Abstract

We demonstrate a compact, ultrahigh speed spectral-domain optical coherence microscopy (SD-OCM) system for multiscale imaging of specimens at 840 nm. Using a high speed 512-pixel line scan camera, an imaging speed of 210,000 A-scans per second was demonstrated. Interchangeable water immersion objectives with magnifications of 10×, 20×, and 40× provided co-registered en face cellular-resolution imaging over several size scales. Volumetric OCM data sets and en face OCM images were demonstrated on both normal and pathological human colon and kidney specimens ex vivo with an axial resolution of ~4.2 µm, and transverse resolutions of ~2.9 µm (10×), ~1.7 µm (20×), and ~1.1 µm (40×) in tissue. In addition, en face OCM images acquired with high numerical aperture over an extended field-of-view (FOV) were demonstrated using image mosaicking. Comparison between en face OCM images among different transverse and axial resolutions was demonstrated, which promises to help the design and evaluation of imaging performance of Fourier domain OCM systems at different resolution regimes.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
    [CrossRef] [PubMed]
  3. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett.19(8), 590–592 (1994).
    [CrossRef] [PubMed]
  4. M. Kempe, W. Rudolph, and E. Welsch, “Comparative study of confocal and heterodyne microscopy for imaging through scattering media,” J. Opt. Soc. Am. A13(1), 46–52 (1996).
    [CrossRef]
  5. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett.27(4), 243–245 (2002).
    [CrossRef] [PubMed]
  6. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett.31(16), 2450–2452 (2006).
    [CrossRef] [PubMed]
  7. K. S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett.33(15), 1696–1698 (2008).
    [CrossRef] [PubMed]
  8. C. Blatter, B. Grajciar, C. M. Eigenwillig, W. Wieser, B. R. Biedermann, R. Huber, and R. A. Leitgeb, “Extended focus high-speed swept source OCT with self-reconstructive illumination,” Opt. Express19(13), 12141–12155 (2011).
    [CrossRef] [PubMed]
  9. L. Liu, C. Liu, W. C. Howe, C. J. R. Sheppard, and N. Chen, “Binary-phase spatial filter for real-time swept-source optical coherence microscopy,” Opt. Lett.32(16), 2375–2377 (2007).
    [CrossRef] [PubMed]
  10. T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process.14(9), 1254–1264 (2005).
    [CrossRef] [PubMed]
  11. L. F. Yu, B. Rao, J. Zhang, J. P. Su, Q. Wang, S. G. Guo, and Z. P. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express15(12), 7634–7641 (2007).
    [CrossRef] [PubMed]
  12. Y. Yasuno, J. I. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, “Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography,” Opt. Express14(3), 1006–1020 (2006).
    [CrossRef] [PubMed]
  13. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007).
    [CrossRef]
  14. A. D. Aguirre, J. Sawinski, S.-W. Huang, C. Zhou, W. Denk, and J. G. Fujimoto, “High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe,” Opt. Express18(5), 4222–4239 (2010).
    [CrossRef] [PubMed]
  15. A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt.15(1), 016025 (2010).
    [CrossRef] [PubMed]
  16. C. Zhou, Y. H. Wang, A. D. Aguirre, T. H. Tsai, D. W. Cohen, J. L. Connolly, and J. G. Fujimoto, “Ex vivo imaging of human thyroid pathology using integrated optical coherence tomography and optical coherence microscopy,” J. Biomed. Opt.15(1), 016001 (2010).
    [CrossRef] [PubMed]
  17. C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res.70(24), 10071–10079 (2010).
    [CrossRef] [PubMed]
  18. H.-C. Lee, C. Zhou, D. W. Cohen, A. E. Mondelblatt, Y. Wang, A. D. Aguirre, D. Shen, Y. Sheikine, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and optical coherence microscopy imaging of ex vivo human renal tissues,” J. Urol.187(2), 691–699 (2012).
    [CrossRef] [PubMed]
  19. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
    [CrossRef] [PubMed]
  20. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  21. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003).
    [CrossRef] [PubMed]
  22. S.-W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier domain mode-locked laser,” Opt. Express15(10), 6210–6217 (2007).
    [CrossRef] [PubMed]
  23. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
    [CrossRef] [PubMed]
  24. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
    [CrossRef] [PubMed]
  25. V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett.48(14), 867–868 (2012).
    [CrossRef]
  26. L. An, P. Li, T. T. Shen, and R. K. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A-lines per second,” Biomed. Opt. Express2(10), 2770–2783 (2011).
    [CrossRef] [PubMed]
  27. B. W. Graf, S. G. Adie, and S. A. Boppart, “Correction of coherence gate curvature in high numerical aperture optical coherence imaging,” Opt. Lett.35(18), 3120–3122 (2010).
    [CrossRef] [PubMed]
  28. M. A. Choma, A. K. Ellerbee, C. H. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett.30(10), 1162–1164 (2005).
    [CrossRef] [PubMed]
  29. C. Y. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, “Spectroscopic spectral-domain optical coherence microscopy,” Opt. Lett.31(8), 1079–1081 (2006).
    [CrossRef] [PubMed]
  30. B. W. Graf, Z. Jiang, H. H. Tu, and S. A. Boppart, “Dual-spectrum laser source based on fiber continuum generation for integrated optical coherence and multiphoton microscopy,” J. Biomed. Opt.14(3), 034019 (2009).
    [CrossRef] [PubMed]
  31. J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K.-S. Lee, “Gabor-based fusion technique for optical coherence microscopy,” Opt. Express18(4), 3632–3642 (2010).
    [CrossRef] [PubMed]
  32. B. W. Graf and S. A. Boppart, “Multimodal in vivo skin imaging with integrated optical coherence and multiphoton microscopy,” IEEE J. Sel. Top. Quantum Electron.18(4), 1280–1286 (2012).
    [CrossRef]
  33. L. B. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med.17(8), 1010–1014 (2011).
    [CrossRef] [PubMed]
  34. K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy,” J. Biomed. Opt.17(12), 126006 (2012).
    [CrossRef] [PubMed]
  35. V. J. Srinivasan, H. Radhakrishnan, J. Y. Jiang, S. Barry, and A. E. Cable, “Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast,” Opt. Express20(3), 2220–2239 (2012).
    [CrossRef] [PubMed]
  36. B. Cense, N. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. Bouma, G. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express12(11), 2435–2447 (2004).
    [CrossRef] [PubMed]
  37. T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express12(10), 2112–2119 (2004).
    [CrossRef] [PubMed]
  38. H. Helmers and M. Schellenberg, “CMOS vs. CCD sensors in speckle interferometry,” Opt. Laser Technol.35(8), 587–595 (2003).
    [CrossRef]
  39. S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1 microm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express16(12), 8406–8420 (2008).
    [CrossRef] [PubMed]
  40. C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, “Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy,” Appl. Phys. Lett.88(5), 053901 (2006).
    [CrossRef]
  41. A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, “Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon,” Opt. Express14(5), 1878–1887 (2006).
    [CrossRef] [PubMed]
  42. S. A. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol.55(1), 191–206 (2010).
    [CrossRef] [PubMed]
  43. L. P. Hariri, E. R. Liebmann, S. L. Marion, P. B. Hoyer, J. R. Davis, M. A. Brewer, and J. K. Barton, “Simultaneous optical coherence tomography and laser induced fluorescence imaging in rat model of ovarian carcinogenesis,” Cancer Biol. Ther.10(5), 438–447 (2010).
    [CrossRef] [PubMed]
  44. C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol.35(2), 87–92 (2000).
    [CrossRef] [PubMed]
  45. X. Qi, Y. Pan, Z. Hu, W. Kang, J. E. Willis, K. Olowe, M. V. Sivak, and A. M. Rollins, “Automated quantification of colonic crypt morphology using integrated microscopy and optical coherence tomography,” J. Biomed. Opt.13(5), 054055 (2008).
    [CrossRef] [PubMed]

2012

H.-C. Lee, C. Zhou, D. W. Cohen, A. E. Mondelblatt, Y. Wang, A. D. Aguirre, D. Shen, Y. Sheikine, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and optical coherence microscopy imaging of ex vivo human renal tissues,” J. Urol.187(2), 691–699 (2012).
[CrossRef] [PubMed]

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett.48(14), 867–868 (2012).
[CrossRef]

B. W. Graf and S. A. Boppart, “Multimodal in vivo skin imaging with integrated optical coherence and multiphoton microscopy,” IEEE J. Sel. Top. Quantum Electron.18(4), 1280–1286 (2012).
[CrossRef]

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy,” J. Biomed. Opt.17(12), 126006 (2012).
[CrossRef] [PubMed]

V. J. Srinivasan, H. Radhakrishnan, J. Y. Jiang, S. Barry, and A. E. Cable, “Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast,” Opt. Express20(3), 2220–2239 (2012).
[CrossRef] [PubMed]

2011

2010

S. A. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol.55(1), 191–206 (2010).
[CrossRef] [PubMed]

L. P. Hariri, E. R. Liebmann, S. L. Marion, P. B. Hoyer, J. R. Davis, M. A. Brewer, and J. K. Barton, “Simultaneous optical coherence tomography and laser induced fluorescence imaging in rat model of ovarian carcinogenesis,” Cancer Biol. Ther.10(5), 438–447 (2010).
[CrossRef] [PubMed]

A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt.15(1), 016025 (2010).
[CrossRef] [PubMed]

C. Zhou, Y. H. Wang, A. D. Aguirre, T. H. Tsai, D. W. Cohen, J. L. Connolly, and J. G. Fujimoto, “Ex vivo imaging of human thyroid pathology using integrated optical coherence tomography and optical coherence microscopy,” J. Biomed. Opt.15(1), 016001 (2010).
[CrossRef] [PubMed]

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res.70(24), 10071–10079 (2010).
[CrossRef] [PubMed]

J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K.-S. Lee, “Gabor-based fusion technique for optical coherence microscopy,” Opt. Express18(4), 3632–3642 (2010).
[CrossRef] [PubMed]

A. D. Aguirre, J. Sawinski, S.-W. Huang, C. Zhou, W. Denk, and J. G. Fujimoto, “High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe,” Opt. Express18(5), 4222–4239 (2010).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

B. W. Graf, S. G. Adie, and S. A. Boppart, “Correction of coherence gate curvature in high numerical aperture optical coherence imaging,” Opt. Lett.35(18), 3120–3122 (2010).
[CrossRef] [PubMed]

2009

B. W. Graf, Z. Jiang, H. H. Tu, and S. A. Boppart, “Dual-spectrum laser source based on fiber continuum generation for integrated optical coherence and multiphoton microscopy,” J. Biomed. Opt.14(3), 034019 (2009).
[CrossRef] [PubMed]

2008

2007

2006

2005

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process.14(9), 1254–1264 (2005).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, C. H. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett.30(10), 1162–1164 (2005).
[CrossRef] [PubMed]

2004

2003

2002

2001

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

2000

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol.35(2), 87–92 (2000).
[CrossRef] [PubMed]

1996

1994

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Adie, S. G.

Adler, D. C.

Aguirre, A. D.

H.-C. Lee, C. Zhou, D. W. Cohen, A. E. Mondelblatt, Y. Wang, A. D. Aguirre, D. Shen, Y. Sheikine, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and optical coherence microscopy imaging of ex vivo human renal tissues,” J. Urol.187(2), 691–699 (2012).
[CrossRef] [PubMed]

C. Zhou, Y. H. Wang, A. D. Aguirre, T. H. Tsai, D. W. Cohen, J. L. Connolly, and J. G. Fujimoto, “Ex vivo imaging of human thyroid pathology using integrated optical coherence tomography and optical coherence microscopy,” J. Biomed. Opt.15(1), 016001 (2010).
[CrossRef] [PubMed]

A. D. Aguirre, J. Sawinski, S.-W. Huang, C. Zhou, W. Denk, and J. G. Fujimoto, “High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe,” Opt. Express18(5), 4222–4239 (2010).
[CrossRef] [PubMed]

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res.70(24), 10071–10079 (2010).
[CrossRef] [PubMed]

A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt.15(1), 016025 (2010).
[CrossRef] [PubMed]

S.-W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier domain mode-locked laser,” Opt. Express15(10), 6210–6217 (2007).
[CrossRef] [PubMed]

An, L.

Bachmann, A. H.

Barry, S.

Barton, J. K.

L. P. Hariri, E. R. Liebmann, S. L. Marion, P. B. Hoyer, J. R. Davis, M. A. Brewer, and J. K. Barton, “Simultaneous optical coherence tomography and laser induced fluorescence imaging in rat model of ovarian carcinogenesis,” Cancer Biol. Ther.10(5), 438–447 (2010).
[CrossRef] [PubMed]

A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, “Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon,” Opt. Express14(5), 1878–1887 (2006).
[CrossRef] [PubMed]

Biedermann, B. R.

Blatter, C.

Boppart, S. A.

B. W. Graf and S. A. Boppart, “Multimodal in vivo skin imaging with integrated optical coherence and multiphoton microscopy,” IEEE J. Sel. Top. Quantum Electron.18(4), 1280–1286 (2012).
[CrossRef]

B. W. Graf, S. G. Adie, and S. A. Boppart, “Correction of coherence gate curvature in high numerical aperture optical coherence imaging,” Opt. Lett.35(18), 3120–3122 (2010).
[CrossRef] [PubMed]

B. W. Graf, Z. Jiang, H. H. Tu, and S. A. Boppart, “Dual-spectrum laser source based on fiber continuum generation for integrated optical coherence and multiphoton microscopy,” J. Biomed. Opt.14(3), 034019 (2009).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007).
[CrossRef]

C. Y. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, “Spectroscopic spectral-domain optical coherence microscopy,” Opt. Lett.31(8), 1079–1081 (2006).
[CrossRef] [PubMed]

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, “Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy,” Appl. Phys. Lett.88(5), 053901 (2006).
[CrossRef]

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process.14(9), 1254–1264 (2005).
[CrossRef] [PubMed]

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol.35(2), 87–92 (2000).
[CrossRef] [PubMed]

Bouma, B.

Bouma, B. E.

L. B. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med.17(8), 1010–1014 (2011).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
[CrossRef] [PubMed]

Brewer, M. A.

L. P. Hariri, E. R. Liebmann, S. L. Marion, P. B. Hoyer, J. R. Davis, M. A. Brewer, and J. K. Barton, “Simultaneous optical coherence tomography and laser induced fluorescence imaging in rat model of ovarian carcinogenesis,” Cancer Biol. Ther.10(5), 438–447 (2010).
[CrossRef] [PubMed]

Brezinski, M. E.

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol.35(2), 87–92 (2000).
[CrossRef] [PubMed]

Bryan, B.

A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt.15(1), 016025 (2010).
[CrossRef] [PubMed]

Cable, A.

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett.48(14), 867–868 (2012).
[CrossRef]

S. A. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol.55(1), 191–206 (2010).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

Cable, A. E.

Carney, P. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007).
[CrossRef]

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, C. W.

S. A. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol.55(1), 191–206 (2010).
[CrossRef] [PubMed]

Chen, N.

Chen, T. C.

Chen, Y.

A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt.15(1), 016025 (2010).
[CrossRef] [PubMed]

S. A. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol.55(1), 191–206 (2010).
[CrossRef] [PubMed]

Chen, Y. L.

Chen, Z.

Chen, Z. P.

Choma, M. A.

Cohen, D. W.

H.-C. Lee, C. Zhou, D. W. Cohen, A. E. Mondelblatt, Y. Wang, A. D. Aguirre, D. Shen, Y. Sheikine, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and optical coherence microscopy imaging of ex vivo human renal tissues,” J. Urol.187(2), 691–699 (2012).
[CrossRef] [PubMed]

C. Zhou, Y. H. Wang, A. D. Aguirre, T. H. Tsai, D. W. Cohen, J. L. Connolly, and J. G. Fujimoto, “Ex vivo imaging of human thyroid pathology using integrated optical coherence tomography and optical coherence microscopy,” J. Biomed. Opt.15(1), 016001 (2010).
[CrossRef] [PubMed]

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res.70(24), 10071–10079 (2010).
[CrossRef] [PubMed]

Cole, G. D.

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett.48(14), 867–868 (2012).
[CrossRef]

Connolly, J. L.

H.-C. Lee, C. Zhou, D. W. Cohen, A. E. Mondelblatt, Y. Wang, A. D. Aguirre, D. Shen, Y. Sheikine, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and optical coherence microscopy imaging of ex vivo human renal tissues,” J. Urol.187(2), 691–699 (2012).
[CrossRef] [PubMed]

C. Zhou, Y. H. Wang, A. D. Aguirre, T. H. Tsai, D. W. Cohen, J. L. Connolly, and J. G. Fujimoto, “Ex vivo imaging of human thyroid pathology using integrated optical coherence tomography and optical coherence microscopy,” J. Biomed. Opt.15(1), 016001 (2010).
[CrossRef] [PubMed]

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res.70(24), 10071–10079 (2010).
[CrossRef] [PubMed]

A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt.15(1), 016025 (2010).
[CrossRef] [PubMed]

Creazzo, T. L.

Davis, J. R.

L. P. Hariri, E. R. Liebmann, S. L. Marion, P. B. Hoyer, J. R. Davis, M. A. Brewer, and J. K. Barton, “Simultaneous optical coherence tomography and laser induced fluorescence imaging in rat model of ovarian carcinogenesis,” Cancer Biol. Ther.10(5), 438–447 (2010).
[CrossRef] [PubMed]

de Boer, J. F.

Denk, W.

Ding, Z.

Drexler, W.

Eigenwillig, C. M.

Ellerbee, A. K.

Fabritius, T.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

H.-C. Lee, C. Zhou, D. W. Cohen, A. E. Mondelblatt, Y. Wang, A. D. Aguirre, D. Shen, Y. Sheikine, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and optical coherence microscopy imaging of ex vivo human renal tissues,” J. Urol.187(2), 691–699 (2012).
[CrossRef] [PubMed]

C. Zhou, Y. H. Wang, A. D. Aguirre, T. H. Tsai, D. W. Cohen, J. L. Connolly, and J. G. Fujimoto, “Ex vivo imaging of human thyroid pathology using integrated optical coherence tomography and optical coherence microscopy,” J. Biomed. Opt.15(1), 016001 (2010).
[CrossRef] [PubMed]

A. D. Aguirre, J. Sawinski, S.-W. Huang, C. Zhou, W. Denk, and J. G. Fujimoto, “High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe,” Opt. Express18(5), 4222–4239 (2010).
[CrossRef] [PubMed]

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res.70(24), 10071–10079 (2010).
[CrossRef] [PubMed]

A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt.15(1), 016025 (2010).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

S.-W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier domain mode-locked laser,” Opt. Express15(10), 6210–6217 (2007).
[CrossRef] [PubMed]

T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express12(10), 2112–2119 (2004).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol.35(2), 87–92 (2000).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett.19(8), 590–592 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gardecki, J. A.

L. B. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med.17(8), 1010–1014 (2011).
[CrossRef] [PubMed]

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

Gorczynska, I.

Graf, B. W.

B. W. Graf and S. A. Boppart, “Multimodal in vivo skin imaging with integrated optical coherence and multiphoton microscopy,” IEEE J. Sel. Top. Quantum Electron.18(4), 1280–1286 (2012).
[CrossRef]

B. W. Graf, S. G. Adie, and S. A. Boppart, “Correction of coherence gate curvature in high numerical aperture optical coherence imaging,” Opt. Lett.35(18), 3120–3122 (2010).
[CrossRef] [PubMed]

B. W. Graf, Z. Jiang, H. H. Tu, and S. A. Boppart, “Dual-spectrum laser source based on fiber continuum generation for integrated optical coherence and multiphoton microscopy,” J. Biomed. Opt.14(3), 034019 (2009).
[CrossRef] [PubMed]

Grajciar, B.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Griffiths, G.

S. A. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol.55(1), 191–206 (2010).
[CrossRef] [PubMed]

Guo, S. G.

Hariri, L. P.

L. P. Hariri, E. R. Liebmann, S. L. Marion, P. B. Hoyer, J. R. Davis, M. A. Brewer, and J. K. Barton, “Simultaneous optical coherence tomography and laser induced fluorescence imaging in rat model of ovarian carcinogenesis,” Cancer Biol. Ther.10(5), 438–447 (2010).
[CrossRef] [PubMed]

Hee, M. R.

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett.19(8), 590–592 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Helmers, H.

H. Helmers and M. Schellenberg, “CMOS vs. CCD sensors in speckle interferometry,” Opt. Laser Technol.35(8), 587–595 (2003).
[CrossRef]

Hitzenberger, C. K.

Howe, W. C.

Hoyer, P. B.

L. P. Hariri, E. R. Liebmann, S. L. Marion, P. B. Hoyer, J. R. Davis, M. A. Brewer, and J. K. Barton, “Simultaneous optical coherence tomography and laser induced fluorescence imaging in rat model of ovarian carcinogenesis,” Cancer Biol. Ther.10(5), 438–447 (2010).
[CrossRef] [PubMed]

Hu, Z.

X. Qi, Y. Pan, Z. Hu, W. Kang, J. E. Willis, K. Olowe, M. V. Sivak, and A. M. Rollins, “Automated quantification of colonic crypt morphology using integrated microscopy and optical coherence tomography,” J. Biomed. Opt.13(5), 054055 (2008).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, Q.

A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt.15(1), 016025 (2010).
[CrossRef] [PubMed]

Huang, S.-W.

Huber, R.

Huber, R. A.

Ibrahim, S. F.

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy,” J. Biomed. Opt.17(12), 126006 (2012).
[CrossRef] [PubMed]

Itoh, M.

Izatt, J. A.

Jayaraman, V.

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett.48(14), 867–868 (2012).
[CrossRef]

Jesser, C.

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol.35(2), 87–92 (2000).
[CrossRef] [PubMed]

Jiang, J.

S. A. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol.55(1), 191–206 (2010).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

Jiang, J. Y.

Jiang, Z.

B. W. Graf, Z. Jiang, H. H. Tu, and S. A. Boppart, “Dual-spectrum laser source based on fiber continuum generation for integrated optical coherence and multiphoton microscopy,” J. Biomed. Opt.14(3), 034019 (2009).
[CrossRef] [PubMed]

Kamalabadi, F.

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process.14(9), 1254–1264 (2005).
[CrossRef] [PubMed]

Kang, W.

X. Qi, Y. Pan, Z. Hu, W. Kang, J. E. Willis, K. Olowe, M. V. Sivak, and A. M. Rollins, “Automated quantification of colonic crypt morphology using integrated microscopy and optical coherence tomography,” J. Biomed. Opt.13(5), 054055 (2008).
[CrossRef] [PubMed]

Kärtner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

Kempe, M.

Khoudeir, L.

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy,” J. Biomed. Opt.17(12), 126006 (2012).
[CrossRef] [PubMed]

Klein, T.

Ko, T. H.

Lasser, T.

Lee, H.-C.

H.-C. Lee, C. Zhou, D. W. Cohen, A. E. Mondelblatt, Y. Wang, A. D. Aguirre, D. Shen, Y. Sheikine, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and optical coherence microscopy imaging of ex vivo human renal tissues,” J. Urol.187(2), 691–699 (2012).
[CrossRef] [PubMed]

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res.70(24), 10071–10079 (2010).
[CrossRef] [PubMed]

Lee, K. S.

Lee, K.-S.

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy,” J. Biomed. Opt.17(12), 126006 (2012).
[CrossRef] [PubMed]

J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K.-S. Lee, “Gabor-based fusion technique for optical coherence microscopy,” Opt. Express18(4), 3632–3642 (2010).
[CrossRef] [PubMed]

Leitgeb, R.

Leitgeb, R. A.

Li, P.

Liebmann, E. R.

L. P. Hariri, E. R. Liebmann, S. L. Marion, P. B. Hoyer, J. R. Davis, M. A. Brewer, and J. K. Barton, “Simultaneous optical coherence tomography and laser induced fluorescence imaging in rat model of ovarian carcinogenesis,” Cancer Biol. Ther.10(5), 438–447 (2010).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, C.

Liu, L.

Liu, L. B.

L. B. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med.17(8), 1010–1014 (2011).
[CrossRef] [PubMed]

Luo, W.

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, “Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy,” Appl. Phys. Lett.88(5), 053901 (2006).
[CrossRef]

C. Y. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, “Spectroscopic spectral-domain optical coherence microscopy,” Opt. Lett.31(8), 1079–1081 (2006).
[CrossRef] [PubMed]

Ma, H. Z.

S. A. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol.55(1), 191–206 (2010).
[CrossRef] [PubMed]

Makita, S.

Mamedov, D.

Marion, S. L.

L. P. Hariri, E. R. Liebmann, S. L. Marion, P. B. Hoyer, J. R. Davis, M. A. Brewer, and J. K. Barton, “Simultaneous optical coherence tomography and laser induced fluorescence imaging in rat model of ovarian carcinogenesis,” Cancer Biol. Ther.10(5), 438–447 (2010).
[CrossRef] [PubMed]

Marks, D. L.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007).
[CrossRef]

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, “Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy,” Appl. Phys. Lett.88(5), 053901 (2006).
[CrossRef]

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process.14(9), 1254–1264 (2005).
[CrossRef] [PubMed]

Mashimo, H.

A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt.15(1), 016025 (2010).
[CrossRef] [PubMed]

Meemon, N.

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy,” J. Biomed. Opt.17(12), 126006 (2012).
[CrossRef] [PubMed]

Meemon, P.

Mondelblatt, A. E.

H.-C. Lee, C. Zhou, D. W. Cohen, A. E. Mondelblatt, Y. Wang, A. D. Aguirre, D. Shen, Y. Sheikine, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and optical coherence microscopy imaging of ex vivo human renal tissues,” J. Urol.187(2), 691–699 (2012).
[CrossRef] [PubMed]

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res.70(24), 10071–10079 (2010).
[CrossRef] [PubMed]

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

Murali, S.

Nadkarni, S. K.

L. B. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med.17(8), 1010–1014 (2011).
[CrossRef] [PubMed]

Nakamura, Y.

Nassif, N.

Nelson, J. S.

Olowe, K.

X. Qi, Y. Pan, Z. Hu, W. Kang, J. E. Willis, K. Olowe, M. V. Sivak, and A. M. Rollins, “Automated quantification of colonic crypt morphology using integrated microscopy and optical coherence tomography,” J. Biomed. Opt.13(5), 054055 (2008).
[CrossRef] [PubMed]

Owen, G. M.

Pan, Y.

X. Qi, Y. Pan, Z. Hu, W. Kang, J. E. Willis, K. Olowe, M. V. Sivak, and A. M. Rollins, “Automated quantification of colonic crypt morphology using integrated microscopy and optical coherence tomography,” J. Biomed. Opt.13(5), 054055 (2008).
[CrossRef] [PubMed]

Park, B. H.

Pierce, M. C.

Pitris, C.

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol.35(2), 87–92 (2000).
[CrossRef] [PubMed]

Potsaid, B.

Povazay, B.

Prokhorov, V.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Qi, X.

X. Qi, Y. Pan, Z. Hu, W. Kang, J. E. Willis, K. Olowe, M. V. Sivak, and A. M. Rollins, “Automated quantification of colonic crypt morphology using integrated microscopy and optical coherence tomography,” J. Biomed. Opt.13(5), 054055 (2008).
[CrossRef] [PubMed]

Radhakrishnan, H.

Ralston, T.

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, “Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy,” Appl. Phys. Lett.88(5), 053901 (2006).
[CrossRef]

Ralston, T. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007).
[CrossRef]

C. Y. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, “Spectroscopic spectral-domain optical coherence microscopy,” Opt. Lett.31(8), 1079–1081 (2006).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process.14(9), 1254–1264 (2005).
[CrossRef] [PubMed]

Rao, B.

Ren, H.

Robertson, M.

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett.48(14), 867–868 (2012).
[CrossRef]

Rolland, J. P.

Rollins, A. M.

X. Qi, Y. Pan, Z. Hu, W. Kang, J. E. Willis, K. Olowe, M. V. Sivak, and A. M. Rollins, “Automated quantification of colonic crypt morphology using integrated microscopy and optical coherence tomography,” J. Biomed. Opt.13(5), 054055 (2008).
[CrossRef] [PubMed]

Roney, C. A.

S. A. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol.55(1), 191–206 (2010).
[CrossRef] [PubMed]

Rudolph, W.

Sando, Y.

Sarunic, M. V.

Sattman, H.

Sawinski, J.

Schellenberg, M.

H. Helmers and M. Schellenberg, “CMOS vs. CCD sensors in speckle interferometry,” Opt. Laser Technol.35(8), 587–595 (2003).
[CrossRef]

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sheikine, Y.

H.-C. Lee, C. Zhou, D. W. Cohen, A. E. Mondelblatt, Y. Wang, A. D. Aguirre, D. Shen, Y. Sheikine, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and optical coherence microscopy imaging of ex vivo human renal tissues,” J. Urol.187(2), 691–699 (2012).
[CrossRef] [PubMed]

Shen, D.

H.-C. Lee, C. Zhou, D. W. Cohen, A. E. Mondelblatt, Y. Wang, A. D. Aguirre, D. Shen, Y. Sheikine, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and optical coherence microscopy imaging of ex vivo human renal tissues,” J. Urol.187(2), 691–699 (2012).
[CrossRef] [PubMed]

Shen, T. T.

Sheppard, C. J. R.

Shidlovski, V.

Sivak, M. V.

X. Qi, Y. Pan, Z. Hu, W. Kang, J. E. Willis, K. Olowe, M. V. Sivak, and A. M. Rollins, “Automated quantification of colonic crypt morphology using integrated microscopy and optical coherence tomography,” J. Biomed. Opt.13(5), 054055 (2008).
[CrossRef] [PubMed]

Srinivasan, V. J.

Stamper, D.

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol.35(2), 87–92 (2000).
[CrossRef] [PubMed]

Steinmann, L.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Su, J. P.

Sugisaka, J. I.

Summers, R. M.

S. A. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol.55(1), 191–206 (2010).
[CrossRef] [PubMed]

Swanson, E. A.

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett.19(8), 590–592 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tan, W.

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, “Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy,” Appl. Phys. Lett.88(5), 053901 (2006).
[CrossRef]

C. Y. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, “Spectroscopic spectral-domain optical coherence microscopy,” Opt. Lett.31(8), 1079–1081 (2006).
[CrossRef] [PubMed]

Tearney, G.

Tearney, G. J.

L. B. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med.17(8), 1010–1014 (2011).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
[CrossRef] [PubMed]

Thompson, K. P.

Toussaint, J. D.

L. B. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med.17(8), 1010–1014 (2011).
[CrossRef] [PubMed]

Tsai, T. H.

C. Zhou, Y. H. Wang, A. D. Aguirre, T. H. Tsai, D. W. Cohen, J. L. Connolly, and J. G. Fujimoto, “Ex vivo imaging of human thyroid pathology using integrated optical coherence tomography and optical coherence microscopy,” J. Biomed. Opt.15(1), 016001 (2010).
[CrossRef] [PubMed]

Tsai, T.-H.

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res.70(24), 10071–10079 (2010).
[CrossRef] [PubMed]

Tu, H. H.

B. W. Graf, Z. Jiang, H. H. Tu, and S. A. Boppart, “Dual-spectrum laser source based on fiber continuum generation for integrated optical coherence and multiphoton microscopy,” J. Biomed. Opt.14(3), 034019 (2009).
[CrossRef] [PubMed]

Tumlinson, A. R.

Uddin, A.

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett.48(14), 867–868 (2012).
[CrossRef]

Unterhuber, A.

Villiger, M.

Vinegoni, C.

C. Y. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, “Spectroscopic spectral-domain optical coherence microscopy,” Opt. Lett.31(8), 1079–1081 (2006).
[CrossRef] [PubMed]

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, “Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy,” Appl. Phys. Lett.88(5), 053901 (2006).
[CrossRef]

Wang, Q.

Wang, R. K.

Wang, Y.

H.-C. Lee, C. Zhou, D. W. Cohen, A. E. Mondelblatt, Y. Wang, A. D. Aguirre, D. Shen, Y. Sheikine, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and optical coherence microscopy imaging of ex vivo human renal tissues,” J. Urol.187(2), 691–699 (2012).
[CrossRef] [PubMed]

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res.70(24), 10071–10079 (2010).
[CrossRef] [PubMed]

Wang, Y. H.

C. Zhou, Y. H. Wang, A. D. Aguirre, T. H. Tsai, D. W. Cohen, J. L. Connolly, and J. G. Fujimoto, “Ex vivo imaging of human thyroid pathology using integrated optical coherence tomography and optical coherence microscopy,” J. Biomed. Opt.15(1), 016001 (2010).
[CrossRef] [PubMed]

Welsch, E.

Wierwille, J.

S. A. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol.55(1), 191–206 (2010).
[CrossRef] [PubMed]

Wieser, W.

Willis, J. E.

X. Qi, Y. Pan, Z. Hu, W. Kang, J. E. Willis, K. Olowe, M. V. Sivak, and A. M. Rollins, “Automated quantification of colonic crypt morphology using integrated microscopy and optical coherence tomography,” J. Biomed. Opt.13(5), 054055 (2008).
[CrossRef] [PubMed]

Xu, B. Y.

S. A. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol.55(1), 191–206 (2010).
[CrossRef] [PubMed]

Xu, C. Y.

Yagi, Y.

L. B. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med.17(8), 1010–1014 (2011).
[CrossRef] [PubMed]

Yakubovich, S.

Yang, C. H.

Yasuno, Y.

Yatagai, T.

Yu, L. F.

Yuan, S. A.

S. A. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol.55(1), 191–206 (2010).
[CrossRef] [PubMed]

Yun, S. H.

Zhang, J.

Zhao, H.

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy,” J. Biomed. Opt.17(12), 126006 (2012).
[CrossRef] [PubMed]

Zhao, Y.

Zhou, C.

H.-C. Lee, C. Zhou, D. W. Cohen, A. E. Mondelblatt, Y. Wang, A. D. Aguirre, D. Shen, Y. Sheikine, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and optical coherence microscopy imaging of ex vivo human renal tissues,” J. Urol.187(2), 691–699 (2012).
[CrossRef] [PubMed]

C. Zhou, Y. H. Wang, A. D. Aguirre, T. H. Tsai, D. W. Cohen, J. L. Connolly, and J. G. Fujimoto, “Ex vivo imaging of human thyroid pathology using integrated optical coherence tomography and optical coherence microscopy,” J. Biomed. Opt.15(1), 016001 (2010).
[CrossRef] [PubMed]

A. D. Aguirre, J. Sawinski, S.-W. Huang, C. Zhou, W. Denk, and J. G. Fujimoto, “High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe,” Opt. Express18(5), 4222–4239 (2010).
[CrossRef] [PubMed]

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res.70(24), 10071–10079 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett.

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, “Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy,” Appl. Phys. Lett.88(5), 053901 (2006).
[CrossRef]

Biomed. Opt. Express

Cancer Biol. Ther.

L. P. Hariri, E. R. Liebmann, S. L. Marion, P. B. Hoyer, J. R. Davis, M. A. Brewer, and J. K. Barton, “Simultaneous optical coherence tomography and laser induced fluorescence imaging in rat model of ovarian carcinogenesis,” Cancer Biol. Ther.10(5), 438–447 (2010).
[CrossRef] [PubMed]

Cancer Res.

C. Zhou, D. W. Cohen, Y. Wang, H.-C. Lee, A. E. Mondelblatt, T.-H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Res.70(24), 10071–10079 (2010).
[CrossRef] [PubMed]

Electron. Lett.

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett.48(14), 867–868 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

B. W. Graf and S. A. Boppart, “Multimodal in vivo skin imaging with integrated optical coherence and multiphoton microscopy,” IEEE J. Sel. Top. Quantum Electron.18(4), 1280–1286 (2012).
[CrossRef]

IEEE Trans. Image Process.

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process.14(9), 1254–1264 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt.

A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt.15(1), 016025 (2010).
[CrossRef] [PubMed]

C. Zhou, Y. H. Wang, A. D. Aguirre, T. H. Tsai, D. W. Cohen, J. L. Connolly, and J. G. Fujimoto, “Ex vivo imaging of human thyroid pathology using integrated optical coherence tomography and optical coherence microscopy,” J. Biomed. Opt.15(1), 016001 (2010).
[CrossRef] [PubMed]

B. W. Graf, Z. Jiang, H. H. Tu, and S. A. Boppart, “Dual-spectrum laser source based on fiber continuum generation for integrated optical coherence and multiphoton microscopy,” J. Biomed. Opt.14(3), 034019 (2009).
[CrossRef] [PubMed]

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy,” J. Biomed. Opt.17(12), 126006 (2012).
[CrossRef] [PubMed]

X. Qi, Y. Pan, Z. Hu, W. Kang, J. E. Willis, K. Olowe, M. V. Sivak, and A. M. Rollins, “Automated quantification of colonic crypt morphology using integrated microscopy and optical coherence tomography,” J. Biomed. Opt.13(5), 054055 (2008).
[CrossRef] [PubMed]

J. Gastroenterol.

C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol.35(2), 87–92 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Urol.

H.-C. Lee, C. Zhou, D. W. Cohen, A. E. Mondelblatt, Y. Wang, A. D. Aguirre, D. Shen, Y. Sheikine, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and optical coherence microscopy imaging of ex vivo human renal tissues,” J. Urol.187(2), 691–699 (2012).
[CrossRef] [PubMed]

Nat. Med.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

L. B. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med.17(8), 1010–1014 (2011).
[CrossRef] [PubMed]

Nat. Phys.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007).
[CrossRef]

Opt. Express

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003).
[CrossRef] [PubMed]

T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express12(10), 2112–2119 (2004).
[CrossRef] [PubMed]

B. Cense, N. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. Bouma, G. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express12(11), 2435–2447 (2004).
[CrossRef] [PubMed]

Y. Yasuno, J. I. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, “Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography,” Opt. Express14(3), 1006–1020 (2006).
[CrossRef] [PubMed]

A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, “Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon,” Opt. Express14(5), 1878–1887 (2006).
[CrossRef] [PubMed]

S.-W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier domain mode-locked laser,” Opt. Express15(10), 6210–6217 (2007).
[CrossRef] [PubMed]

L. F. Yu, B. Rao, J. Zhang, J. P. Su, Q. Wang, S. G. Guo, and Z. P. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express15(12), 7634–7641 (2007).
[CrossRef] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1 microm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express16(12), 8406–8420 (2008).
[CrossRef] [PubMed]

C. Blatter, B. Grajciar, C. M. Eigenwillig, W. Wieser, B. R. Biedermann, R. Huber, and R. A. Leitgeb, “Extended focus high-speed swept source OCT with self-reconstructive illumination,” Opt. Express19(13), 12141–12155 (2011).
[CrossRef] [PubMed]

V. J. Srinivasan, H. Radhakrishnan, J. Y. Jiang, S. Barry, and A. E. Cable, “Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast,” Opt. Express20(3), 2220–2239 (2012).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K.-S. Lee, “Gabor-based fusion technique for optical coherence microscopy,” Opt. Express18(4), 3632–3642 (2010).
[CrossRef] [PubMed]

A. D. Aguirre, J. Sawinski, S.-W. Huang, C. Zhou, W. Denk, and J. G. Fujimoto, “High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe,” Opt. Express18(5), 4222–4239 (2010).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

Opt. Laser Technol.

H. Helmers and M. Schellenberg, “CMOS vs. CCD sensors in speckle interferometry,” Opt. Laser Technol.35(8), 587–595 (2003).
[CrossRef]

Opt. Lett.

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett.19(8), 590–592 (1994).
[CrossRef] [PubMed]

K. S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett.33(15), 1696–1698 (2008).
[CrossRef] [PubMed]

L. Liu, C. Liu, W. C. Howe, C. J. R. Sheppard, and N. Chen, “Binary-phase spatial filter for real-time swept-source optical coherence microscopy,” Opt. Lett.32(16), 2375–2377 (2007).
[CrossRef] [PubMed]

C. Y. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, “Spectroscopic spectral-domain optical coherence microscopy,” Opt. Lett.31(8), 1079–1081 (2006).
[CrossRef] [PubMed]

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett.31(16), 2450–2452 (2006).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, C. H. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett.30(10), 1162–1164 (2005).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
[CrossRef] [PubMed]

Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett.27(4), 243–245 (2002).
[CrossRef] [PubMed]

B. W. Graf, S. G. Adie, and S. A. Boppart, “Correction of coherence gate curvature in high numerical aperture optical coherence imaging,” Opt. Lett.35(18), 3120–3122 (2010).
[CrossRef] [PubMed]

Phys. Med. Biol.

S. A. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol.55(1), 191–206 (2010).
[CrossRef] [PubMed]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Schematic diagram of the ultrahigh speed SD-OCM system. PC: polarization controller, DC: dispersion compensation, IS: iris, RM: reference mirror, GS: galvanometer scanner pair, OBJ: objectives, S: sample, DG: diffraction grating, CCD: line scan camera, ISO: isolator.

Fig. 2
Fig. 2

(a) Spectrum of the light source measured using an optical spectrum analyzer. (b) Interference signal before (blue line) and after (black dashed line) spectral shaping using Hamming window. (c) Axial point spread function in air before (blue) and after (black dashed line) spectral shaping. Sensitivity roll-off of the spectrometer in air (d) before and (e) after spectral shaping.

Fig. 3
Fig. 3

System characterization. (a) Coherence-gated image of the USAF resolution target where the smallest elements up to group 8 (inlet) can be observed using the 20× objective. Scale bar: 50 µm. (b) Measurement of the coherence gate function (spectrally shaped, red solid line) and the confocal gate function measured in water of the 10× (yellow dashed line), 20× (green dash-dotted line), and 40× (blue round dotted line) objectives.

Fig. 4
Fig. 4

Image distortion correction. (a) Original and (b) field-curvature-corrected cross-sectional images of a normal human kidney. (c) and (d) En face OCM images at two different depth level showing residual curvature artifacts after the first field curvature correction. (e) Distortion-corrected en face OCM image. Scale bars: 200 µm.

Fig. 5
Fig. 5

Image mosaicking. (a) Individual en face OCM images (900 × 900 µm, X × Y) of a normal human kidney specimen were acquired and generated at locations along a sawtooth pattern using the 20× objective. (b) Stitched extended-FOV image. (c) Corresponding H&E histology image. Scale bars: (b) and (c) 500 µm.

Fig. 6
Fig. 6

Multiscale en face OCM images of a normal human colon using (a) 10×, (b) 20×, and (C) 40× objectives. (d) Corresponding H&E histology image showing normal crypts in human colon. Scale bars: 10×: 500 µm; 20×: 200 µm; 40×: 100 µm; HE: 500 µm; Inlet: 50 µm. Cr: Crypts; Red arrows: goblet cells.

Fig. 7
Fig. 7

40× en face OCM images extracted at different depths (a, e) 6.8 µm and (b, f) 13.6 µm away from the focus position and (c) at the focus position. (f)-(j) Enlarged en face OCM image of a single crypt (red dashed boxes) from (a)-(e), respectively. Scale bars: (a)-(e): 100 µm; (f)-(j): 50 µm.

Fig. 8
Fig. 8

10× en face OCM images extracted at different depths (a) focus position and at (b) 8.5 µm, (c) 17.1 µm, (d) 25.7 µm, (e) 34 µm, and (f) 42.7 µm away from the focus position. Scale bars: 100 µm.

Fig. 9
Fig. 9

En face OCM images showing morphology of the crypt structure in normal human colon as a function of focus position beneath the tissue surface. The en face images are acquired by fixing the delay length but gradually moving the focus position deeper into the tissue. Scale bars: 100 µm.

Fig. 10
Fig. 10

Multiscale en face OCM images of a human colon specimen with ulcerative colitis using the (a) 10×, (b) 20×, and (c,) 40× objectives. (d) Corresponding H&E histology image. Scale bars: 10×: 500 µm; 20×: 200 µm; 40×: 100 µm; HE: 500 µm; inlet: 100 µm. Red arrows: crypt architectural distortion.

Fig. 11
Fig. 11

(a) Extended-FOV OCM image of the human colon specimen with ulcerative colitis imaged with a 20× objective. The imaging area was 2.1 × 2.1 mm2 (X × Y). (b) Corresponding H&E histology image. Scale bars: 500 µm. Red arrows: crypts. Red dashed ellipses: regions with matching contour feature between OCM image and the histology image.

Fig. 12
Fig. 12

Multiscale en face OCM images of a normal human kidney specimen using the (a) 10×, (b) 20×, and (c) 40× objective. (d) Corresponding histology image showing normal structure of glomeruli and surrounding convoluted tubules in normal human kidney. Scale bars: 10×: 500 µm; 20×: 200 µm; 40×: 100 µm; HE: 500 µm; inlet: 100 µm. G: glomerulus. T: convoluted tubules. Red arrows: structures reminiscent of podocytes inside Bowman's capsule.

Fig. 13
Fig. 13

Cross-sectional OCM image of a normal human kidney specimen using the (a) 10×, (b) 20×, and (c) 40× objective. Scale bars: 10×: 200 µm; 20×: 200 µm; 40×: 100 µm.

Fig. 14
Fig. 14

Multiscale en face OCM images of a diseased human kidney specimen with oncocytoma using the (a) 10×, (b) 20×, and (c) 40× objectives. (d) Corresponding histological image. Scale bars: 10×: 500 µm; 20×: 200 µm; 40×: 100 µm; HE: 500 µm; inlet: 100 µm. Red arrows: tumor cell clusters.

Fig. 15
Fig. 15

(a) Extended-FOV OCM image of the human kidney specimen with oncocytoma imaged with the 20× objective. The imaging area was 2.1 × 2.1 mm2 (X × Y). (b) Corresponding histopathology image. Scale bars: 500 µm. Red arrows: solid round tumor nests.

Fig. 16
Fig. 16

Comparison of image quality and contrast of en face OCM images of a normal human kidney specimen as a function of both axial and transverse resolution. Images from different objectives with different transverse resolution are in rows. Spectrally shaped axial resolution of the en face image are in columns is (a, d, and g) 4.2 µm, (b, e, and h) 8.4 µm, and (c, f, and i) 16.8 µm in tissue. Scale bars: 10×: 200 µm; 20×: 100 µm; 40×: 50 µm. Red arrows: (a-f) convoluted tubules and (g-i) glomeruli.

Tables (1)

Tables Icon

Table 1 Imaging Performance Using the 10×, 20× and 40× Objectives

Metrics