Abstract

We assessed the agreement between sampling windows of different size and orientation on packing density estimates in images of the parafoveal cone mosaic acquired using a flood-illumination adaptive optics retinal camera. Horizontal and vertical oriented sampling windows of different size (320x160 µm, 160x80 µm and 80x40 µm) were selected in two retinal locations along the horizontal meridian in one eye of ten subjects. At each location, cone density tended to decline with decreasing sampling area. Although the differences in cone density estimates were not statistically significant, Bland-Altman plots showed that the agreement between cone density estimated within the different sampling window conditions was moderate. The percentage of the preferred packing arrangements of cones by Voronoi tiles was slightly affected by window size and orientation. The results illustrated the high importance of specifying the size and orientation of the sampling window used to derive cone metric estimates to facilitate comparison of different studies.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
    [CrossRef] [PubMed]
  2. G. Huang, X. Qi, T. Y. Chui, Z. Zhong, and S. A. Burns, “A clinical planning module for adaptive optics SLO imaging,” Optom. Vis. Sci.89(5), 593–601 (2012).
    [CrossRef] [PubMed]
  3. M. Lombardo, S. Serrao, N. Devaney, M. Parravano, and G. Lombardo, “Adaptive optics technology for high-resolution retinal imaging,” Sensors (Basel)13(1), 334–366 (2013).
    [CrossRef] [PubMed]
  4. A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(7), 1864–1876 (2011).
    [CrossRef] [PubMed]
  5. M. Lombardo, G. Lombardo, P. Ducoli, and S. Serrao, “Adaptive optics photoreceptor imaging,” Ophthalmology119(7), 1498, e2 (2012).
    [CrossRef] [PubMed]
  6. K. Y. Li and A. Roorda, “Automated identification of cone photoreceptors in adaptive optics retinal images,” J. Opt. Soc. Am. A24(5), 1358–1363 (2007).
    [CrossRef] [PubMed]
  7. B. Xue, S. S. Choi, N. Doble, and J. S. Werner, “Photoreceptor counting and montaging of en-face retinal images from an adaptive optics fundus camera,” J. Opt. Soc. Am. A24(5), 1364–1372 (2007).
    [CrossRef] [PubMed]
  8. H. Song, T. Y. P. Chui, Z. Zhong, A. E. Elsner, and S. A. Burns, “Variation of cone photoreceptor packing density with retinal eccentricity and age,” Invest. Ophthalmol. Vis. Sci.52(10), 7376–7384 (2011).
    [CrossRef] [PubMed]
  9. K. Y. Li, P. Tiruveedhula, and A. Roorda, “Intersubject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci.51(12), 6858–6867 (2010).
    [CrossRef] [PubMed]
  10. T. Y. P. Chui, H. Song, and S. A. Burns, “Adaptive-optics imaging of human cone photoreceptor distribution,” J. Opt. Soc. Am. A25(12), 3021–3029 (2008).
    [CrossRef] [PubMed]
  11. M. Lombardo, S. Serrao, P. Ducoli, and G. Lombardo, “Variations in image optical quality of the eye and the sampling limit of resolution of the cone mosaic with axial length in young adults,” J. Cataract Refract. Surg.38(7), 1147–1155 (2012).
    [CrossRef] [PubMed]
  12. T. Y. P. Chui, H. Song, and S. A. Burns, “Individual variations in human cone photoreceptor packing density: variations with refractive error,” Invest. Ophthalmol. Vis. Sci.49(10), 4679–4687 (2008).
    [CrossRef] [PubMed]
  13. D. Merino, J. L. Duncan, P. Tiruveedhula, and A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express2(8), 2189–2201 (2011).
    [CrossRef] [PubMed]
  14. E. W. Dees, A. Dubra, and R. C. Baraas, “Variability in parafoveal cone mosaic in normal trichromatic individuals,” Biomed. Opt. Express2(5), 1351–1358 (2011).
    [CrossRef] [PubMed]
  15. M. Lombardo, G. Lombardo, D. S. Lomoriello, P. Ducoli, M. Stirpe, and S. Serrao, “Interocular symmetry of parafoveal photoreceptor cone density distribution,” Retina E-published (2013).
    [CrossRef]
  16. R. Garrioch, C. Langlo, A. M. Dubis, R. F. Cooper, A. Dubra, and J. Carroll, “Repeatability of in vivo parafoveal cone density and spacing measurements,” Optom. Vis. Sci.89(5), 632–643 (2012).
    [CrossRef] [PubMed]
  17. K. E. Talcott, K. Ratnam, S. M. Sundquist, A. S. Lucero, B. J. Lujan, W. Tao, T. C. Porco, A. Roorda, and J. L. Duncan, “Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment,” Invest. Ophthalmol. Vis. Sci.52(5), 2219–2226 (2011).
    [CrossRef] [PubMed]
  18. M. Lombardo, S. Serrao, P. Ducoli, and G. Lombardo, “Eccentricity dependent changes of density, spacing and packing arrangement of parafoveal cones,” Ophthalmic Physiol. Opt. E-published (2013).
    [CrossRef]
  19. P. Godara, C. Siebe, J. Rha, M. Michaelides, and J. Carroll, “Assessing the photoreceptor mosaic over drusen using adaptive optics and SD-OCT,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S104–S108 (2010).
    [CrossRef] [PubMed]
  20. P. Godara, M. Wagner-Schuman, J. Rha, T. B. Connor, K. E. Stepien, and J. Carroll, “Imaging the photoreceptor mosaic with adaptive optics: beyond counting cones,” Adv. Exp. Med. Biol.723, 451–458 (2012).
    [CrossRef] [PubMed]
  21. S. Ooto, M. Hangai, K. Takayama, A. Sakamoto, A. Tsujikawa, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution imaging of the photoreceptor layer in epiretinal membrane using adaptive optics scanning laser ophthalmoscopy,” Ophthalmology118(5), 873–881 (2011).
    [CrossRef] [PubMed]
  22. A. Boretsky, F. Khan, G. Burnett, D. X. Hammer, R. D. Ferguson, F. van Kuijk, and M. Motamedi, “In vivo imaging of photoreceptor disruption associated with age-related macular degeneration: a pilot study,” Lasers Surg. Med.44(8), 603–610 (2012).
    [CrossRef] [PubMed]
  23. J. Hirsch and W. H. Miller, “Does cone positional disorder limit resolution?” J. Opt. Soc. Am. A4(8), 1481–1492 (1987).
    [CrossRef] [PubMed]
  24. C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anisotropy,” Vis. Neurosci.9(02), 169–180 (1992).
    [CrossRef] [PubMed]
  25. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol.292(4), 497–523 (1990).
    [CrossRef] [PubMed]
  26. C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anisotropy,” Vis. Neurosci.9(02), 169–180 (1992).
    [CrossRef] [PubMed]
  27. Lda. F. Costa, D. M. Bonci, C. A. Saito, F. A. Rocha, L. C. Silveira, and D. F. Ventura, “Voronoi analysis uncovers relationship between mosaics of normally placed and displaced amacrine cells in the thraira retina,” Neuroinformatics5(1), 59–78 (2007).
    [PubMed]
  28. M. B. Shapiro, S. J. Schein, and F. M. De Monasterio, “Regularity and structure of the spatial pattern of blue cones of macaque retina,” J. Am. Stat. Assoc.80(392), 803–812 (1985).
    [CrossRef]
  29. Y. A. Kram, S. Mantey, and J. C. Corbo, “Avian cone photoreceptors tile the retina as five independent, self-organizing mosaics,” PLoS ONE5(2), e8992 (2010).
    [CrossRef] [PubMed]
  30. N. Drasdo and C. W. Fowler, “Non-linear projection of the retinal image in a wide-angle schematic eye,” Br. J. Ophthalmol.58(8), 709–714 (1974).
    [CrossRef] [PubMed]
  31. N. J. Coletta and T. Watson, “Effect of myopia on visual acuity measured with laser interference fringes,” Vision Res.46(5), 636–651 (2006).
    [CrossRef] [PubMed]
  32. W. Brostow, J. P. Dussault, and B. L. Fox, “Construction of Voronoi polyhedra,” J. Comput. Phys.29(1), 81–92 (1978).
    [CrossRef]
  33. R. W. Rodieck, “The density recovery profile: a method for the analysis of points in the plane applicable to retinal studies,” Vis. Neurosci.6(02), 95–111 (1991).
    [CrossRef] [PubMed]
  34. J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet327(8476), 307–310 (1986).
    [CrossRef] [PubMed]
  35. J. M. Bland and D. G. Altman, “Measuring agreement in method comparison studies,” Stat. Methods Med. Res.8(2), 135–160 (1999).
    [CrossRef] [PubMed]
  36. L. da Fontoura Costa, F. Rocha, and S. M. Araújo de Lima, “Characterizing polygonality in biological structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(1), 011913 (2006).
    [CrossRef] [PubMed]
  37. J. E. Cook, “Spatial properties of retinal mosaics: an empirical evaluation of some existing measures,” Vis. Neurosci.13(01), 15–30 (1996).
    [CrossRef] [PubMed]
  38. D. H. Wojtas, B. Wu, P. K. Ahnelt, P. J. Bones, and R. P. Millane, “Automated analysis of differential interference contrast microscopy images of the foveal cone mosaic,” J. Opt. Soc. Am. A25(5), 1181–1189 (2008).
    [CrossRef] [PubMed]
  39. D. Pum, P. K. Ahnelt, and M. Grasl, “Iso-orientation areas in the foveal cone mosaic,” Vis. Neurosci.5(06), 511–523 (1990).
    [CrossRef] [PubMed]

2013

M. Lombardo, S. Serrao, N. Devaney, M. Parravano, and G. Lombardo, “Adaptive optics technology for high-resolution retinal imaging,” Sensors (Basel)13(1), 334–366 (2013).
[CrossRef] [PubMed]

M. Lombardo, G. Lombardo, D. S. Lomoriello, P. Ducoli, M. Stirpe, and S. Serrao, “Interocular symmetry of parafoveal photoreceptor cone density distribution,” Retina E-published (2013).
[CrossRef]

M. Lombardo, S. Serrao, P. Ducoli, and G. Lombardo, “Eccentricity dependent changes of density, spacing and packing arrangement of parafoveal cones,” Ophthalmic Physiol. Opt. E-published (2013).
[CrossRef]

2012

P. Godara, M. Wagner-Schuman, J. Rha, T. B. Connor, K. E. Stepien, and J. Carroll, “Imaging the photoreceptor mosaic with adaptive optics: beyond counting cones,” Adv. Exp. Med. Biol.723, 451–458 (2012).
[CrossRef] [PubMed]

A. Boretsky, F. Khan, G. Burnett, D. X. Hammer, R. D. Ferguson, F. van Kuijk, and M. Motamedi, “In vivo imaging of photoreceptor disruption associated with age-related macular degeneration: a pilot study,” Lasers Surg. Med.44(8), 603–610 (2012).
[CrossRef] [PubMed]

R. Garrioch, C. Langlo, A. M. Dubis, R. F. Cooper, A. Dubra, and J. Carroll, “Repeatability of in vivo parafoveal cone density and spacing measurements,” Optom. Vis. Sci.89(5), 632–643 (2012).
[CrossRef] [PubMed]

G. Huang, X. Qi, T. Y. Chui, Z. Zhong, and S. A. Burns, “A clinical planning module for adaptive optics SLO imaging,” Optom. Vis. Sci.89(5), 593–601 (2012).
[CrossRef] [PubMed]

M. Lombardo, G. Lombardo, P. Ducoli, and S. Serrao, “Adaptive optics photoreceptor imaging,” Ophthalmology119(7), 1498, e2 (2012).
[CrossRef] [PubMed]

M. Lombardo, S. Serrao, P. Ducoli, and G. Lombardo, “Variations in image optical quality of the eye and the sampling limit of resolution of the cone mosaic with axial length in young adults,” J. Cataract Refract. Surg.38(7), 1147–1155 (2012).
[CrossRef] [PubMed]

2011

H. Song, T. Y. P. Chui, Z. Zhong, A. E. Elsner, and S. A. Burns, “Variation of cone photoreceptor packing density with retinal eccentricity and age,” Invest. Ophthalmol. Vis. Sci.52(10), 7376–7384 (2011).
[CrossRef] [PubMed]

K. E. Talcott, K. Ratnam, S. M. Sundquist, A. S. Lucero, B. J. Lujan, W. Tao, T. C. Porco, A. Roorda, and J. L. Duncan, “Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment,” Invest. Ophthalmol. Vis. Sci.52(5), 2219–2226 (2011).
[CrossRef] [PubMed]

S. Ooto, M. Hangai, K. Takayama, A. Sakamoto, A. Tsujikawa, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution imaging of the photoreceptor layer in epiretinal membrane using adaptive optics scanning laser ophthalmoscopy,” Ophthalmology118(5), 873–881 (2011).
[CrossRef] [PubMed]

E. W. Dees, A. Dubra, and R. C. Baraas, “Variability in parafoveal cone mosaic in normal trichromatic individuals,” Biomed. Opt. Express2(5), 1351–1358 (2011).
[CrossRef] [PubMed]

A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(7), 1864–1876 (2011).
[CrossRef] [PubMed]

D. Merino, J. L. Duncan, P. Tiruveedhula, and A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express2(8), 2189–2201 (2011).
[CrossRef] [PubMed]

2010

P. Godara, C. Siebe, J. Rha, M. Michaelides, and J. Carroll, “Assessing the photoreceptor mosaic over drusen using adaptive optics and SD-OCT,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S104–S108 (2010).
[CrossRef] [PubMed]

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

K. Y. Li, P. Tiruveedhula, and A. Roorda, “Intersubject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci.51(12), 6858–6867 (2010).
[CrossRef] [PubMed]

Y. A. Kram, S. Mantey, and J. C. Corbo, “Avian cone photoreceptors tile the retina as five independent, self-organizing mosaics,” PLoS ONE5(2), e8992 (2010).
[CrossRef] [PubMed]

2008

2007

2006

L. da Fontoura Costa, F. Rocha, and S. M. Araújo de Lima, “Characterizing polygonality in biological structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(1), 011913 (2006).
[CrossRef] [PubMed]

N. J. Coletta and T. Watson, “Effect of myopia on visual acuity measured with laser interference fringes,” Vision Res.46(5), 636–651 (2006).
[CrossRef] [PubMed]

1999

J. M. Bland and D. G. Altman, “Measuring agreement in method comparison studies,” Stat. Methods Med. Res.8(2), 135–160 (1999).
[CrossRef] [PubMed]

1996

J. E. Cook, “Spatial properties of retinal mosaics: an empirical evaluation of some existing measures,” Vis. Neurosci.13(01), 15–30 (1996).
[CrossRef] [PubMed]

1992

C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anisotropy,” Vis. Neurosci.9(02), 169–180 (1992).
[CrossRef] [PubMed]

C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anisotropy,” Vis. Neurosci.9(02), 169–180 (1992).
[CrossRef] [PubMed]

1991

R. W. Rodieck, “The density recovery profile: a method for the analysis of points in the plane applicable to retinal studies,” Vis. Neurosci.6(02), 95–111 (1991).
[CrossRef] [PubMed]

1990

D. Pum, P. K. Ahnelt, and M. Grasl, “Iso-orientation areas in the foveal cone mosaic,” Vis. Neurosci.5(06), 511–523 (1990).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol.292(4), 497–523 (1990).
[CrossRef] [PubMed]

1987

1986

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet327(8476), 307–310 (1986).
[CrossRef] [PubMed]

1985

M. B. Shapiro, S. J. Schein, and F. M. De Monasterio, “Regularity and structure of the spatial pattern of blue cones of macaque retina,” J. Am. Stat. Assoc.80(392), 803–812 (1985).
[CrossRef]

1978

W. Brostow, J. P. Dussault, and B. L. Fox, “Construction of Voronoi polyhedra,” J. Comput. Phys.29(1), 81–92 (1978).
[CrossRef]

1974

N. Drasdo and C. W. Fowler, “Non-linear projection of the retinal image in a wide-angle schematic eye,” Br. J. Ophthalmol.58(8), 709–714 (1974).
[CrossRef] [PubMed]

Ahnelt, P. K.

Altman, D. G.

J. M. Bland and D. G. Altman, “Measuring agreement in method comparison studies,” Stat. Methods Med. Res.8(2), 135–160 (1999).
[CrossRef] [PubMed]

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet327(8476), 307–310 (1986).
[CrossRef] [PubMed]

Araújo de Lima, S. M.

L. da Fontoura Costa, F. Rocha, and S. M. Araújo de Lima, “Characterizing polygonality in biological structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(1), 011913 (2006).
[CrossRef] [PubMed]

Baraas, R. C.

Bland, J. M.

J. M. Bland and D. G. Altman, “Measuring agreement in method comparison studies,” Stat. Methods Med. Res.8(2), 135–160 (1999).
[CrossRef] [PubMed]

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet327(8476), 307–310 (1986).
[CrossRef] [PubMed]

Bonci, D. M.

Lda. F. Costa, D. M. Bonci, C. A. Saito, F. A. Rocha, L. C. Silveira, and D. F. Ventura, “Voronoi analysis uncovers relationship between mosaics of normally placed and displaced amacrine cells in the thraira retina,” Neuroinformatics5(1), 59–78 (2007).
[PubMed]

Bones, P. J.

Boretsky, A.

A. Boretsky, F. Khan, G. Burnett, D. X. Hammer, R. D. Ferguson, F. van Kuijk, and M. Motamedi, “In vivo imaging of photoreceptor disruption associated with age-related macular degeneration: a pilot study,” Lasers Surg. Med.44(8), 603–610 (2012).
[CrossRef] [PubMed]

Brostow, W.

W. Brostow, J. P. Dussault, and B. L. Fox, “Construction of Voronoi polyhedra,” J. Comput. Phys.29(1), 81–92 (1978).
[CrossRef]

Burnett, G.

A. Boretsky, F. Khan, G. Burnett, D. X. Hammer, R. D. Ferguson, F. van Kuijk, and M. Motamedi, “In vivo imaging of photoreceptor disruption associated with age-related macular degeneration: a pilot study,” Lasers Surg. Med.44(8), 603–610 (2012).
[CrossRef] [PubMed]

Burns, S. A.

G. Huang, X. Qi, T. Y. Chui, Z. Zhong, and S. A. Burns, “A clinical planning module for adaptive optics SLO imaging,” Optom. Vis. Sci.89(5), 593–601 (2012).
[CrossRef] [PubMed]

H. Song, T. Y. P. Chui, Z. Zhong, A. E. Elsner, and S. A. Burns, “Variation of cone photoreceptor packing density with retinal eccentricity and age,” Invest. Ophthalmol. Vis. Sci.52(10), 7376–7384 (2011).
[CrossRef] [PubMed]

T. Y. P. Chui, H. Song, and S. A. Burns, “Individual variations in human cone photoreceptor packing density: variations with refractive error,” Invest. Ophthalmol. Vis. Sci.49(10), 4679–4687 (2008).
[CrossRef] [PubMed]

T. Y. P. Chui, H. Song, and S. A. Burns, “Adaptive-optics imaging of human cone photoreceptor distribution,” J. Opt. Soc. Am. A25(12), 3021–3029 (2008).
[CrossRef] [PubMed]

Carroll, J.

P. Godara, M. Wagner-Schuman, J. Rha, T. B. Connor, K. E. Stepien, and J. Carroll, “Imaging the photoreceptor mosaic with adaptive optics: beyond counting cones,” Adv. Exp. Med. Biol.723, 451–458 (2012).
[CrossRef] [PubMed]

R. Garrioch, C. Langlo, A. M. Dubis, R. F. Cooper, A. Dubra, and J. Carroll, “Repeatability of in vivo parafoveal cone density and spacing measurements,” Optom. Vis. Sci.89(5), 632–643 (2012).
[CrossRef] [PubMed]

A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(7), 1864–1876 (2011).
[CrossRef] [PubMed]

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

P. Godara, C. Siebe, J. Rha, M. Michaelides, and J. Carroll, “Assessing the photoreceptor mosaic over drusen using adaptive optics and SD-OCT,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S104–S108 (2010).
[CrossRef] [PubMed]

Choi, S. S.

Chui, T. Y.

G. Huang, X. Qi, T. Y. Chui, Z. Zhong, and S. A. Burns, “A clinical planning module for adaptive optics SLO imaging,” Optom. Vis. Sci.89(5), 593–601 (2012).
[CrossRef] [PubMed]

Chui, T. Y. P.

H. Song, T. Y. P. Chui, Z. Zhong, A. E. Elsner, and S. A. Burns, “Variation of cone photoreceptor packing density with retinal eccentricity and age,” Invest. Ophthalmol. Vis. Sci.52(10), 7376–7384 (2011).
[CrossRef] [PubMed]

T. Y. P. Chui, H. Song, and S. A. Burns, “Individual variations in human cone photoreceptor packing density: variations with refractive error,” Invest. Ophthalmol. Vis. Sci.49(10), 4679–4687 (2008).
[CrossRef] [PubMed]

T. Y. P. Chui, H. Song, and S. A. Burns, “Adaptive-optics imaging of human cone photoreceptor distribution,” J. Opt. Soc. Am. A25(12), 3021–3029 (2008).
[CrossRef] [PubMed]

Coletta, N. J.

N. J. Coletta and T. Watson, “Effect of myopia on visual acuity measured with laser interference fringes,” Vision Res.46(5), 636–651 (2006).
[CrossRef] [PubMed]

Connor, T. B.

P. Godara, M. Wagner-Schuman, J. Rha, T. B. Connor, K. E. Stepien, and J. Carroll, “Imaging the photoreceptor mosaic with adaptive optics: beyond counting cones,” Adv. Exp. Med. Biol.723, 451–458 (2012).
[CrossRef] [PubMed]

Cook, J. E.

J. E. Cook, “Spatial properties of retinal mosaics: an empirical evaluation of some existing measures,” Vis. Neurosci.13(01), 15–30 (1996).
[CrossRef] [PubMed]

Cooper, R. F.

R. Garrioch, C. Langlo, A. M. Dubis, R. F. Cooper, A. Dubra, and J. Carroll, “Repeatability of in vivo parafoveal cone density and spacing measurements,” Optom. Vis. Sci.89(5), 632–643 (2012).
[CrossRef] [PubMed]

A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(7), 1864–1876 (2011).
[CrossRef] [PubMed]

Corbo, J. C.

Y. A. Kram, S. Mantey, and J. C. Corbo, “Avian cone photoreceptors tile the retina as five independent, self-organizing mosaics,” PLoS ONE5(2), e8992 (2010).
[CrossRef] [PubMed]

Costa, Lda. F.

Lda. F. Costa, D. M. Bonci, C. A. Saito, F. A. Rocha, L. C. Silveira, and D. F. Ventura, “Voronoi analysis uncovers relationship between mosaics of normally placed and displaced amacrine cells in the thraira retina,” Neuroinformatics5(1), 59–78 (2007).
[PubMed]

Curcio, C. A.

C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anisotropy,” Vis. Neurosci.9(02), 169–180 (1992).
[CrossRef] [PubMed]

C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anisotropy,” Vis. Neurosci.9(02), 169–180 (1992).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol.292(4), 497–523 (1990).
[CrossRef] [PubMed]

da Fontoura Costa, L.

L. da Fontoura Costa, F. Rocha, and S. M. Araújo de Lima, “Characterizing polygonality in biological structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(1), 011913 (2006).
[CrossRef] [PubMed]

De Monasterio, F. M.

M. B. Shapiro, S. J. Schein, and F. M. De Monasterio, “Regularity and structure of the spatial pattern of blue cones of macaque retina,” J. Am. Stat. Assoc.80(392), 803–812 (1985).
[CrossRef]

Dees, E. W.

Devaney, N.

M. Lombardo, S. Serrao, N. Devaney, M. Parravano, and G. Lombardo, “Adaptive optics technology for high-resolution retinal imaging,” Sensors (Basel)13(1), 334–366 (2013).
[CrossRef] [PubMed]

Doble, N.

Drasdo, N.

N. Drasdo and C. W. Fowler, “Non-linear projection of the retinal image in a wide-angle schematic eye,” Br. J. Ophthalmol.58(8), 709–714 (1974).
[CrossRef] [PubMed]

Dubis, A. M.

R. Garrioch, C. Langlo, A. M. Dubis, R. F. Cooper, A. Dubra, and J. Carroll, “Repeatability of in vivo parafoveal cone density and spacing measurements,” Optom. Vis. Sci.89(5), 632–643 (2012).
[CrossRef] [PubMed]

A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(7), 1864–1876 (2011).
[CrossRef] [PubMed]

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

Dubra, A.

Ducoli, P.

M. Lombardo, S. Serrao, P. Ducoli, and G. Lombardo, “Eccentricity dependent changes of density, spacing and packing arrangement of parafoveal cones,” Ophthalmic Physiol. Opt. E-published (2013).
[CrossRef]

M. Lombardo, G. Lombardo, D. S. Lomoriello, P. Ducoli, M. Stirpe, and S. Serrao, “Interocular symmetry of parafoveal photoreceptor cone density distribution,” Retina E-published (2013).
[CrossRef]

M. Lombardo, S. Serrao, P. Ducoli, and G. Lombardo, “Variations in image optical quality of the eye and the sampling limit of resolution of the cone mosaic with axial length in young adults,” J. Cataract Refract. Surg.38(7), 1147–1155 (2012).
[CrossRef] [PubMed]

M. Lombardo, G. Lombardo, P. Ducoli, and S. Serrao, “Adaptive optics photoreceptor imaging,” Ophthalmology119(7), 1498, e2 (2012).
[CrossRef] [PubMed]

Duncan, J. L.

D. Merino, J. L. Duncan, P. Tiruveedhula, and A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express2(8), 2189–2201 (2011).
[CrossRef] [PubMed]

K. E. Talcott, K. Ratnam, S. M. Sundquist, A. S. Lucero, B. J. Lujan, W. Tao, T. C. Porco, A. Roorda, and J. L. Duncan, “Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment,” Invest. Ophthalmol. Vis. Sci.52(5), 2219–2226 (2011).
[CrossRef] [PubMed]

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

Dussault, J. P.

W. Brostow, J. P. Dussault, and B. L. Fox, “Construction of Voronoi polyhedra,” J. Comput. Phys.29(1), 81–92 (1978).
[CrossRef]

Elsner, A. E.

H. Song, T. Y. P. Chui, Z. Zhong, A. E. Elsner, and S. A. Burns, “Variation of cone photoreceptor packing density with retinal eccentricity and age,” Invest. Ophthalmol. Vis. Sci.52(10), 7376–7384 (2011).
[CrossRef] [PubMed]

Ferguson, R. D.

A. Boretsky, F. Khan, G. Burnett, D. X. Hammer, R. D. Ferguson, F. van Kuijk, and M. Motamedi, “In vivo imaging of photoreceptor disruption associated with age-related macular degeneration: a pilot study,” Lasers Surg. Med.44(8), 603–610 (2012).
[CrossRef] [PubMed]

Fowler, C. W.

N. Drasdo and C. W. Fowler, “Non-linear projection of the retinal image in a wide-angle schematic eye,” Br. J. Ophthalmol.58(8), 709–714 (1974).
[CrossRef] [PubMed]

Fox, B. L.

W. Brostow, J. P. Dussault, and B. L. Fox, “Construction of Voronoi polyhedra,” J. Comput. Phys.29(1), 81–92 (1978).
[CrossRef]

Garrioch, R.

R. Garrioch, C. Langlo, A. M. Dubis, R. F. Cooper, A. Dubra, and J. Carroll, “Repeatability of in vivo parafoveal cone density and spacing measurements,” Optom. Vis. Sci.89(5), 632–643 (2012).
[CrossRef] [PubMed]

Godara, P.

P. Godara, M. Wagner-Schuman, J. Rha, T. B. Connor, K. E. Stepien, and J. Carroll, “Imaging the photoreceptor mosaic with adaptive optics: beyond counting cones,” Adv. Exp. Med. Biol.723, 451–458 (2012).
[CrossRef] [PubMed]

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

P. Godara, C. Siebe, J. Rha, M. Michaelides, and J. Carroll, “Assessing the photoreceptor mosaic over drusen using adaptive optics and SD-OCT,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S104–S108 (2010).
[CrossRef] [PubMed]

Grasl, M.

D. Pum, P. K. Ahnelt, and M. Grasl, “Iso-orientation areas in the foveal cone mosaic,” Vis. Neurosci.5(06), 511–523 (1990).
[CrossRef] [PubMed]

Hammer, D. X.

A. Boretsky, F. Khan, G. Burnett, D. X. Hammer, R. D. Ferguson, F. van Kuijk, and M. Motamedi, “In vivo imaging of photoreceptor disruption associated with age-related macular degeneration: a pilot study,” Lasers Surg. Med.44(8), 603–610 (2012).
[CrossRef] [PubMed]

Hangai, M.

S. Ooto, M. Hangai, K. Takayama, A. Sakamoto, A. Tsujikawa, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution imaging of the photoreceptor layer in epiretinal membrane using adaptive optics scanning laser ophthalmoscopy,” Ophthalmology118(5), 873–881 (2011).
[CrossRef] [PubMed]

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol.292(4), 497–523 (1990).
[CrossRef] [PubMed]

Hirsch, J.

Huang, G.

G. Huang, X. Qi, T. Y. Chui, Z. Zhong, and S. A. Burns, “A clinical planning module for adaptive optics SLO imaging,” Optom. Vis. Sci.89(5), 593–601 (2012).
[CrossRef] [PubMed]

Inoue, T.

S. Ooto, M. Hangai, K. Takayama, A. Sakamoto, A. Tsujikawa, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution imaging of the photoreceptor layer in epiretinal membrane using adaptive optics scanning laser ophthalmoscopy,” Ophthalmology118(5), 873–881 (2011).
[CrossRef] [PubMed]

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol.292(4), 497–523 (1990).
[CrossRef] [PubMed]

Khan, F.

A. Boretsky, F. Khan, G. Burnett, D. X. Hammer, R. D. Ferguson, F. van Kuijk, and M. Motamedi, “In vivo imaging of photoreceptor disruption associated with age-related macular degeneration: a pilot study,” Lasers Surg. Med.44(8), 603–610 (2012).
[CrossRef] [PubMed]

Kram, Y. A.

Y. A. Kram, S. Mantey, and J. C. Corbo, “Avian cone photoreceptors tile the retina as five independent, self-organizing mosaics,” PLoS ONE5(2), e8992 (2010).
[CrossRef] [PubMed]

Langlo, C.

R. Garrioch, C. Langlo, A. M. Dubis, R. F. Cooper, A. Dubra, and J. Carroll, “Repeatability of in vivo parafoveal cone density and spacing measurements,” Optom. Vis. Sci.89(5), 632–643 (2012).
[CrossRef] [PubMed]

Li, K. Y.

K. Y. Li, P. Tiruveedhula, and A. Roorda, “Intersubject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci.51(12), 6858–6867 (2010).
[CrossRef] [PubMed]

K. Y. Li and A. Roorda, “Automated identification of cone photoreceptors in adaptive optics retinal images,” J. Opt. Soc. Am. A24(5), 1358–1363 (2007).
[CrossRef] [PubMed]

Lombardo, G.

M. Lombardo, G. Lombardo, D. S. Lomoriello, P. Ducoli, M. Stirpe, and S. Serrao, “Interocular symmetry of parafoveal photoreceptor cone density distribution,” Retina E-published (2013).
[CrossRef]

M. Lombardo, S. Serrao, P. Ducoli, and G. Lombardo, “Eccentricity dependent changes of density, spacing and packing arrangement of parafoveal cones,” Ophthalmic Physiol. Opt. E-published (2013).
[CrossRef]

M. Lombardo, S. Serrao, N. Devaney, M. Parravano, and G. Lombardo, “Adaptive optics technology for high-resolution retinal imaging,” Sensors (Basel)13(1), 334–366 (2013).
[CrossRef] [PubMed]

M. Lombardo, S. Serrao, P. Ducoli, and G. Lombardo, “Variations in image optical quality of the eye and the sampling limit of resolution of the cone mosaic with axial length in young adults,” J. Cataract Refract. Surg.38(7), 1147–1155 (2012).
[CrossRef] [PubMed]

M. Lombardo, G. Lombardo, P. Ducoli, and S. Serrao, “Adaptive optics photoreceptor imaging,” Ophthalmology119(7), 1498, e2 (2012).
[CrossRef] [PubMed]

Lombardo, M.

M. Lombardo, S. Serrao, P. Ducoli, and G. Lombardo, “Eccentricity dependent changes of density, spacing and packing arrangement of parafoveal cones,” Ophthalmic Physiol. Opt. E-published (2013).
[CrossRef]

M. Lombardo, S. Serrao, N. Devaney, M. Parravano, and G. Lombardo, “Adaptive optics technology for high-resolution retinal imaging,” Sensors (Basel)13(1), 334–366 (2013).
[CrossRef] [PubMed]

M. Lombardo, G. Lombardo, D. S. Lomoriello, P. Ducoli, M. Stirpe, and S. Serrao, “Interocular symmetry of parafoveal photoreceptor cone density distribution,” Retina E-published (2013).
[CrossRef]

M. Lombardo, S. Serrao, P. Ducoli, and G. Lombardo, “Variations in image optical quality of the eye and the sampling limit of resolution of the cone mosaic with axial length in young adults,” J. Cataract Refract. Surg.38(7), 1147–1155 (2012).
[CrossRef] [PubMed]

M. Lombardo, G. Lombardo, P. Ducoli, and S. Serrao, “Adaptive optics photoreceptor imaging,” Ophthalmology119(7), 1498, e2 (2012).
[CrossRef] [PubMed]

Lomoriello, D. S.

M. Lombardo, G. Lombardo, D. S. Lomoriello, P. Ducoli, M. Stirpe, and S. Serrao, “Interocular symmetry of parafoveal photoreceptor cone density distribution,” Retina E-published (2013).
[CrossRef]

Lucero, A. S.

K. E. Talcott, K. Ratnam, S. M. Sundquist, A. S. Lucero, B. J. Lujan, W. Tao, T. C. Porco, A. Roorda, and J. L. Duncan, “Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment,” Invest. Ophthalmol. Vis. Sci.52(5), 2219–2226 (2011).
[CrossRef] [PubMed]

Lujan, B. J.

K. E. Talcott, K. Ratnam, S. M. Sundquist, A. S. Lucero, B. J. Lujan, W. Tao, T. C. Porco, A. Roorda, and J. L. Duncan, “Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment,” Invest. Ophthalmol. Vis. Sci.52(5), 2219–2226 (2011).
[CrossRef] [PubMed]

Mantey, S.

Y. A. Kram, S. Mantey, and J. C. Corbo, “Avian cone photoreceptors tile the retina as five independent, self-organizing mosaics,” PLoS ONE5(2), e8992 (2010).
[CrossRef] [PubMed]

Merino, D.

Michaelides, M.

P. Godara, C. Siebe, J. Rha, M. Michaelides, and J. Carroll, “Assessing the photoreceptor mosaic over drusen using adaptive optics and SD-OCT,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S104–S108 (2010).
[CrossRef] [PubMed]

Millane, R. P.

Miller, W. H.

Motamedi, M.

A. Boretsky, F. Khan, G. Burnett, D. X. Hammer, R. D. Ferguson, F. van Kuijk, and M. Motamedi, “In vivo imaging of photoreceptor disruption associated with age-related macular degeneration: a pilot study,” Lasers Surg. Med.44(8), 603–610 (2012).
[CrossRef] [PubMed]

Norris, J. L.

Ooto, S.

S. Ooto, M. Hangai, K. Takayama, A. Sakamoto, A. Tsujikawa, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution imaging of the photoreceptor layer in epiretinal membrane using adaptive optics scanning laser ophthalmoscopy,” Ophthalmology118(5), 873–881 (2011).
[CrossRef] [PubMed]

Oshima, S.

S. Ooto, M. Hangai, K. Takayama, A. Sakamoto, A. Tsujikawa, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution imaging of the photoreceptor layer in epiretinal membrane using adaptive optics scanning laser ophthalmoscopy,” Ophthalmology118(5), 873–881 (2011).
[CrossRef] [PubMed]

Parravano, M.

M. Lombardo, S. Serrao, N. Devaney, M. Parravano, and G. Lombardo, “Adaptive optics technology for high-resolution retinal imaging,” Sensors (Basel)13(1), 334–366 (2013).
[CrossRef] [PubMed]

Porco, T. C.

K. E. Talcott, K. Ratnam, S. M. Sundquist, A. S. Lucero, B. J. Lujan, W. Tao, T. C. Porco, A. Roorda, and J. L. Duncan, “Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment,” Invest. Ophthalmol. Vis. Sci.52(5), 2219–2226 (2011).
[CrossRef] [PubMed]

Pum, D.

D. Pum, P. K. Ahnelt, and M. Grasl, “Iso-orientation areas in the foveal cone mosaic,” Vis. Neurosci.5(06), 511–523 (1990).
[CrossRef] [PubMed]

Qi, X.

G. Huang, X. Qi, T. Y. Chui, Z. Zhong, and S. A. Burns, “A clinical planning module for adaptive optics SLO imaging,” Optom. Vis. Sci.89(5), 593–601 (2012).
[CrossRef] [PubMed]

Ratnam, K.

K. E. Talcott, K. Ratnam, S. M. Sundquist, A. S. Lucero, B. J. Lujan, W. Tao, T. C. Porco, A. Roorda, and J. L. Duncan, “Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment,” Invest. Ophthalmol. Vis. Sci.52(5), 2219–2226 (2011).
[CrossRef] [PubMed]

Rha, J.

P. Godara, M. Wagner-Schuman, J. Rha, T. B. Connor, K. E. Stepien, and J. Carroll, “Imaging the photoreceptor mosaic with adaptive optics: beyond counting cones,” Adv. Exp. Med. Biol.723, 451–458 (2012).
[CrossRef] [PubMed]

P. Godara, C. Siebe, J. Rha, M. Michaelides, and J. Carroll, “Assessing the photoreceptor mosaic over drusen using adaptive optics and SD-OCT,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S104–S108 (2010).
[CrossRef] [PubMed]

Rocha, F.

L. da Fontoura Costa, F. Rocha, and S. M. Araújo de Lima, “Characterizing polygonality in biological structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(1), 011913 (2006).
[CrossRef] [PubMed]

Rocha, F. A.

Lda. F. Costa, D. M. Bonci, C. A. Saito, F. A. Rocha, L. C. Silveira, and D. F. Ventura, “Voronoi analysis uncovers relationship between mosaics of normally placed and displaced amacrine cells in the thraira retina,” Neuroinformatics5(1), 59–78 (2007).
[PubMed]

Rodieck, R. W.

R. W. Rodieck, “The density recovery profile: a method for the analysis of points in the plane applicable to retinal studies,” Vis. Neurosci.6(02), 95–111 (1991).
[CrossRef] [PubMed]

Roorda, A.

D. Merino, J. L. Duncan, P. Tiruveedhula, and A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express2(8), 2189–2201 (2011).
[CrossRef] [PubMed]

K. E. Talcott, K. Ratnam, S. M. Sundquist, A. S. Lucero, B. J. Lujan, W. Tao, T. C. Porco, A. Roorda, and J. L. Duncan, “Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment,” Invest. Ophthalmol. Vis. Sci.52(5), 2219–2226 (2011).
[CrossRef] [PubMed]

K. Y. Li, P. Tiruveedhula, and A. Roorda, “Intersubject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci.51(12), 6858–6867 (2010).
[CrossRef] [PubMed]

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

K. Y. Li and A. Roorda, “Automated identification of cone photoreceptors in adaptive optics retinal images,” J. Opt. Soc. Am. A24(5), 1358–1363 (2007).
[CrossRef] [PubMed]

Saito, C. A.

Lda. F. Costa, D. M. Bonci, C. A. Saito, F. A. Rocha, L. C. Silveira, and D. F. Ventura, “Voronoi analysis uncovers relationship between mosaics of normally placed and displaced amacrine cells in the thraira retina,” Neuroinformatics5(1), 59–78 (2007).
[PubMed]

Sakamoto, A.

S. Ooto, M. Hangai, K. Takayama, A. Sakamoto, A. Tsujikawa, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution imaging of the photoreceptor layer in epiretinal membrane using adaptive optics scanning laser ophthalmoscopy,” Ophthalmology118(5), 873–881 (2011).
[CrossRef] [PubMed]

Schein, S. J.

M. B. Shapiro, S. J. Schein, and F. M. De Monasterio, “Regularity and structure of the spatial pattern of blue cones of macaque retina,” J. Am. Stat. Assoc.80(392), 803–812 (1985).
[CrossRef]

Serrao, S.

M. Lombardo, S. Serrao, N. Devaney, M. Parravano, and G. Lombardo, “Adaptive optics technology for high-resolution retinal imaging,” Sensors (Basel)13(1), 334–366 (2013).
[CrossRef] [PubMed]

M. Lombardo, S. Serrao, P. Ducoli, and G. Lombardo, “Eccentricity dependent changes of density, spacing and packing arrangement of parafoveal cones,” Ophthalmic Physiol. Opt. E-published (2013).
[CrossRef]

M. Lombardo, G. Lombardo, D. S. Lomoriello, P. Ducoli, M. Stirpe, and S. Serrao, “Interocular symmetry of parafoveal photoreceptor cone density distribution,” Retina E-published (2013).
[CrossRef]

M. Lombardo, S. Serrao, P. Ducoli, and G. Lombardo, “Variations in image optical quality of the eye and the sampling limit of resolution of the cone mosaic with axial length in young adults,” J. Cataract Refract. Surg.38(7), 1147–1155 (2012).
[CrossRef] [PubMed]

M. Lombardo, G. Lombardo, P. Ducoli, and S. Serrao, “Adaptive optics photoreceptor imaging,” Ophthalmology119(7), 1498, e2 (2012).
[CrossRef] [PubMed]

Shapiro, M. B.

M. B. Shapiro, S. J. Schein, and F. M. De Monasterio, “Regularity and structure of the spatial pattern of blue cones of macaque retina,” J. Am. Stat. Assoc.80(392), 803–812 (1985).
[CrossRef]

Siebe, C.

P. Godara, C. Siebe, J. Rha, M. Michaelides, and J. Carroll, “Assessing the photoreceptor mosaic over drusen using adaptive optics and SD-OCT,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S104–S108 (2010).
[CrossRef] [PubMed]

Silveira, L. C.

Lda. F. Costa, D. M. Bonci, C. A. Saito, F. A. Rocha, L. C. Silveira, and D. F. Ventura, “Voronoi analysis uncovers relationship between mosaics of normally placed and displaced amacrine cells in the thraira retina,” Neuroinformatics5(1), 59–78 (2007).
[PubMed]

Sloan, K. R.

C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anisotropy,” Vis. Neurosci.9(02), 169–180 (1992).
[CrossRef] [PubMed]

C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anisotropy,” Vis. Neurosci.9(02), 169–180 (1992).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol.292(4), 497–523 (1990).
[CrossRef] [PubMed]

Song, H.

H. Song, T. Y. P. Chui, Z. Zhong, A. E. Elsner, and S. A. Burns, “Variation of cone photoreceptor packing density with retinal eccentricity and age,” Invest. Ophthalmol. Vis. Sci.52(10), 7376–7384 (2011).
[CrossRef] [PubMed]

T. Y. P. Chui, H. Song, and S. A. Burns, “Individual variations in human cone photoreceptor packing density: variations with refractive error,” Invest. Ophthalmol. Vis. Sci.49(10), 4679–4687 (2008).
[CrossRef] [PubMed]

T. Y. P. Chui, H. Song, and S. A. Burns, “Adaptive-optics imaging of human cone photoreceptor distribution,” J. Opt. Soc. Am. A25(12), 3021–3029 (2008).
[CrossRef] [PubMed]

Stepien, K. E.

P. Godara, M. Wagner-Schuman, J. Rha, T. B. Connor, K. E. Stepien, and J. Carroll, “Imaging the photoreceptor mosaic with adaptive optics: beyond counting cones,” Adv. Exp. Med. Biol.723, 451–458 (2012).
[CrossRef] [PubMed]

Stirpe, M.

M. Lombardo, G. Lombardo, D. S. Lomoriello, P. Ducoli, M. Stirpe, and S. Serrao, “Interocular symmetry of parafoveal photoreceptor cone density distribution,” Retina E-published (2013).
[CrossRef]

Sulai, Y.

Sundquist, S. M.

K. E. Talcott, K. Ratnam, S. M. Sundquist, A. S. Lucero, B. J. Lujan, W. Tao, T. C. Porco, A. Roorda, and J. L. Duncan, “Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment,” Invest. Ophthalmol. Vis. Sci.52(5), 2219–2226 (2011).
[CrossRef] [PubMed]

Takayama, K.

S. Ooto, M. Hangai, K. Takayama, A. Sakamoto, A. Tsujikawa, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution imaging of the photoreceptor layer in epiretinal membrane using adaptive optics scanning laser ophthalmoscopy,” Ophthalmology118(5), 873–881 (2011).
[CrossRef] [PubMed]

Talcott, K. E.

K. E. Talcott, K. Ratnam, S. M. Sundquist, A. S. Lucero, B. J. Lujan, W. Tao, T. C. Porco, A. Roorda, and J. L. Duncan, “Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment,” Invest. Ophthalmol. Vis. Sci.52(5), 2219–2226 (2011).
[CrossRef] [PubMed]

Tao, W.

K. E. Talcott, K. Ratnam, S. M. Sundquist, A. S. Lucero, B. J. Lujan, W. Tao, T. C. Porco, A. Roorda, and J. L. Duncan, “Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment,” Invest. Ophthalmol. Vis. Sci.52(5), 2219–2226 (2011).
[CrossRef] [PubMed]

Tiruveedhula, P.

D. Merino, J. L. Duncan, P. Tiruveedhula, and A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express2(8), 2189–2201 (2011).
[CrossRef] [PubMed]

K. Y. Li, P. Tiruveedhula, and A. Roorda, “Intersubject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci.51(12), 6858–6867 (2010).
[CrossRef] [PubMed]

Tsujikawa, A.

S. Ooto, M. Hangai, K. Takayama, A. Sakamoto, A. Tsujikawa, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution imaging of the photoreceptor layer in epiretinal membrane using adaptive optics scanning laser ophthalmoscopy,” Ophthalmology118(5), 873–881 (2011).
[CrossRef] [PubMed]

van Kuijk, F.

A. Boretsky, F. Khan, G. Burnett, D. X. Hammer, R. D. Ferguson, F. van Kuijk, and M. Motamedi, “In vivo imaging of photoreceptor disruption associated with age-related macular degeneration: a pilot study,” Lasers Surg. Med.44(8), 603–610 (2012).
[CrossRef] [PubMed]

Ventura, D. F.

Lda. F. Costa, D. M. Bonci, C. A. Saito, F. A. Rocha, L. C. Silveira, and D. F. Ventura, “Voronoi analysis uncovers relationship between mosaics of normally placed and displaced amacrine cells in the thraira retina,” Neuroinformatics5(1), 59–78 (2007).
[PubMed]

Wagner-Schuman, M.

P. Godara, M. Wagner-Schuman, J. Rha, T. B. Connor, K. E. Stepien, and J. Carroll, “Imaging the photoreceptor mosaic with adaptive optics: beyond counting cones,” Adv. Exp. Med. Biol.723, 451–458 (2012).
[CrossRef] [PubMed]

Watson, T.

N. J. Coletta and T. Watson, “Effect of myopia on visual acuity measured with laser interference fringes,” Vision Res.46(5), 636–651 (2006).
[CrossRef] [PubMed]

Werner, J. S.

Williams, D. R.

Wojtas, D. H.

Wu, B.

Xue, B.

Yoshimura, N.

S. Ooto, M. Hangai, K. Takayama, A. Sakamoto, A. Tsujikawa, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution imaging of the photoreceptor layer in epiretinal membrane using adaptive optics scanning laser ophthalmoscopy,” Ophthalmology118(5), 873–881 (2011).
[CrossRef] [PubMed]

Zhong, Z.

G. Huang, X. Qi, T. Y. Chui, Z. Zhong, and S. A. Burns, “A clinical planning module for adaptive optics SLO imaging,” Optom. Vis. Sci.89(5), 593–601 (2012).
[CrossRef] [PubMed]

H. Song, T. Y. P. Chui, Z. Zhong, A. E. Elsner, and S. A. Burns, “Variation of cone photoreceptor packing density with retinal eccentricity and age,” Invest. Ophthalmol. Vis. Sci.52(10), 7376–7384 (2011).
[CrossRef] [PubMed]

Adv. Exp. Med. Biol.

P. Godara, M. Wagner-Schuman, J. Rha, T. B. Connor, K. E. Stepien, and J. Carroll, “Imaging the photoreceptor mosaic with adaptive optics: beyond counting cones,” Adv. Exp. Med. Biol.723, 451–458 (2012).
[CrossRef] [PubMed]

Biomed. Opt. Express

Br. J. Ophthalmol.

N. Drasdo and C. W. Fowler, “Non-linear projection of the retinal image in a wide-angle schematic eye,” Br. J. Ophthalmol.58(8), 709–714 (1974).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci.

T. Y. P. Chui, H. Song, and S. A. Burns, “Individual variations in human cone photoreceptor packing density: variations with refractive error,” Invest. Ophthalmol. Vis. Sci.49(10), 4679–4687 (2008).
[CrossRef] [PubMed]

H. Song, T. Y. P. Chui, Z. Zhong, A. E. Elsner, and S. A. Burns, “Variation of cone photoreceptor packing density with retinal eccentricity and age,” Invest. Ophthalmol. Vis. Sci.52(10), 7376–7384 (2011).
[CrossRef] [PubMed]

K. Y. Li, P. Tiruveedhula, and A. Roorda, “Intersubject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci.51(12), 6858–6867 (2010).
[CrossRef] [PubMed]

K. E. Talcott, K. Ratnam, S. M. Sundquist, A. S. Lucero, B. J. Lujan, W. Tao, T. C. Porco, A. Roorda, and J. L. Duncan, “Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment,” Invest. Ophthalmol. Vis. Sci.52(5), 2219–2226 (2011).
[CrossRef] [PubMed]

J. Am. Stat. Assoc.

M. B. Shapiro, S. J. Schein, and F. M. De Monasterio, “Regularity and structure of the spatial pattern of blue cones of macaque retina,” J. Am. Stat. Assoc.80(392), 803–812 (1985).
[CrossRef]

J. Cataract Refract. Surg.

M. Lombardo, S. Serrao, P. Ducoli, and G. Lombardo, “Variations in image optical quality of the eye and the sampling limit of resolution of the cone mosaic with axial length in young adults,” J. Cataract Refract. Surg.38(7), 1147–1155 (2012).
[CrossRef] [PubMed]

J. Comp. Neurol.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol.292(4), 497–523 (1990).
[CrossRef] [PubMed]

J. Comput. Phys.

W. Brostow, J. P. Dussault, and B. L. Fox, “Construction of Voronoi polyhedra,” J. Comput. Phys.29(1), 81–92 (1978).
[CrossRef]

J. Opt. Soc. Am. A

Lancet

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet327(8476), 307–310 (1986).
[CrossRef] [PubMed]

Lasers Surg. Med.

A. Boretsky, F. Khan, G. Burnett, D. X. Hammer, R. D. Ferguson, F. van Kuijk, and M. Motamedi, “In vivo imaging of photoreceptor disruption associated with age-related macular degeneration: a pilot study,” Lasers Surg. Med.44(8), 603–610 (2012).
[CrossRef] [PubMed]

Neuroinformatics

Lda. F. Costa, D. M. Bonci, C. A. Saito, F. A. Rocha, L. C. Silveira, and D. F. Ventura, “Voronoi analysis uncovers relationship between mosaics of normally placed and displaced amacrine cells in the thraira retina,” Neuroinformatics5(1), 59–78 (2007).
[PubMed]

Ophthalmic Physiol. Opt.

M. Lombardo, S. Serrao, P. Ducoli, and G. Lombardo, “Eccentricity dependent changes of density, spacing and packing arrangement of parafoveal cones,” Ophthalmic Physiol. Opt. E-published (2013).
[CrossRef]

Ophthalmic Surg. Lasers Imaging

P. Godara, C. Siebe, J. Rha, M. Michaelides, and J. Carroll, “Assessing the photoreceptor mosaic over drusen using adaptive optics and SD-OCT,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S104–S108 (2010).
[CrossRef] [PubMed]

Ophthalmology

M. Lombardo, G. Lombardo, P. Ducoli, and S. Serrao, “Adaptive optics photoreceptor imaging,” Ophthalmology119(7), 1498, e2 (2012).
[CrossRef] [PubMed]

S. Ooto, M. Hangai, K. Takayama, A. Sakamoto, A. Tsujikawa, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution imaging of the photoreceptor layer in epiretinal membrane using adaptive optics scanning laser ophthalmoscopy,” Ophthalmology118(5), 873–881 (2011).
[CrossRef] [PubMed]

Optom. Vis. Sci.

R. Garrioch, C. Langlo, A. M. Dubis, R. F. Cooper, A. Dubra, and J. Carroll, “Repeatability of in vivo parafoveal cone density and spacing measurements,” Optom. Vis. Sci.89(5), 632–643 (2012).
[CrossRef] [PubMed]

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

G. Huang, X. Qi, T. Y. Chui, Z. Zhong, and S. A. Burns, “A clinical planning module for adaptive optics SLO imaging,” Optom. Vis. Sci.89(5), 593–601 (2012).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

L. da Fontoura Costa, F. Rocha, and S. M. Araújo de Lima, “Characterizing polygonality in biological structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(1), 011913 (2006).
[CrossRef] [PubMed]

PLoS ONE

Y. A. Kram, S. Mantey, and J. C. Corbo, “Avian cone photoreceptors tile the retina as five independent, self-organizing mosaics,” PLoS ONE5(2), e8992 (2010).
[CrossRef] [PubMed]

Retina

M. Lombardo, G. Lombardo, D. S. Lomoriello, P. Ducoli, M. Stirpe, and S. Serrao, “Interocular symmetry of parafoveal photoreceptor cone density distribution,” Retina E-published (2013).
[CrossRef]

Sensors (Basel)

M. Lombardo, S. Serrao, N. Devaney, M. Parravano, and G. Lombardo, “Adaptive optics technology for high-resolution retinal imaging,” Sensors (Basel)13(1), 334–366 (2013).
[CrossRef] [PubMed]

Stat. Methods Med. Res.

J. M. Bland and D. G. Altman, “Measuring agreement in method comparison studies,” Stat. Methods Med. Res.8(2), 135–160 (1999).
[CrossRef] [PubMed]

Vis. Neurosci.

J. E. Cook, “Spatial properties of retinal mosaics: an empirical evaluation of some existing measures,” Vis. Neurosci.13(01), 15–30 (1996).
[CrossRef] [PubMed]

R. W. Rodieck, “The density recovery profile: a method for the analysis of points in the plane applicable to retinal studies,” Vis. Neurosci.6(02), 95–111 (1991).
[CrossRef] [PubMed]

D. Pum, P. K. Ahnelt, and M. Grasl, “Iso-orientation areas in the foveal cone mosaic,” Vis. Neurosci.5(06), 511–523 (1990).
[CrossRef] [PubMed]

C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anisotropy,” Vis. Neurosci.9(02), 169–180 (1992).
[CrossRef] [PubMed]

C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anisotropy,” Vis. Neurosci.9(02), 169–180 (1992).
[CrossRef] [PubMed]

Vision Res.

N. J. Coletta and T. Watson, “Effect of myopia on visual acuity measured with laser interference fringes,” Vision Res.46(5), 636–651 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Performance of the cone identification algorithm. Shown are images from three cases acquired at the nasal location (upper row). Scale bar is 25 µm. Red crosses represent cones identified by the algorithm, blue and yellow squares indicate those added and removed by the user respectively (lower row). The average number of cones added manually across all images within the vertical oriented sampling windows of 160x80 µm size was 0.8 ± 0.6%. In general, misidentified cones were more frequently located near the edge of the sampling windows (boundary effect). Cones whose edges were, also in part, outside the image section were not labelled.

Fig. 2
Fig. 2

Photoreceptor mosaic images for all 10 subject acquired at 1.70 degree temporal fixation location. Scale bar is 25 µm.

Fig. 3
Fig. 3

Bland-Altman plots showing the agreement between cone density values calculated within horizontal and vertical oriented sampling windows of same size at the 1.20 degree nasal retinal location. Average and difference density values between sampling windows are plotted in the x- and y-axes respectively. The presentation of the 95% limits of agreement is for visual judgement of how well two methods of measurement agree. The smaller the range between these two limits the better the agreement is. The average difference and the distribution of points across the diagram, however, provide further information on the agreement between the two measurements. A wide 95% CI has been calculated between sampling windows of different orientation and same size.

Fig. 4
Fig. 4

Bland-Altman plots showing the agreement between cone density values calculated within vertical (left column) and horizontal (right column) oriented sampling windows of different sizes. Average and difference density values between sampling windows are plotted in the x- and y-axes respectively. Cone density values estimated within the vertical oriented windows of 320x160 µm and 160x80 µm showed low average difference and small 95% CI. The average differences calculated between windows of different sizes increased as the window size decreased. The 95% CI was wider between the horizontal oriented windows of different size than the vertical ones, except for the horizontal windows of 80x160 µm and 40x80 µm.

Fig. 5
Fig. 5

Voronoi maps obtained from cone coordinates estimated within the three sampling vertical window conditions at the nasal fixation location in two subjects (ML_05 and ML_06). The percentage of 6n arrangements (green tiles) is 50.9% and 47.5% within the 160x320 µm windows respectively. It was 56.2% and 46.4% within the 80x160 µm windows and 50.6% and 51.3% within the 40x80 µm windows respectively. In subject ML_06 (i.e., the case showing the lower % of 6n arrangement), the percentage of 5n arrangement (yellow tiles) increased from 26.6% to 31.9% from the largest to the smallest sampling window. The corresponding images of the cone mosaic at the same retinal location are shown for subject ML_06. The boundary effect may influence the estimation of the preferred packing arrangement of cones near the edge of the image section. The algorithm’s performance and the subsequent manual check to identify cones are additional sources of error for accurate reconstruction of a Voronoi map.

Fig. 6
Fig. 6

Voronoi maps obtained from cone coordinates estimated within the three sampling horizontal window conditions at the temporal fixation location in two subjects (ML_08 and ML_07). Across the horizontal oriented sampling window, the percentage of 6n arrangement tended to increase with decreasing area. In these cases, it ranged from 49.7% and 49.8% to 53.3% and 46.6% respectively. In subject ML_07, the percentage of each of the preferred cone packing arrangements showed differences ≤2.3% between the three sampling window conditions. The images of the cone mosaic at the same retinal location are shown for subject ML_07.

Tables (4)

Tables Icon

Table 1 Average ( ± SD, cones/mm2) Estimates of Cone Density Calculated across the Different Sampling Window Conditions at Both Fixation Locations

Tables Icon

Table 2 Correlation Matrix of Cone Density Values Estimated within Sampling Windows of Different Size and Orientation at Both Fixation Locations

Tables Icon

Table 3 Preferred Packing Arrangement of Cones (average ± SD, %) Calculated Using Voronoi Tiles at the Nasal Fixation Location

Tables Icon

Table 4 Preferred Packing Arrangement of Cones (average ± SD, %) Calculated Using Voronoi Tiles at the Temporal Fixation Location

Metrics