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett.30(14), 1803–1805 (2005).
[CrossRef] [PubMed]

Hahn, P.

P. Hahn, J. Migacz, R. O’Connell, J. A. Izatt, and C. A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol.251(1), 213–220 (2013).
[CrossRef] [PubMed]

P. Hahn, J. Migacz, R. Oʼconnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina33(7), 1328–1337 (2013).
[CrossRef] [PubMed]

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging42(4Suppl), S85–S94 (2011).
[CrossRef] [PubMed]

Han, S.

S. Han, M.V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt.13(2), 020505 (2008).

Houser, S. L.

M. Kawasaki, B. E. Bouma, J. Bressner, S. L. Houser, S. K. Nadkarni, B. D. MacNeill, I. K. Jang, H. Fujiwara, and G. J. Tearney, “Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques,” J. Am. Coll. Cardiol.48(1), 81–88 (2006).
[CrossRef] [PubMed]

Huang, Y.

Hubbard, G. B.

R. Ray, D. E. Barañano, J. A. Fortun, B. J. Schwent, B. E. Cribbs, C. S. Bergstrom, G. B. Hubbard, and S. K. Srivastava, “Intraoperative microscope-mounted spectral domain optical coherence tomography for evaluation of retinal anatomy during macular surgery,” Ophthalmology118(11), 2212–2217 (2011).
[CrossRef] [PubMed]

Humayun, M.

S. Han, M.V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt.13(2), 020505 (2008).

Iftimia, N.V.

N.V. Iftimia, B.E. Bouma, M.B. Pitman, B. Goldberg, J. Bressner, and G.J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum.76(6), 064301 (2005).

Izatt, J. A.

P. Hahn, J. Migacz, R. O’Connell, J. A. Izatt, and C. A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol.251(1), 213–220 (2013).
[CrossRef] [PubMed]

P. Hahn, J. Migacz, R. Oʼconnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina33(7), 1328–1337 (2013).
[CrossRef] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina33(1), 232–236 (2013).
[CrossRef] [PubMed]

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging42(4Suppl), S85–S94 (2011).
[CrossRef] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci.52(6), 3153–3159 (2011).
[CrossRef] [PubMed]

M. Stopa, B. A. Bower, E. Davies, J. A. Izatt, and C. A. Toth, “Correlation of pathologic features in spectral domain optical coherence tomography with conventional retinal studies,” Retina28(2), 298–308 (2008).
[CrossRef] [PubMed]

Y. K. Tao, M. Zhao, and J. A. Izatt, “High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation,” Opt. Lett.32(20), 2918–2920 (2007).
[CrossRef] [PubMed]

M. V. Sarunic, B. E. Applegate, and J. A. Izatt, “Spectral domain second-harmonic optical coherence tomography,” Opt. Lett.30(18), 2391–2393 (2005).
[CrossRef] [PubMed]

A. M. Rollins, R. Ung-Arunyawee, A. Chak, R. C. Wong, K. Kobayashi, M. V. Sivak, and J. A. Izatt, “Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design,” Opt. Lett.24(19), 1358–1360 (1999).
[CrossRef] [PubMed]

Jackson, R. P.

B. J. F. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope115(11), 1904–1911 (2005).
[CrossRef] [PubMed]

Jafri, M. S.

M. S. Jafri, R. Tang, and C. M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods176(2), 85–95 (2009).
[CrossRef] [PubMed]

Jain, A.

A. Jain, A. Kopa, Y. Pan, G. K. Fedder, and H. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.10(3), 636–642 (2004).
[CrossRef]

Jang, I. K.

A. F. Low, G. J. Tearney, B. E. Bouma, and I. K. Jang, “Technology Insight: optical coherence tomography--current status and future development,” Nat. Clin. Prac. Cardiovasc. Med.3(3), 154–162, quiz 172 (2006).
[CrossRef] [PubMed]

M. Kawasaki, B. E. Bouma, J. Bressner, S. L. Houser, S. K. Nadkarni, B. D. MacNeill, I. K. Jang, H. Fujiwara, and G. J. Tearney, “Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques,” J. Am. Coll. Cardiol.48(1), 81–88 (2006).
[CrossRef] [PubMed]

Kaiser, P. K.

J. P. Ehlers, M. P. Ohr, P. K. Kaiser, and S. K. Srivastava, “Novel microarchitectural dynamics in rhegmatogenous retinal detachments identified with intraoperative optical coherence tomography,” Retina33(7), 1428–1434 (2013).
[CrossRef] [PubMed]

Kang, J. U.

Y. Huang, X. Liu, C. Song, and J. U. Kang, “Motion-compensated hand-held common-path Fourier-domain optical coherence tomography probe for image-guided intervention,” Biomed. Opt. Express3(12), 3105–3118 (2012).
[CrossRef] [PubMed]

S. Yang, M. Balicki, R. A. MacLachlan, X. Liu, J. U. Kang, R. H. Taylor, and C. N. Riviere, “Optical coherence tomography scanning with a handheld vitreoretinal micromanipulator,” in Proceedings of 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2012), pp. 948–951.
[CrossRef]

Kawasaki, M.

M. Kawasaki, B. E. Bouma, J. Bressner, S. L. Houser, S. K. Nadkarni, B. D. MacNeill, I. K. Jang, H. Fujiwara, and G. J. Tearney, “Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques,” J. Am. Coll. Cardiol.48(1), 81–88 (2006).
[CrossRef] [PubMed]

Kimmey, M. B.

Klein, A. M.

A. M. Klein, M. C. Pierce, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. Shishkov, and J. F. de Boer, “Imaging the human vocal folds in vivo with optical coherence tomography: a preliminary experience,” Ann. Otol. Rhinol. Laryngol.115(4), 277–284 (2006).
[PubMed]

Kobayashi, K.

Kobler, J. B.

A. M. Klein, M. C. Pierce, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. Shishkov, and J. F. de Boer, “Imaging the human vocal folds in vivo with optical coherence tomography: a preliminary experience,” Ann. Otol. Rhinol. Laryngol.115(4), 277–284 (2006).
[PubMed]

Kopa, A.

A. Jain, A. Kopa, Y. Pan, G. K. Fedder, and H. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.10(3), 636–642 (2004).
[CrossRef]

Kuo, A.

P. Hahn, J. Migacz, R. Oʼconnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina33(7), 1328–1337 (2013).
[CrossRef] [PubMed]

Lee, A.

P. Hahn, J. Migacz, R. Oʼconnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina33(7), 1328–1337 (2013).
[CrossRef] [PubMed]

Lee, K. K. C.

Li, X.

Lin, P.

P. Hahn, J. Migacz, R. Oʼconnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina33(7), 1328–1337 (2013).
[CrossRef] [PubMed]

Liu, G. Y.

Liu, X.

Y. Huang, X. Liu, C. Song, and J. U. Kang, “Motion-compensated hand-held common-path Fourier-domain optical coherence tomography probe for image-guided intervention,” Biomed. Opt. Express3(12), 3105–3118 (2012).
[CrossRef] [PubMed]

X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett.29(15), 1763–1765 (2004).
[CrossRef] [PubMed]

S. Yang, M. Balicki, R. A. MacLachlan, X. Liu, J. U. Kang, R. H. Taylor, and C. N. Riviere, “Optical coherence tomography scanning with a handheld vitreoretinal micromanipulator,” in Proceedings of 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2012), pp. 948–951.
[CrossRef]

Low, A. F.

A. F. Low, G. J. Tearney, B. E. Bouma, and I. K. Jang, “Technology Insight: optical coherence tomography--current status and future development,” Nat. Clin. Prac. Cardiovasc. Med.3(3), 154–162, quiz 172 (2006).
[CrossRef] [PubMed]

Luk, T.

MacLachlan, R. A.

S. Yang, M. Balicki, R. A. MacLachlan, X. Liu, J. U. Kang, R. H. Taylor, and C. N. Riviere, “Optical coherence tomography scanning with a handheld vitreoretinal micromanipulator,” in Proceedings of 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2012), pp. 948–951.
[CrossRef]

MacNeill, B. D.

M. Kawasaki, B. E. Bouma, J. Bressner, S. L. Houser, S. K. Nadkarni, B. D. MacNeill, I. K. Jang, H. Fujiwara, and G. J. Tearney, “Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques,” J. Am. Coll. Cardiol.48(1), 81–88 (2006).
[CrossRef] [PubMed]

Mahmood, U.

B. J. F. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope115(11), 1904–1911 (2005).
[CrossRef] [PubMed]

Maia, M.

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M. H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J. I. Verdaguer-Diaz, R. Milan-Navarro, J. F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: Results of the Pan-American Collaborative Retina Study Group,” Retina (Apr): 22 (2013) (Epub ahead of print).
[PubMed]

Maldonado, R.

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina33(1), 232–236 (2013).
[CrossRef] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci.52(6), 3153–3159 (2011).
[CrossRef] [PubMed]

Maldonado, R. S.

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging42(4Suppl), S85–S94 (2011).
[CrossRef] [PubMed]

Mariampillai, A.

Mauro, A.

Meyers, S.

Migacz, J.

P. Hahn, J. Migacz, R. O’Connell, J. A. Izatt, and C. A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol.251(1), 213–220 (2013).
[CrossRef] [PubMed]

P. Hahn, J. Migacz, R. Oʼconnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina33(7), 1328–1337 (2013).
[CrossRef] [PubMed]

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging42(4Suppl), S85–S94 (2011).
[CrossRef] [PubMed]

Milan-Navarro, R.

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M. H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J. I. Verdaguer-Diaz, R. Milan-Navarro, J. F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: Results of the Pan-American Collaborative Retina Study Group,” Retina (Apr): 22 (2013) (Epub ahead of print).
[PubMed]

Mittra, R. A.

A. Almony, E. Nudleman, G. K. Shah, K. J. Blinder, D. B. Eliott, R. A. Mittra, and A. Tewari, “Techniques, rationale, and outcomes of internal limiting membrane peeling,” Retina32(5), 877–891 (2012).
[CrossRef] [PubMed]

Mruthyunjaya, P.

P. Hahn, J. Migacz, R. Oʼconnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina33(7), 1328–1337 (2013).
[CrossRef] [PubMed]

Mukai, D.

Munce, N.

Munce, N. R.

Nadkarni, S. K.

M. Kawasaki, B. E. Bouma, J. Bressner, S. L. Houser, S. K. Nadkarni, B. D. MacNeill, I. K. Jang, H. Fujiwara, and G. J. Tearney, “Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques,” J. Am. Coll. Cardiol.48(1), 81–88 (2006).
[CrossRef] [PubMed]

Nassif, N.

Nudleman, E.

A. Almony, E. Nudleman, G. K. Shah, K. J. Blinder, D. B. Eliott, R. A. Mittra, and A. Tewari, “Techniques, rationale, and outcomes of internal limiting membrane peeling,” Retina32(5), 877–891 (2012).
[CrossRef] [PubMed]

O’Connell, R.

P. Hahn, J. Migacz, R. O’Connell, J. A. Izatt, and C. A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol.251(1), 213–220 (2013).
[CrossRef] [PubMed]

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging42(4Suppl), S85–S94 (2011).
[CrossRef] [PubMed]

O'connell, R.

P. Hahn, J. Migacz, R. Oʼconnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina33(7), 1328–1337 (2013).
[CrossRef] [PubMed]

Ohr, M. P.

J. P. Ehlers, M. P. Ohr, P. K. Kaiser, and S. K. Srivastava, “Novel microarchitectural dynamics in rhegmatogenous retinal detachments identified with intraoperative optical coherence tomography,” Retina33(7), 1428–1434 (2013).
[CrossRef] [PubMed]

Pan, Y.

A. Jain, A. Kopa, Y. Pan, G. K. Fedder, and H. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.10(3), 636–642 (2004).
[CrossRef]

Pan, Y. T.

Park, B. H.

Pierce, M. C.

A. M. Klein, M. C. Pierce, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. Shishkov, and J. F. de Boer, “Imaging the human vocal folds in vivo with optical coherence tomography: a preliminary experience,” Ann. Otol. Rhinol. Laryngol.115(4), 277–284 (2006).
[PubMed]

Pitman, M.B.

N.V. Iftimia, B.E. Bouma, M.B. Pitman, B. Goldberg, J. Bressner, and G.J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum.76(6), 064301 (2005).

Pitris, C.

Pop, M.

Postel, E. A.

P. Hahn, J. Migacz, R. Oʼconnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina33(7), 1328–1337 (2013).
[CrossRef] [PubMed]

Ray, R.

R. Ray, D. E. Barañano, J. A. Fortun, B. J. Schwent, B. E. Cribbs, C. S. Bergstrom, G. B. Hubbard, and S. K. Srivastava, “Intraoperative microscope-mounted spectral domain optical coherence tomography for evaluation of retinal anatomy during macular surgery,” Ophthalmology118(11), 2212–2217 (2011).
[CrossRef] [PubMed]

Ridgway, J. M.

B. J. F. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope115(11), 1904–1911 (2005).
[CrossRef] [PubMed]

Riviere, C. N.

S. Yang, M. Balicki, R. A. MacLachlan, X. Liu, J. U. Kang, R. H. Taylor, and C. N. Riviere, “Optical coherence tomography scanning with a handheld vitreoretinal micromanipulator,” in Proceedings of 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2012), pp. 948–951.
[CrossRef]

Rollins, A. M.

Saravia, M.

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M. H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J. I. Verdaguer-Diaz, R. Milan-Navarro, J. F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: Results of the Pan-American Collaborative Retina Study Group,” Retina (Apr): 22 (2013) (Epub ahead of print).
[PubMed]

Sarunic, M. V.

Sarunic, M.V.

S. Han, M.V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt.13(2), 020505 (2008).

Savini, G.

G. Savini, M. Zanini, and P. Barboni, “Influence of pupil size and cataract on retinal nerve fiber layer thickness measurements by Stratus OCT,” J. Glaucoma15(4), 336–340 (2006).
[CrossRef] [PubMed]

Schwent, B. J.

R. Ray, D. E. Barañano, J. A. Fortun, B. J. Schwent, B. E. Cribbs, C. S. Bergstrom, G. B. Hubbard, and S. K. Srivastava, “Intraoperative microscope-mounted spectral domain optical coherence tomography for evaluation of retinal anatomy during macular surgery,” Ophthalmology118(11), 2212–2217 (2011).
[CrossRef] [PubMed]

Sepulveda, G.

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M. H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J. I. Verdaguer-Diaz, R. Milan-Navarro, J. F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: Results of the Pan-American Collaborative Retina Study Group,” Retina (Apr): 22 (2013) (Epub ahead of print).
[PubMed]

Shah, G. K.

A. Almony, E. Nudleman, G. K. Shah, K. J. Blinder, D. B. Eliott, R. A. Mittra, and A. Tewari, “Techniques, rationale, and outcomes of internal limiting membrane peeling,” Retina32(5), 877–891 (2012).
[CrossRef] [PubMed]

Shibuya, T. Y.

B. J. F. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope115(11), 1904–1911 (2005).
[CrossRef] [PubMed]

Shishkov, M.

A. M. Klein, M. C. Pierce, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. Shishkov, and J. F. de Boer, “Imaging the human vocal folds in vivo with optical coherence tomography: a preliminary experience,” Ann. Otol. Rhinol. Laryngol.115(4), 277–284 (2006).
[PubMed]

Sivak, M. V.

Song, C.

Srivastava, S. K.

J. P. Ehlers, M. P. Ohr, P. K. Kaiser, and S. K. Srivastava, “Novel microarchitectural dynamics in rhegmatogenous retinal detachments identified with intraoperative optical coherence tomography,” Retina33(7), 1428–1434 (2013).
[CrossRef] [PubMed]

R. Ray, D. E. Barañano, J. A. Fortun, B. J. Schwent, B. E. Cribbs, C. S. Bergstrom, G. B. Hubbard, and S. K. Srivastava, “Intraoperative microscope-mounted spectral domain optical coherence tomography for evaluation of retinal anatomy during macular surgery,” Ophthalmology118(11), 2212–2217 (2011).
[CrossRef] [PubMed]

Standish, B. A.

Stopa, M.

M. Stopa, B. A. Bower, E. Davies, J. A. Izatt, and C. A. Toth, “Correlation of pathologic features in spectral domain optical coherence tomography with conventional retinal studies,” Retina28(2), 298–308 (2008).
[CrossRef] [PubMed]

Su, J.

B. J. F. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope115(11), 1904–1911 (2005).
[CrossRef] [PubMed]

Sun, C.

Tang, C. M.

M. S. Jafri, R. Tang, and C. M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods176(2), 85–95 (2009).
[CrossRef] [PubMed]

Tang, R.

M. S. Jafri, R. Tang, and C. M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods176(2), 85–95 (2009).
[CrossRef] [PubMed]

Tao, Y. K.

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina33(1), 232–236 (2013).
[CrossRef] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci.52(6), 3153–3159 (2011).
[CrossRef] [PubMed]

Y. K. Tao, M. Zhao, and J. A. Izatt, “High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation,” Opt. Lett.32(20), 2918–2920 (2007).
[CrossRef] [PubMed]

Taylor, R. H.

S. Yang, M. Balicki, R. A. MacLachlan, X. Liu, J. U. Kang, R. H. Taylor, and C. N. Riviere, “Optical coherence tomography scanning with a handheld vitreoretinal micromanipulator,” in Proceedings of 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2012), pp. 948–951.
[CrossRef]

Tearney, G. J.

A. F. Low, G. J. Tearney, B. E. Bouma, and I. K. Jang, “Technology Insight: optical coherence tomography--current status and future development,” Nat. Clin. Prac. Cardiovasc. Med.3(3), 154–162, quiz 172 (2006).
[CrossRef] [PubMed]

M. Kawasaki, B. E. Bouma, J. Bressner, S. L. Houser, S. K. Nadkarni, B. D. MacNeill, I. K. Jang, H. Fujiwara, and G. J. Tearney, “Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques,” J. Am. Coll. Cardiol.48(1), 81–88 (2006).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004).
[CrossRef] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, and M. E. Brezinski, “Forward-imaging instruments for optical coherence tomography,” Opt. Lett.22(21), 1618–1620 (1997).
[CrossRef] [PubMed]

Tearney, G.J.

N.V. Iftimia, B.E. Bouma, M.B. Pitman, B. Goldberg, J. Bressner, and G.J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum.76(6), 064301 (2005).

Tewari, A.

A. Almony, E. Nudleman, G. K. Shah, K. J. Blinder, D. B. Eliott, R. A. Mittra, and A. Tewari, “Techniques, rationale, and outcomes of internal limiting membrane peeling,” Retina32(5), 877–891 (2012).
[CrossRef] [PubMed]

Toth, C. A.

P. Hahn, J. Migacz, R. Oʼconnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina33(7), 1328–1337 (2013).
[CrossRef] [PubMed]

P. Hahn, J. Migacz, R. O’Connell, J. A. Izatt, and C. A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol.251(1), 213–220 (2013).
[CrossRef] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina33(1), 232–236 (2013).
[CrossRef] [PubMed]

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging42(4Suppl), S85–S94 (2011).
[CrossRef] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci.52(6), 3153–3159 (2011).
[CrossRef] [PubMed]

M. Stopa, B. A. Bower, E. Davies, J. A. Izatt, and C. A. Toth, “Correlation of pathologic features in spectral domain optical coherence tomography with conventional retinal studies,” Retina28(2), 298–308 (2008).
[CrossRef] [PubMed]

Ung-Arunyawee, R.

Vann, R.

P. Hahn, J. Migacz, R. Oʼconnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina33(7), 1328–1337 (2013).
[CrossRef] [PubMed]

Verdaguer-Diaz, J. I.

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M. H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J. I. Verdaguer-Diaz, R. Milan-Navarro, J. F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: Results of the Pan-American Collaborative Retina Study Group,” Retina (Apr): 22 (2013) (Epub ahead of print).
[PubMed]

Vitkin, I. A.

Vuong, B.

Wang, F.

Wong, B. J. F.

B. J. F. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope115(11), 1904–1911 (2005).
[CrossRef] [PubMed]

Wong, R. C.

Wright, D.

D. Wright, P. Greve, J. Fleischer, and L. Austin, “Laser beam width, divergence and beam propagation factor: an international standardization approach,” Opt. Quantum Electron.24(9), S993–S1000 (1992).
[CrossRef]

Wright, G. A.

Wu, J.

S. Han, M.V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt.13(2), 020505 (2008).

J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, and C. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett.31(9), 1265–1267 (2006).
[CrossRef] [PubMed]

Wu, L.

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M. H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J. I. Verdaguer-Diaz, R. Milan-Navarro, J. F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: Results of the Pan-American Collaborative Retina Study Group,” Retina (Apr): 22 (2013) (Epub ahead of print).
[PubMed]

Xie, H.

A. Jain, A. Kopa, Y. Pan, G. K. Fedder, and H. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.10(3), 636–642 (2004).
[CrossRef]

Xie, T.

Xie, T. Q.

Yang, C.

S. Han, M.V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt.13(2), 020505 (2008).

J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, and C. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett.31(9), 1265–1267 (2006).
[CrossRef] [PubMed]

Yang, S.

S. Yang, M. Balicki, R. A. MacLachlan, X. Liu, J. U. Kang, R. H. Taylor, and C. N. Riviere, “Optical coherence tomography scanning with a handheld vitreoretinal micromanipulator,” in Proceedings of 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2012), pp. 948–951.
[CrossRef]

Yang, V. X. D.

Yaqoob, Z.

Yun, S. H.

Zanini, M.

G. Savini, M. Zanini, and P. Barboni, “Influence of pupil size and cataract on retinal nerve fiber layer thickness measurements by Stratus OCT,” J. Glaucoma15(4), 336–340 (2006).
[CrossRef] [PubMed]

Zanolli, M.

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M. H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J. I. Verdaguer-Diaz, R. Milan-Navarro, J. F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: Results of the Pan-American Collaborative Retina Study Group,” Retina (Apr): 22 (2013) (Epub ahead of print).
[PubMed]

Zeidel, M. L.

Zeitels, S. M.

A. M. Klein, M. C. Pierce, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. Shishkov, and J. F. de Boer, “Imaging the human vocal folds in vivo with optical coherence tomography: a preliminary experience,” Ann. Otol. Rhinol. Laryngol.115(4), 277–284 (2006).
[PubMed]

Zhao, M.

Ann. Otol. Rhinol. Laryngol. (1)

A. M. Klein, M. C. Pierce, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. Shishkov, and J. F. de Boer, “Imaging the human vocal folds in vivo with optical coherence tomography: a preliminary experience,” Ann. Otol. Rhinol. Laryngol.115(4), 277–284 (2006).
[PubMed]

Biomed. Opt. Express (2)

Graefes Arch. Clin. Exp. Ophthalmol. (1)

P. Hahn, J. Migacz, R. O’Connell, J. A. Izatt, and C. A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol.251(1), 213–220 (2013).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Jain, A. Kopa, Y. Pan, G. K. Fedder, and H. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.10(3), 636–642 (2004).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (1)

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci.52(6), 3153–3159 (2011).
[CrossRef] [PubMed]

J. Am. Coll. Cardiol. (1)

M. Kawasaki, B. E. Bouma, J. Bressner, S. L. Houser, S. K. Nadkarni, B. D. MacNeill, I. K. Jang, H. Fujiwara, and G. J. Tearney, “Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques,” J. Am. Coll. Cardiol.48(1), 81–88 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

S. Han, M.V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt.13(2), 020505 (2008).

J. Glaucoma (1)

G. Savini, M. Zanini, and P. Barboni, “Influence of pupil size and cataract on retinal nerve fiber layer thickness measurements by Stratus OCT,” J. Glaucoma15(4), 336–340 (2006).
[CrossRef] [PubMed]

J. Neurosci. Methods (1)

M. S. Jafri, R. Tang, and C. M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods176(2), 85–95 (2009).
[CrossRef] [PubMed]

Laryngoscope (1)

B. J. F. Wong, R. P. Jackson, S. Guo, J. M. Ridgway, U. Mahmood, J. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. Chen, “In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients,” Laryngoscope115(11), 1904–1911 (2005).
[CrossRef] [PubMed]

Nat. Clin. Prac. Cardiovasc. Med. (1)

A. F. Low, G. J. Tearney, B. E. Bouma, and I. K. Jang, “Technology Insight: optical coherence tomography--current status and future development,” Nat. Clin. Prac. Cardiovasc. Med.3(3), 154–162, quiz 172 (2006).
[CrossRef] [PubMed]

Ophthalmic Surg. Lasers Imaging (1)

P. Hahn, J. Migacz, R. O’Connell, R. S. Maldonado, J. A. Izatt, and C. A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging42(4Suppl), S85–S94 (2011).
[CrossRef] [PubMed]

Ophthalmology (1)

R. Ray, D. E. Barañano, J. A. Fortun, B. J. Schwent, B. E. Cribbs, C. S. Bergstrom, G. B. Hubbard, and S. K. Srivastava, “Intraoperative microscope-mounted spectral domain optical coherence tomography for evaluation of retinal anatomy during macular surgery,” Ophthalmology118(11), 2212–2217 (2011).
[CrossRef] [PubMed]

Opt. Lett. (10)

Y. T. Pan, T. Q. Xie, C. W. Du, S. Bastacky, S. Meyers, and M. L. Zeidel, “Enhancing early bladder cancer detection with fluorescence-guided endoscopic optical coherence tomography,” Opt. Lett.28(24), 2485–2487 (2003).
[CrossRef] [PubMed]

A. M. Rollins, R. Ung-Arunyawee, A. Chak, R. C. Wong, K. Kobayashi, M. V. Sivak, and J. A. Izatt, “Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design,” Opt. Lett.24(19), 1358–1360 (1999).
[CrossRef] [PubMed]

M. V. Sarunic, B. E. Applegate, and J. A. Izatt, “Spectral domain second-harmonic optical coherence tomography,” Opt. Lett.30(18), 2391–2393 (2005).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004).
[CrossRef] [PubMed]

Y. K. Tao, M. Zhao, and J. A. Izatt, “High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation,” Opt. Lett.32(20), 2918–2920 (2007).
[CrossRef] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, and M. E. Brezinski, “Forward-imaging instruments for optical coherence tomography,” Opt. Lett.22(21), 1618–1620 (1997).
[CrossRef] [PubMed]

X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett.29(15), 1763–1765 (2004).
[CrossRef] [PubMed]

T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett.30(14), 1803–1805 (2005).
[CrossRef] [PubMed]

J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, and C. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett.31(9), 1265–1267 (2006).
[CrossRef] [PubMed]

N. R. Munce, A. Mariampillai, B. A. Standish, M. Pop, K. J. Anderson, G. Y. Liu, T. Luk, B. K. Courtney, G. A. Wright, I. A. Vitkin, and V. X. D. Yang, “Electrostatic forward-viewing scanning probe for Doppler optical coherence tomography using a dissipative polymer catheter,” Opt. Lett.33(7), 657–659 (2008).
[CrossRef] [PubMed]

Opt. Quantum Electron. (1)

D. Wright, P. Greve, J. Fleischer, and L. Austin, “Laser beam width, divergence and beam propagation factor: an international standardization approach,” Opt. Quantum Electron.24(9), S993–S1000 (1992).
[CrossRef]

Retina (6)

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina33(1), 232–236 (2013).
[CrossRef] [PubMed]

P. Hahn, J. Migacz, R. Oʼconnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E. A. Postel, J. A. Izatt, and C. A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina33(7), 1328–1337 (2013).
[CrossRef] [PubMed]

J. P. Ehlers, M. P. Ohr, P. K. Kaiser, and S. K. Srivastava, “Novel microarchitectural dynamics in rhegmatogenous retinal detachments identified with intraoperative optical coherence tomography,” Retina33(7), 1428–1434 (2013).
[CrossRef] [PubMed]

M. Stopa, B. A. Bower, E. Davies, J. A. Izatt, and C. A. Toth, “Correlation of pathologic features in spectral domain optical coherence tomography with conventional retinal studies,” Retina28(2), 298–308 (2008).
[CrossRef] [PubMed]

A. Almony, E. Nudleman, G. K. Shah, K. J. Blinder, D. B. Eliott, R. A. Mittra, and A. Tewari, “Techniques, rationale, and outcomes of internal limiting membrane peeling,” Retina32(5), 877–891 (2012).
[CrossRef] [PubMed]

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M. H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J. I. Verdaguer-Diaz, R. Milan-Navarro, J. F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: Results of the Pan-American Collaborative Retina Study Group,” Retina (Apr): 22 (2013) (Epub ahead of print).
[PubMed]

Rev. Sci. Instrum. (1)

N.V. Iftimia, B.E. Bouma, M.B. Pitman, B. Goldberg, J. Bressner, and G.J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum.76(6), 064301 (2005).

Other (1)

S. Yang, M. Balicki, R. A. MacLachlan, X. Liu, J. U. Kang, R. H. Taylor, and C. N. Riviere, “Optical coherence tomography scanning with a handheld vitreoretinal micromanipulator,” in Proceedings of 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2012), pp. 948–951.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Diagram of the OCT probe system.

Fig. 2
Fig. 2

(a) Configuration of the miniature forward-imaging OCT probe. (b) External appearance of one 25-gauge OCT probe. (c) The probe easily passes through a 25-gauge vitrectomy port.

Fig. 3
Fig. 3

The OCT beam spot-size from the forward-imaging probe was calculated by the knife-edge method. The spot size measurements at a distance of 3 mm (solid line) and at a distance of 4 mm (dashed line) are graphed.

Fig. 4
Fig. 4

OCT probe image of an IR card taken at 5 Hz.

Fig. 5
Fig. 5

(a) Multiple layers within a roll of cellophane tape are clearly delineated by the miniature OCT probe. (b) Similarly, multiple layers are visible when imaged with a commercial 18 mm diameter probe.

Fig.6
Fig.6

Real-time images of (a) eyelid skin, (b) cornea, and (c) conjunctiva. (b) The outer corneal epithelium and inner Descemets membrane are visible in the corneal images. (c) The layers of conjunctiva and Tenons are observed above the dense sclera.

Fig.7
Fig.7

The cross-section of the (a) iris is visible including its relationship to the (b) lens surface. (c) The anterior chamber angle structures are visible with the miniature OCT probe.

Fig. 8
Fig. 8

The miniature intraocular probe is able to (a) distinguish layers of the retina, (b) image the optic nerve in a porcine eye, (c) image a retinal hole, and (d) visualize a retinal detachment.

Fig. 9
Fig. 9

(a) Several layers within a porcine cadaver retina are delineated by the miniature OCT probe. (b) Similarly, several layers are visible within a porcine cadaver retina when imaged with a commercial 18 mm diameter probe.

Metrics