Abstract

A pilot study explores relative contributions of extra-cerebral (scalp/skull) versus brain (cerebral) tissues to the blood flow index determined by diffuse correlation spectroscopy (DCS). Microvascular DCS flow measurements were made on the head during baseline and breath-holding/hyperventilation tasks, both with and without pressure. Baseline (resting) data enabled estimation of extra-cerebral flow signals and their pressure dependencies. A simple two-component model was used to derive baseline and activated cerebral blood flow (CBF) signals, and the DCS flow indices were also cross-correlated with concurrent Transcranial Doppler Ultrasound (TCD) blood velocity measurements. The study suggests new pressure-dependent experimental paradigms for elucidation of blood flow contributions from extra-cerebral and cerebral tissues.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. I. Dieters, S. H. Hidding, M. Kalisvaart, and E. G. Mik, “Near infrared spectroscopy: an asset to the diagnosis and treatment of traumatic brain injury,” Erasmus J. Med.1(2), 23–26 (2011).
  2. T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express17(5), 3884–3902 (2009).
    [CrossRef] [PubMed]
  3. H. Obrig and J. Steinbrink, “Non-invasive optical imaging of stroke,” Philos. Trans. R. Soc. A369(1955), 4470–4494 (2011).
    [CrossRef] [PubMed]
  4. S. Muehlschlegel, J. Selb, M. Patel, S. G. Diamond, M. A. Franceschini, A. G. Sorensen, D. A. Boas, and L. H. Schwamm, “Feasibility of NIRS in the neurointensive care unit: a pilot study in stroke using physiological oscillations,” Neurocrit. Care11(2), 288–295 (2009).
    [CrossRef] [PubMed]
  5. C. Kolyva, H. Kingston, I. Tachtsidis, S. Mohanty, S. Mishra, R. Patnaik, R. J. Maude, A. M. Dondorp, and C. E. Elwell, “Oscillations in cerebral haemodynamics in patients with falciparum malaria,” Adv. Exp. Med. Biol.765, 101–107 (2013).
    [CrossRef] [PubMed]
  6. H. Tsunashima, K. Yanagisawa, and M. Iwadate, “Measurement of brain function using near-infrared spectroscopy (NIRS),” in Neuroimaging – Methods, P. Bright, ed. (InTech, 2012).
  7. D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G. Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage54(4), 2922–2936 (2011).
    [CrossRef] [PubMed]
  8. S. M. Liao, S. L. Ferradal, B. R. White, N. Gregg, T. E. Inder, and J. P. Culver, “High-density diffuse optical tomography of term infant visual cortex in the nursery,” J. Biomed. Opt.17(8), 081414 (2012).
    [CrossRef] [PubMed]
  9. T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett.29(15), 1766–1768 (2004).
    [CrossRef] [PubMed]
  10. R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express1(1), 324–336 (2010).
    [CrossRef] [PubMed]
  11. D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett.75(9), 1855–1858 (1995).
    [CrossRef] [PubMed]
  12. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
    [CrossRef]
  13. G. Yu, T. Durduran, C. Zhou, R. Cheng, and A. G. Yodh, “Near-infrared diffuse correlation spectroscopy for assessment of tissue blood flow,” in Handbook of Biomedical Optics, D. A. Boas, C. Pitris, and N. Ramanujam, eds. (CRC Press, 2011).
  14. R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. R. Soc. A369(1955), 4390–4406 (2011).
    [CrossRef] [PubMed]
  15. R. C. Mesquita, N. Skuli, M. N. Kim, J. Liang, S. S. Schenkel, A. J. Majmundar, M. C. Simon, and A. G. Yodh, “Hemodynamic and metabolic diffuse optical monitoring in a mouse model of hindlimb ischemia,” Biomed. Opt. Express1(4), 1173–1187 (2010).
    [CrossRef] [PubMed]
  16. S. A. Carp, G. P. Dai, D. A. Boas, M. A. Franceschini, and Y. R. Kim, “Validation of diffuse correlation spectroscopy measurements of rodent cerebral blood flow with simultaneous arterial spin labeling MRI; towards MRI-optical continuous cerebral metabolic monitoring,” Biomed. Opt. Express1(2), 553–565 (2010).
    [CrossRef] [PubMed]
  17. R. C. Mesquita, S. W. Han, J. Miller, S. S. Schenkel, A. Pole, T. V. Esipova, S. A. Vinogradov, M. E. Putt, A. G. Yodh, and T. M. Busch, “Tumor blood flow differs between mouse strains: consequences for vasoresponse to photodynamic therapy,” PLoS ONE7(5), e37322 (2012).
    [CrossRef] [PubMed]
  18. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
    [CrossRef] [PubMed]
  19. F. Jaillon, J. Li, G. Dietsche, T. Elbert, and T. Gisler, “Activity of the human visual cortex measured non-invasively by diffusing-wave spectroscopy,” Opt. Express15(11), 6643–6650 (2007).
    [CrossRef] [PubMed]
  20. B. L. Edlow, M. N. Kim, T. Durduran, C. Zhou, M. E. Putt, A. G. Yodh, J. H. Greenberg, and J. A. Detre, “The effects of healthy aging on cerebral hemodynamic responses to posture change,” Physiol. Meas.31(4), 477–495 (2010).
    [CrossRef] [PubMed]
  21. G. M. Tellis, R. C. Mesquita, and A. G. Yodh, “Use of diffuse correlation spectroscopy to measure brain blood flow differences during speaking and nonspeaking tasks for fluent speakers and persons who stutter,” Persp. Fluency Fluency Disord.21(3), 96–106 (2011).
    [CrossRef]
  22. E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express17(15), 12571–12581 (2009).
    [CrossRef] [PubMed]
  23. N. Roche-Labarbe, A. Fenoglio, A. Aggarwal, M. Dehaes, S. A. Carp, M. A. Franceschini, and P. E. Grant, “Near-infrared spectroscopy assessment of cerebral oxygen metabolism in the developing premature brain,” J. Cereb. Blood Flow Metab.32(3), 481–488 (2012).
    [CrossRef] [PubMed]
  24. L. Gagnon, M. A. Yücel, M. Dehaes, R. J. Cooper, K. L. Perdue, J. Selb, T. J. Huppert, R. D. Hoge, and D. A. Boas, “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements,” Neuroimage59(4), 3933–3940 (2012).
    [CrossRef] [PubMed]
  25. R. B. Saager, N. L. Telleri, and A. J. Berger, “Two-detector Corrected Near Infrared Spectroscopy (C-NIRS) detects hemodynamic activation responses more robustly than single-detector NIRS,” Neuroimage55(4), 1679–1685 (2011).
    [CrossRef] [PubMed]
  26. T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage57(3), 991–1002 (2011).
    [CrossRef] [PubMed]
  27. R. Saager and A. Berger, “Measurement of layer-like hemodynamic trends in scalp and cortex: implications for physiological baseline suppression in functional near-infrared spectroscopy,” J. Biomed. Opt.13(3), 034017 (2008).
    [CrossRef] [PubMed]
  28. R. B. Saager and A. J. Berger, “Direct characterization and removal of interfering absorption trends in two-layer turbid media,” J. Opt. Soc. Am. A22(9), 1874–1882 (2005).
    [CrossRef] [PubMed]
  29. N. M. Gregg, B. R. White, B. W. Zeff, A. J. Berger, and J. P. Culver, “Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography,” Front. Neuroenergetics2, 14 (2010).
    [PubMed]
  30. C. K. Lee, C. W. Sun, P. L. Lee, H. C. Lee, C. Yang, C. P. Jiang, Y. P. Tong, T. C. Yeh, and J. C. Hsieh, “Study of photon migration with various source-detector separations in near-infrared spectroscopic brain imaging based on three-dimensional Monte Carlo modeling,” Opt. Express13(21), 8339–8348 (2005).
    [CrossRef] [PubMed]
  31. T. Durduran, “Non-invasive measurements of tissue hemodynamics with hybrid diffuse optical methods,” Ph.D. dissertation (University of Pennsylvania, Philadelphia, 2004).
  32. F. Jaillon, S. E. Skipetrov, J. Li, G. Dietsche, G. Maret, and T. Gisler, “Diffusing-wave spectroscopy from head-like tissue phantoms: influence of a non-scattering layer,” Opt. Express14(22), 10181–10194 (2006).
    [CrossRef] [PubMed]
  33. L. Gagnon, M. Desjardins, J. Jehanne-Lacasse, L. Bherer, and F. Lesage, “Investigation of diffuse correlation spectroscopy in multi-layered media including the human head,” Opt. Express16(20), 15514–15530 (2008).
    [CrossRef] [PubMed]
  34. B. Hallacoglu, A. Sassaroli, M. Wysocki, E. Guerrero-Berroa, M. Schnaider Beeri, V. Haroutunian, M. Shaul, I. H. Rosenberg, A. M. Troen, and S. Fantini, “Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy,” J. Biomed. Opt.17(8), 081406 (2012).
    [CrossRef] [PubMed]
  35. E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage29(3), 697–705 (2006).
    [CrossRef] [PubMed]
  36. J. Heiskala, V. Kolehmainen, T. Tarvainen, J. P. Kaipio, and S. R. Arridge, “Approximation error method can reduce artifacts due to scalp blood flow in optical brain activation imaging,” J. Biomed. Opt.17(9), 096012 (2012).
    [CrossRef] [PubMed]
  37. E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
    [CrossRef] [PubMed]
  38. S. Godfrey and E. J. M. Campbell, “The control of breath holding,” Respir. Physiol.5(3), 385–400 (1968).
    [CrossRef] [PubMed]
  39. T. J. H. Clark and S. Godfrey, “The effect of CO2 on ventilation and breath-holding during exercise and while breathing through an added resistance,” J. Physiol.201(3), 551–566 (1969).
    [PubMed]
  40. N. Stocchetti, A. I. R. Maas, A. Chieregato, and A. A. van der Plas, “Hyperventilation in head injury: a review,” Chest127(5), 1812–1827 (2005).
    [CrossRef] [PubMed]
  41. L. Rangel-Castilla, L. R. Lara, S. Gopinath, P. R. Swank, A. Valadka, and C. Robertson, “Cerebral hemodynamic effects of acute hyperoxia and hyperventilation after severe traumatic brain injury,” J. Neurotrauma27(10), 1853–1863 (2010).
    [CrossRef] [PubMed]
  42. T. Moroz, M. Banaji, M. Tisdall, C. E. Cooper, C. E. Elwell, and I. Tachtsidis, “Development of a model to aid NIRS data interpretation: results from a hypercapnia study in healthy adults,” Adv. Exp. Med. Biol.737, 293–300 (2012).
    [CrossRef] [PubMed]
  43. S. Viola, P. Viola, P. Litterio, M. P. Buongarzone, and L. Fiorelli, “Correlation between the arterial pulse wave of the cerebral microcirculation and CBF during breath holding and hyperventilation in human,” Clin. Neurophysiol.123(10), 1931–1936 (2012).
    [CrossRef] [PubMed]
  44. J. M. Clark, B. E. Skolnick, R. Gelfand, R. E. Farber, M. Stierheim, W. C. Stevens, G. Beck, and C. J. Lambertsen, “Relationship of 133Xe cerebral blood flow to middle cerebral arterial flow velocity in men at rest,” J. Cereb. Blood Flow Metab.16(6), 1255–1262 (1996).
    [CrossRef] [PubMed]
  45. E. Rostrup, I. Law, F. Pott, K. Ide, and G. M. Knudsen, “Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans,” Brain Res.954(2), 183–193 (2002).
    [CrossRef] [PubMed]
  46. J. J. Chen and G. B. Pike, “Global cerebral oxidative metabolism during hypercapnia and hypocapnia in humans: implications for BOLD fMRI,” J. Cereb. Blood Flow Metab.30(6), 1094–1099 (2010).
    [CrossRef] [PubMed]
  47. D. P. Bulte, K. Drescher, and P. Jezzard, “Comparison of hypercapnia-based calibration techniques for measurement of cerebral oxygen metabolism with MRI,” Magn. Reson. Med.61(2), 391–398 (2009).
    [CrossRef] [PubMed]
  48. G. Settakis, A. Lengyel, C. Molnár, D. Bereczki, L. Csiba, and B. Fülesdi, “Transcranial Doppler study of the cerebral hemodynamic changes during breath-holding and hyperventilation tests,” J. Neuroimaging12(3), 252–258 (2002).
    [PubMed]

2013

C. Kolyva, H. Kingston, I. Tachtsidis, S. Mohanty, S. Mishra, R. Patnaik, R. J. Maude, A. M. Dondorp, and C. E. Elwell, “Oscillations in cerebral haemodynamics in patients with falciparum malaria,” Adv. Exp. Med. Biol.765, 101–107 (2013).
[CrossRef] [PubMed]

2012

S. M. Liao, S. L. Ferradal, B. R. White, N. Gregg, T. E. Inder, and J. P. Culver, “High-density diffuse optical tomography of term infant visual cortex in the nursery,” J. Biomed. Opt.17(8), 081414 (2012).
[CrossRef] [PubMed]

R. C. Mesquita, S. W. Han, J. Miller, S. S. Schenkel, A. Pole, T. V. Esipova, S. A. Vinogradov, M. E. Putt, A. G. Yodh, and T. M. Busch, “Tumor blood flow differs between mouse strains: consequences for vasoresponse to photodynamic therapy,” PLoS ONE7(5), e37322 (2012).
[CrossRef] [PubMed]

N. Roche-Labarbe, A. Fenoglio, A. Aggarwal, M. Dehaes, S. A. Carp, M. A. Franceschini, and P. E. Grant, “Near-infrared spectroscopy assessment of cerebral oxygen metabolism in the developing premature brain,” J. Cereb. Blood Flow Metab.32(3), 481–488 (2012).
[CrossRef] [PubMed]

L. Gagnon, M. A. Yücel, M. Dehaes, R. J. Cooper, K. L. Perdue, J. Selb, T. J. Huppert, R. D. Hoge, and D. A. Boas, “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements,” Neuroimage59(4), 3933–3940 (2012).
[CrossRef] [PubMed]

B. Hallacoglu, A. Sassaroli, M. Wysocki, E. Guerrero-Berroa, M. Schnaider Beeri, V. Haroutunian, M. Shaul, I. H. Rosenberg, A. M. Troen, and S. Fantini, “Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy,” J. Biomed. Opt.17(8), 081406 (2012).
[CrossRef] [PubMed]

J. Heiskala, V. Kolehmainen, T. Tarvainen, J. P. Kaipio, and S. R. Arridge, “Approximation error method can reduce artifacts due to scalp blood flow in optical brain activation imaging,” J. Biomed. Opt.17(9), 096012 (2012).
[CrossRef] [PubMed]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

T. Moroz, M. Banaji, M. Tisdall, C. E. Cooper, C. E. Elwell, and I. Tachtsidis, “Development of a model to aid NIRS data interpretation: results from a hypercapnia study in healthy adults,” Adv. Exp. Med. Biol.737, 293–300 (2012).
[CrossRef] [PubMed]

S. Viola, P. Viola, P. Litterio, M. P. Buongarzone, and L. Fiorelli, “Correlation between the arterial pulse wave of the cerebral microcirculation and CBF during breath holding and hyperventilation in human,” Clin. Neurophysiol.123(10), 1931–1936 (2012).
[CrossRef] [PubMed]

2011

R. B. Saager, N. L. Telleri, and A. J. Berger, “Two-detector Corrected Near Infrared Spectroscopy (C-NIRS) detects hemodynamic activation responses more robustly than single-detector NIRS,” Neuroimage55(4), 1679–1685 (2011).
[CrossRef] [PubMed]

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage57(3), 991–1002 (2011).
[CrossRef] [PubMed]

G. M. Tellis, R. C. Mesquita, and A. G. Yodh, “Use of diffuse correlation spectroscopy to measure brain blood flow differences during speaking and nonspeaking tasks for fluent speakers and persons who stutter,” Persp. Fluency Fluency Disord.21(3), 96–106 (2011).
[CrossRef]

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. R. Soc. A369(1955), 4390–4406 (2011).
[CrossRef] [PubMed]

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G. Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage54(4), 2922–2936 (2011).
[CrossRef] [PubMed]

E. I. Dieters, S. H. Hidding, M. Kalisvaart, and E. G. Mik, “Near infrared spectroscopy: an asset to the diagnosis and treatment of traumatic brain injury,” Erasmus J. Med.1(2), 23–26 (2011).

H. Obrig and J. Steinbrink, “Non-invasive optical imaging of stroke,” Philos. Trans. R. Soc. A369(1955), 4470–4494 (2011).
[CrossRef] [PubMed]

2010

R. C. Mesquita, N. Skuli, M. N. Kim, J. Liang, S. S. Schenkel, A. J. Majmundar, M. C. Simon, and A. G. Yodh, “Hemodynamic and metabolic diffuse optical monitoring in a mouse model of hindlimb ischemia,” Biomed. Opt. Express1(4), 1173–1187 (2010).
[CrossRef] [PubMed]

S. A. Carp, G. P. Dai, D. A. Boas, M. A. Franceschini, and Y. R. Kim, “Validation of diffuse correlation spectroscopy measurements of rodent cerebral blood flow with simultaneous arterial spin labeling MRI; towards MRI-optical continuous cerebral metabolic monitoring,” Biomed. Opt. Express1(2), 553–565 (2010).
[CrossRef] [PubMed]

R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express1(1), 324–336 (2010).
[CrossRef] [PubMed]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

N. M. Gregg, B. R. White, B. W. Zeff, A. J. Berger, and J. P. Culver, “Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography,” Front. Neuroenergetics2, 14 (2010).
[PubMed]

B. L. Edlow, M. N. Kim, T. Durduran, C. Zhou, M. E. Putt, A. G. Yodh, J. H. Greenberg, and J. A. Detre, “The effects of healthy aging on cerebral hemodynamic responses to posture change,” Physiol. Meas.31(4), 477–495 (2010).
[CrossRef] [PubMed]

L. Rangel-Castilla, L. R. Lara, S. Gopinath, P. R. Swank, A. Valadka, and C. Robertson, “Cerebral hemodynamic effects of acute hyperoxia and hyperventilation after severe traumatic brain injury,” J. Neurotrauma27(10), 1853–1863 (2010).
[CrossRef] [PubMed]

J. J. Chen and G. B. Pike, “Global cerebral oxidative metabolism during hypercapnia and hypocapnia in humans: implications for BOLD fMRI,” J. Cereb. Blood Flow Metab.30(6), 1094–1099 (2010).
[CrossRef] [PubMed]

2009

2008

R. Saager and A. Berger, “Measurement of layer-like hemodynamic trends in scalp and cortex: implications for physiological baseline suppression in functional near-infrared spectroscopy,” J. Biomed. Opt.13(3), 034017 (2008).
[CrossRef] [PubMed]

L. Gagnon, M. Desjardins, J. Jehanne-Lacasse, L. Bherer, and F. Lesage, “Investigation of diffuse correlation spectroscopy in multi-layered media including the human head,” Opt. Express16(20), 15514–15530 (2008).
[CrossRef] [PubMed]

2007

2006

F. Jaillon, S. E. Skipetrov, J. Li, G. Dietsche, G. Maret, and T. Gisler, “Diffusing-wave spectroscopy from head-like tissue phantoms: influence of a non-scattering layer,” Opt. Express14(22), 10181–10194 (2006).
[CrossRef] [PubMed]

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage29(3), 697–705 (2006).
[CrossRef] [PubMed]

2005

2004

2003

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

2002

G. Settakis, A. Lengyel, C. Molnár, D. Bereczki, L. Csiba, and B. Fülesdi, “Transcranial Doppler study of the cerebral hemodynamic changes during breath-holding and hyperventilation tests,” J. Neuroimaging12(3), 252–258 (2002).
[PubMed]

E. Rostrup, I. Law, F. Pott, K. Ide, and G. M. Knudsen, “Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans,” Brain Res.954(2), 183–193 (2002).
[CrossRef] [PubMed]

1996

J. M. Clark, B. E. Skolnick, R. Gelfand, R. E. Farber, M. Stierheim, W. C. Stevens, G. Beck, and C. J. Lambertsen, “Relationship of 133Xe cerebral blood flow to middle cerebral arterial flow velocity in men at rest,” J. Cereb. Blood Flow Metab.16(6), 1255–1262 (1996).
[CrossRef] [PubMed]

1995

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett.75(9), 1855–1858 (1995).
[CrossRef] [PubMed]

1969

T. J. H. Clark and S. Godfrey, “The effect of CO2 on ventilation and breath-holding during exercise and while breathing through an added resistance,” J. Physiol.201(3), 551–566 (1969).
[PubMed]

1968

S. Godfrey and E. J. M. Campbell, “The control of breath holding,” Respir. Physiol.5(3), 385–400 (1968).
[CrossRef] [PubMed]

Aggarwal, A.

N. Roche-Labarbe, A. Fenoglio, A. Aggarwal, M. Dehaes, S. A. Carp, M. A. Franceschini, and P. E. Grant, “Near-infrared spectroscopy assessment of cerebral oxygen metabolism in the developing premature brain,” J. Cereb. Blood Flow Metab.32(3), 481–488 (2012).
[CrossRef] [PubMed]

Arger, P. H.

Arridge, S. R.

J. Heiskala, V. Kolehmainen, T. Tarvainen, J. P. Kaipio, and S. R. Arridge, “Approximation error method can reduce artifacts due to scalp blood flow in optical brain activation imaging,” J. Biomed. Opt.17(9), 096012 (2012).
[CrossRef] [PubMed]

Athanasiou, T.

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G. Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage54(4), 2922–2936 (2011).
[CrossRef] [PubMed]

Baker, W. B.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

Banaji, M.

T. Moroz, M. Banaji, M. Tisdall, C. E. Cooper, C. E. Elwell, and I. Tachtsidis, “Development of a model to aid NIRS data interpretation: results from a hypercapnia study in healthy adults,” Adv. Exp. Med. Biol.737, 293–300 (2012).
[CrossRef] [PubMed]

Beck, G.

J. M. Clark, B. E. Skolnick, R. Gelfand, R. E. Farber, M. Stierheim, W. C. Stevens, G. Beck, and C. J. Lambertsen, “Relationship of 133Xe cerebral blood flow to middle cerebral arterial flow velocity in men at rest,” J. Cereb. Blood Flow Metab.16(6), 1255–1262 (1996).
[CrossRef] [PubMed]

Bereczki, D.

G. Settakis, A. Lengyel, C. Molnár, D. Bereczki, L. Csiba, and B. Fülesdi, “Transcranial Doppler study of the cerebral hemodynamic changes during breath-holding and hyperventilation tests,” J. Neuroimaging12(3), 252–258 (2002).
[PubMed]

Berger, A.

R. Saager and A. Berger, “Measurement of layer-like hemodynamic trends in scalp and cortex: implications for physiological baseline suppression in functional near-infrared spectroscopy,” J. Biomed. Opt.13(3), 034017 (2008).
[CrossRef] [PubMed]

Berger, A. J.

R. B. Saager, N. L. Telleri, and A. J. Berger, “Two-detector Corrected Near Infrared Spectroscopy (C-NIRS) detects hemodynamic activation responses more robustly than single-detector NIRS,” Neuroimage55(4), 1679–1685 (2011).
[CrossRef] [PubMed]

N. M. Gregg, B. R. White, B. W. Zeff, A. J. Berger, and J. P. Culver, “Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography,” Front. Neuroenergetics2, 14 (2010).
[PubMed]

R. B. Saager and A. J. Berger, “Direct characterization and removal of interfering absorption trends in two-layer turbid media,” J. Opt. Soc. Am. A22(9), 1874–1882 (2005).
[CrossRef] [PubMed]

Bherer, L.

Boas, D. A.

L. Gagnon, M. A. Yücel, M. Dehaes, R. J. Cooper, K. L. Perdue, J. Selb, T. J. Huppert, R. D. Hoge, and D. A. Boas, “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements,” Neuroimage59(4), 3933–3940 (2012).
[CrossRef] [PubMed]

R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express1(1), 324–336 (2010).
[CrossRef] [PubMed]

S. A. Carp, G. P. Dai, D. A. Boas, M. A. Franceschini, and Y. R. Kim, “Validation of diffuse correlation spectroscopy measurements of rodent cerebral blood flow with simultaneous arterial spin labeling MRI; towards MRI-optical continuous cerebral metabolic monitoring,” Biomed. Opt. Express1(2), 553–565 (2010).
[CrossRef] [PubMed]

S. Muehlschlegel, J. Selb, M. Patel, S. G. Diamond, M. A. Franceschini, A. G. Sorensen, D. A. Boas, and L. H. Schwamm, “Feasibility of NIRS in the neurointensive care unit: a pilot study in stroke using physiological oscillations,” Neurocrit. Care11(2), 288–295 (2009).
[CrossRef] [PubMed]

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett.75(9), 1855–1858 (1995).
[CrossRef] [PubMed]

Brühl, R.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

Buckley, E. M.

Bulte, D. P.

D. P. Bulte, K. Drescher, and P. Jezzard, “Comparison of hypercapnia-based calibration techniques for measurement of cerebral oxygen metabolism with MRI,” Magn. Reson. Med.61(2), 391–398 (2009).
[CrossRef] [PubMed]

Buongarzone, M. P.

S. Viola, P. Viola, P. Litterio, M. P. Buongarzone, and L. Fiorelli, “Correlation between the arterial pulse wave of the cerebral microcirculation and CBF during breath holding and hyperventilation in human,” Clin. Neurophysiol.123(10), 1931–1936 (2012).
[CrossRef] [PubMed]

Burnett, M. G.

Busch, T. M.

R. C. Mesquita, S. W. Han, J. Miller, S. S. Schenkel, A. Pole, T. V. Esipova, S. A. Vinogradov, M. E. Putt, A. G. Yodh, and T. M. Busch, “Tumor blood flow differs between mouse strains: consequences for vasoresponse to photodynamic therapy,” PLoS ONE7(5), e37322 (2012).
[CrossRef] [PubMed]

Campbell, E. J. M.

S. Godfrey and E. J. M. Campbell, “The control of breath holding,” Respir. Physiol.5(3), 385–400 (1968).
[CrossRef] [PubMed]

Campbell, L. E.

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett.75(9), 1855–1858 (1995).
[CrossRef] [PubMed]

Carp, S. A.

N. Roche-Labarbe, A. Fenoglio, A. Aggarwal, M. Dehaes, S. A. Carp, M. A. Franceschini, and P. E. Grant, “Near-infrared spectroscopy assessment of cerebral oxygen metabolism in the developing premature brain,” J. Cereb. Blood Flow Metab.32(3), 481–488 (2012).
[CrossRef] [PubMed]

S. A. Carp, G. P. Dai, D. A. Boas, M. A. Franceschini, and Y. R. Kim, “Validation of diffuse correlation spectroscopy measurements of rodent cerebral blood flow with simultaneous arterial spin labeling MRI; towards MRI-optical continuous cerebral metabolic monitoring,” Biomed. Opt. Express1(2), 553–565 (2010).
[CrossRef] [PubMed]

Chen, J. J.

J. J. Chen and G. B. Pike, “Global cerebral oxidative metabolism during hypercapnia and hypocapnia in humans: implications for BOLD fMRI,” J. Cereb. Blood Flow Metab.30(6), 1094–1099 (2010).
[CrossRef] [PubMed]

Cheung, C.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

Chieregato, A.

N. Stocchetti, A. I. R. Maas, A. Chieregato, and A. A. van der Plas, “Hyperventilation in head injury: a review,” Chest127(5), 1812–1827 (2005).
[CrossRef] [PubMed]

Choe, R.

Clark, J. M.

J. M. Clark, B. E. Skolnick, R. Gelfand, R. E. Farber, M. Stierheim, W. C. Stevens, G. Beck, and C. J. Lambertsen, “Relationship of 133Xe cerebral blood flow to middle cerebral arterial flow velocity in men at rest,” J. Cereb. Blood Flow Metab.16(6), 1255–1262 (1996).
[CrossRef] [PubMed]

Clark, T. J. H.

T. J. H. Clark and S. Godfrey, “The effect of CO2 on ventilation and breath-holding during exercise and while breathing through an added resistance,” J. Physiol.201(3), 551–566 (1969).
[PubMed]

Cook, N. M.

Cooper, C. E.

T. Moroz, M. Banaji, M. Tisdall, C. E. Cooper, C. E. Elwell, and I. Tachtsidis, “Development of a model to aid NIRS data interpretation: results from a hypercapnia study in healthy adults,” Adv. Exp. Med. Biol.737, 293–300 (2012).
[CrossRef] [PubMed]

Cooper, R. J.

L. Gagnon, M. A. Yücel, M. Dehaes, R. J. Cooper, K. L. Perdue, J. Selb, T. J. Huppert, R. D. Hoge, and D. A. Boas, “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements,” Neuroimage59(4), 3933–3940 (2012).
[CrossRef] [PubMed]

Csiba, L.

G. Settakis, A. Lengyel, C. Molnár, D. Bereczki, L. Csiba, and B. Fülesdi, “Transcranial Doppler study of the cerebral hemodynamic changes during breath-holding and hyperventilation tests,” J. Neuroimaging12(3), 252–258 (2002).
[PubMed]

Cucchiara, B. L.

Culver, J. P.

S. M. Liao, S. L. Ferradal, B. R. White, N. Gregg, T. E. Inder, and J. P. Culver, “High-density diffuse optical tomography of term infant visual cortex in the nursery,” J. Biomed. Opt.17(8), 081414 (2012).
[CrossRef] [PubMed]

N. M. Gregg, B. R. White, B. W. Zeff, A. J. Berger, and J. P. Culver, “Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography,” Front. Neuroenergetics2, 14 (2010).
[PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

Dai, G. P.

Darzi, A. W.

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G. Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage54(4), 2922–2936 (2011).
[CrossRef] [PubMed]

Dehaes, M.

N. Roche-Labarbe, A. Fenoglio, A. Aggarwal, M. Dehaes, S. A. Carp, M. A. Franceschini, and P. E. Grant, “Near-infrared spectroscopy assessment of cerebral oxygen metabolism in the developing premature brain,” J. Cereb. Blood Flow Metab.32(3), 481–488 (2012).
[CrossRef] [PubMed]

L. Gagnon, M. A. Yücel, M. Dehaes, R. J. Cooper, K. L. Perdue, J. Selb, T. J. Huppert, R. D. Hoge, and D. A. Boas, “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements,” Neuroimage59(4), 3933–3940 (2012).
[CrossRef] [PubMed]

Delpy, D. T.

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G. Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage54(4), 2922–2936 (2011).
[CrossRef] [PubMed]

Desjardins, M.

Detre, J. A.

Diamond, S. G.

S. Muehlschlegel, J. Selb, M. Patel, S. G. Diamond, M. A. Franceschini, A. G. Sorensen, D. A. Boas, and L. H. Schwamm, “Feasibility of NIRS in the neurointensive care unit: a pilot study in stroke using physiological oscillations,” Neurocrit. Care11(2), 288–295 (2009).
[CrossRef] [PubMed]

Dieters, E. I.

E. I. Dieters, S. H. Hidding, M. Kalisvaart, and E. G. Mik, “Near infrared spectroscopy: an asset to the diagnosis and treatment of traumatic brain injury,” Erasmus J. Med.1(2), 23–26 (2011).

Dietsche, G.

Dondorp, A. M.

C. Kolyva, H. Kingston, I. Tachtsidis, S. Mohanty, S. Mishra, R. Patnaik, R. J. Maude, A. M. Dondorp, and C. E. Elwell, “Oscillations in cerebral haemodynamics in patients with falciparum malaria,” Adv. Exp. Med. Biol.765, 101–107 (2013).
[CrossRef] [PubMed]

Drescher, K.

D. P. Bulte, K. Drescher, and P. Jezzard, “Comparison of hypercapnia-based calibration techniques for measurement of cerebral oxygen metabolism with MRI,” Magn. Reson. Med.61(2), 391–398 (2009).
[CrossRef] [PubMed]

Durduran, T.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. R. Soc. A369(1955), 4390–4406 (2011).
[CrossRef] [PubMed]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

B. L. Edlow, M. N. Kim, T. Durduran, C. Zhou, M. E. Putt, A. G. Yodh, J. H. Greenberg, and J. A. Detre, “The effects of healthy aging on cerebral hemodynamic responses to posture change,” Physiol. Meas.31(4), 477–495 (2010).
[CrossRef] [PubMed]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express17(15), 12571–12581 (2009).
[CrossRef] [PubMed]

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express17(5), 3884–3902 (2009).
[CrossRef] [PubMed]

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett.29(15), 1766–1768 (2004).
[CrossRef] [PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

Edlow, B. L.

B. L. Edlow, M. N. Kim, T. Durduran, C. Zhou, M. E. Putt, A. G. Yodh, J. H. Greenberg, and J. A. Detre, “The effects of healthy aging on cerebral hemodynamic responses to posture change,” Physiol. Meas.31(4), 477–495 (2010).
[CrossRef] [PubMed]

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express17(5), 3884–3902 (2009).
[CrossRef] [PubMed]

Elbert, T.

Elwell, C. E.

C. Kolyva, H. Kingston, I. Tachtsidis, S. Mohanty, S. Mishra, R. Patnaik, R. J. Maude, A. M. Dondorp, and C. E. Elwell, “Oscillations in cerebral haemodynamics in patients with falciparum malaria,” Adv. Exp. Med. Biol.765, 101–107 (2013).
[CrossRef] [PubMed]

T. Moroz, M. Banaji, M. Tisdall, C. E. Cooper, C. E. Elwell, and I. Tachtsidis, “Development of a model to aid NIRS data interpretation: results from a hypercapnia study in healthy adults,” Adv. Exp. Med. Biol.737, 293–300 (2012).
[CrossRef] [PubMed]

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G. Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage54(4), 2922–2936 (2011).
[CrossRef] [PubMed]

Esipova, T. V.

R. C. Mesquita, S. W. Han, J. Miller, S. S. Schenkel, A. Pole, T. V. Esipova, S. A. Vinogradov, M. E. Putt, A. G. Yodh, and T. M. Busch, “Tumor blood flow differs between mouse strains: consequences for vasoresponse to photodynamic therapy,” PLoS ONE7(5), e37322 (2012).
[CrossRef] [PubMed]

Fantini, S.

B. Hallacoglu, A. Sassaroli, M. Wysocki, E. Guerrero-Berroa, M. Schnaider Beeri, V. Haroutunian, M. Shaul, I. H. Rosenberg, A. M. Troen, and S. Fantini, “Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy,” J. Biomed. Opt.17(8), 081406 (2012).
[CrossRef] [PubMed]

Farber, R. E.

J. M. Clark, B. E. Skolnick, R. Gelfand, R. E. Farber, M. Stierheim, W. C. Stevens, G. Beck, and C. J. Lambertsen, “Relationship of 133Xe cerebral blood flow to middle cerebral arterial flow velocity in men at rest,” J. Cereb. Blood Flow Metab.16(6), 1255–1262 (1996).
[CrossRef] [PubMed]

Fenoglio, A.

N. Roche-Labarbe, A. Fenoglio, A. Aggarwal, M. Dehaes, S. A. Carp, M. A. Franceschini, and P. E. Grant, “Near-infrared spectroscopy assessment of cerebral oxygen metabolism in the developing premature brain,” J. Cereb. Blood Flow Metab.32(3), 481–488 (2012).
[CrossRef] [PubMed]

Ferradal, S. L.

S. M. Liao, S. L. Ferradal, B. R. White, N. Gregg, T. E. Inder, and J. P. Culver, “High-density diffuse optical tomography of term infant visual cortex in the nursery,” J. Biomed. Opt.17(8), 081414 (2012).
[CrossRef] [PubMed]

Fiorelli, L.

S. Viola, P. Viola, P. Litterio, M. P. Buongarzone, and L. Fiorelli, “Correlation between the arterial pulse wave of the cerebral microcirculation and CBF during breath holding and hyperventilation in human,” Clin. Neurophysiol.123(10), 1931–1936 (2012).
[CrossRef] [PubMed]

Franceschini, M. A.

N. Roche-Labarbe, A. Fenoglio, A. Aggarwal, M. Dehaes, S. A. Carp, M. A. Franceschini, and P. E. Grant, “Near-infrared spectroscopy assessment of cerebral oxygen metabolism in the developing premature brain,” J. Cereb. Blood Flow Metab.32(3), 481–488 (2012).
[CrossRef] [PubMed]

S. A. Carp, G. P. Dai, D. A. Boas, M. A. Franceschini, and Y. R. Kim, “Validation of diffuse correlation spectroscopy measurements of rodent cerebral blood flow with simultaneous arterial spin labeling MRI; towards MRI-optical continuous cerebral metabolic monitoring,” Biomed. Opt. Express1(2), 553–565 (2010).
[CrossRef] [PubMed]

R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express1(1), 324–336 (2010).
[CrossRef] [PubMed]

S. Muehlschlegel, J. Selb, M. Patel, S. G. Diamond, M. A. Franceschini, A. G. Sorensen, D. A. Boas, and L. H. Schwamm, “Feasibility of NIRS in the neurointensive care unit: a pilot study in stroke using physiological oscillations,” Neurocrit. Care11(2), 288–295 (2009).
[CrossRef] [PubMed]

Fülesdi, B.

G. Settakis, A. Lengyel, C. Molnár, D. Bereczki, L. Csiba, and B. Fülesdi, “Transcranial Doppler study of the cerebral hemodynamic changes during breath-holding and hyperventilation tests,” J. Neuroimaging12(3), 252–258 (2002).
[PubMed]

Furuya, D.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

Futatsubashi, M.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage29(3), 697–705 (2006).
[CrossRef] [PubMed]

Gagnon, L.

L. Gagnon, M. A. Yücel, M. Dehaes, R. J. Cooper, K. L. Perdue, J. Selb, T. J. Huppert, R. D. Hoge, and D. A. Boas, “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements,” Neuroimage59(4), 3933–3940 (2012).
[CrossRef] [PubMed]

L. Gagnon, M. Desjardins, J. Jehanne-Lacasse, L. Bherer, and F. Lesage, “Investigation of diffuse correlation spectroscopy in multi-layered media including the human head,” Opt. Express16(20), 15514–15530 (2008).
[CrossRef] [PubMed]

Gelfand, R.

J. M. Clark, B. E. Skolnick, R. Gelfand, R. E. Farber, M. Stierheim, W. C. Stevens, G. Beck, and C. J. Lambertsen, “Relationship of 133Xe cerebral blood flow to middle cerebral arterial flow velocity in men at rest,” J. Cereb. Blood Flow Metab.16(6), 1255–1262 (1996).
[CrossRef] [PubMed]

Gisler, T.

Godfrey, S.

T. J. H. Clark and S. Godfrey, “The effect of CO2 on ventilation and breath-holding during exercise and while breathing through an added resistance,” J. Physiol.201(3), 551–566 (1969).
[PubMed]

S. Godfrey and E. J. M. Campbell, “The control of breath holding,” Respir. Physiol.5(3), 385–400 (1968).
[CrossRef] [PubMed]

Gopinath, S.

L. Rangel-Castilla, L. R. Lara, S. Gopinath, P. R. Swank, A. Valadka, and C. Robertson, “Cerebral hemodynamic effects of acute hyperoxia and hyperventilation after severe traumatic brain injury,” J. Neurotrauma27(10), 1853–1863 (2010).
[CrossRef] [PubMed]

Grant, P. E.

N. Roche-Labarbe, A. Fenoglio, A. Aggarwal, M. Dehaes, S. A. Carp, M. A. Franceschini, and P. E. Grant, “Near-infrared spectroscopy assessment of cerebral oxygen metabolism in the developing premature brain,” J. Cereb. Blood Flow Metab.32(3), 481–488 (2012).
[CrossRef] [PubMed]

Greenberg, J. H.

B. L. Edlow, M. N. Kim, T. Durduran, C. Zhou, M. E. Putt, A. G. Yodh, J. H. Greenberg, and J. A. Detre, “The effects of healthy aging on cerebral hemodynamic responses to posture change,” Physiol. Meas.31(4), 477–495 (2010).
[CrossRef] [PubMed]

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express17(5), 3884–3902 (2009).
[CrossRef] [PubMed]

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett.29(15), 1766–1768 (2004).
[CrossRef] [PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

Gregg, N.

S. M. Liao, S. L. Ferradal, B. R. White, N. Gregg, T. E. Inder, and J. P. Culver, “High-density diffuse optical tomography of term infant visual cortex in the nursery,” J. Biomed. Opt.17(8), 081414 (2012).
[CrossRef] [PubMed]

Gregg, N. M.

N. M. Gregg, B. R. White, B. W. Zeff, A. J. Berger, and J. P. Culver, “Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography,” Front. Neuroenergetics2, 14 (2010).
[PubMed]

Guerrero-Berroa, E.

B. Hallacoglu, A. Sassaroli, M. Wysocki, E. Guerrero-Berroa, M. Schnaider Beeri, V. Haroutunian, M. Shaul, I. H. Rosenberg, A. M. Troen, and S. Fantini, “Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy,” J. Biomed. Opt.17(8), 081406 (2012).
[CrossRef] [PubMed]

Hallacoglu, B.

B. Hallacoglu, A. Sassaroli, M. Wysocki, E. Guerrero-Berroa, M. Schnaider Beeri, V. Haroutunian, M. Shaul, I. H. Rosenberg, A. M. Troen, and S. Fantini, “Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy,” J. Biomed. Opt.17(8), 081406 (2012).
[CrossRef] [PubMed]

Han, S. W.

R. C. Mesquita, S. W. Han, J. Miller, S. S. Schenkel, A. Pole, T. V. Esipova, S. A. Vinogradov, M. E. Putt, A. G. Yodh, and T. M. Busch, “Tumor blood flow differs between mouse strains: consequences for vasoresponse to photodynamic therapy,” PLoS ONE7(5), e37322 (2012).
[CrossRef] [PubMed]

Haroutunian, V.

B. Hallacoglu, A. Sassaroli, M. Wysocki, E. Guerrero-Berroa, M. Schnaider Beeri, V. Haroutunian, M. Shaul, I. H. Rosenberg, A. M. Troen, and S. Fantini, “Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy,” J. Biomed. Opt.17(8), 081406 (2012).
[CrossRef] [PubMed]

Heine, A.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

Heiskala, J.

J. Heiskala, V. Kolehmainen, T. Tarvainen, J. P. Kaipio, and S. R. Arridge, “Approximation error method can reduce artifacts due to scalp blood flow in optical brain activation imaging,” J. Biomed. Opt.17(9), 096012 (2012).
[CrossRef] [PubMed]

Hidding, S. H.

E. I. Dieters, S. H. Hidding, M. Kalisvaart, and E. G. Mik, “Near infrared spectroscopy: an asset to the diagnosis and treatment of traumatic brain injury,” Erasmus J. Med.1(2), 23–26 (2011).

Hoge, R. D.

L. Gagnon, M. A. Yücel, M. Dehaes, R. J. Cooper, K. L. Perdue, J. Selb, T. J. Huppert, R. D. Hoge, and D. A. Boas, “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements,” Neuroimage59(4), 3933–3940 (2012).
[CrossRef] [PubMed]

Hsieh, J. C.

Huppert, T. J.

L. Gagnon, M. A. Yücel, M. Dehaes, R. J. Cooper, K. L. Perdue, J. Selb, T. J. Huppert, R. D. Hoge, and D. A. Boas, “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements,” Neuroimage59(4), 3933–3940 (2012).
[CrossRef] [PubMed]

Hurt, H. H.

Ide, K.

E. Rostrup, I. Law, F. Pott, K. Ide, and G. M. Knudsen, “Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans,” Brain Res.954(2), 183–193 (2002).
[CrossRef] [PubMed]

Inder, T. E.

S. M. Liao, S. L. Ferradal, B. R. White, N. Gregg, T. E. Inder, and J. P. Culver, “High-density diffuse optical tomography of term infant visual cortex in the nursery,” J. Biomed. Opt.17(8), 081414 (2012).
[CrossRef] [PubMed]

Ittermann, B.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

Iwano, T.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage57(3), 991–1002 (2011).
[CrossRef] [PubMed]

Jacobs, A. M.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

Jaillon, F.

Jehanne-Lacasse, J.

Jelzow, A.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

Jezzard, P.

D. P. Bulte, K. Drescher, and P. Jezzard, “Comparison of hypercapnia-based calibration techniques for measurement of cerebral oxygen metabolism with MRI,” Magn. Reson. Med.61(2), 391–398 (2009).
[CrossRef] [PubMed]

Jiang, C. P.

Kaipio, J. P.

J. Heiskala, V. Kolehmainen, T. Tarvainen, J. P. Kaipio, and S. R. Arridge, “Approximation error method can reduce artifacts due to scalp blood flow in optical brain activation imaging,” J. Biomed. Opt.17(9), 096012 (2012).
[CrossRef] [PubMed]

Kalisvaart, M.

E. I. Dieters, S. H. Hidding, M. Kalisvaart, and E. G. Mik, “Near infrared spectroscopy: an asset to the diagnosis and treatment of traumatic brain injury,” Erasmus J. Med.1(2), 23–26 (2011).

Kanno, T.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage29(3), 697–705 (2006).
[CrossRef] [PubMed]

Kasner, S. E.

Kawagoe, R.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage57(3), 991–1002 (2011).
[CrossRef] [PubMed]

Kim, M. N.

Kim, Y. R.

Kingston, H.

C. Kolyva, H. Kingston, I. Tachtsidis, S. Mohanty, S. Mishra, R. Patnaik, R. J. Maude, A. M. Dondorp, and C. E. Elwell, “Oscillations in cerebral haemodynamics in patients with falciparum malaria,” Adv. Exp. Med. Biol.765, 101–107 (2013).
[CrossRef] [PubMed]

Kirilina, E.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

Kitazawa, S.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage57(3), 991–1002 (2011).
[CrossRef] [PubMed]

Knudsen, G. M.

E. Rostrup, I. Law, F. Pott, K. Ide, and G. M. Knudsen, “Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans,” Brain Res.954(2), 183–193 (2002).
[CrossRef] [PubMed]

Kolehmainen, V.

J. Heiskala, V. Kolehmainen, T. Tarvainen, J. P. Kaipio, and S. R. Arridge, “Approximation error method can reduce artifacts due to scalp blood flow in optical brain activation imaging,” J. Biomed. Opt.17(9), 096012 (2012).
[CrossRef] [PubMed]

Kolyva, C.

C. Kolyva, H. Kingston, I. Tachtsidis, S. Mohanty, S. Mishra, R. Patnaik, R. J. Maude, A. M. Dondorp, and C. E. Elwell, “Oscillations in cerebral haemodynamics in patients with falciparum malaria,” Adv. Exp. Med. Biol.765, 101–107 (2013).
[CrossRef] [PubMed]

Lambertsen, C. J.

J. M. Clark, B. E. Skolnick, R. Gelfand, R. E. Farber, M. Stierheim, W. C. Stevens, G. Beck, and C. J. Lambertsen, “Relationship of 133Xe cerebral blood flow to middle cerebral arterial flow velocity in men at rest,” J. Cereb. Blood Flow Metab.16(6), 1255–1262 (1996).
[CrossRef] [PubMed]

Lara, L. R.

L. Rangel-Castilla, L. R. Lara, S. Gopinath, P. R. Swank, A. Valadka, and C. Robertson, “Cerebral hemodynamic effects of acute hyperoxia and hyperventilation after severe traumatic brain injury,” J. Neurotrauma27(10), 1853–1863 (2010).
[CrossRef] [PubMed]

Law, I.

E. Rostrup, I. Law, F. Pott, K. Ide, and G. M. Knudsen, “Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans,” Brain Res.954(2), 183–193 (2002).
[CrossRef] [PubMed]

Lee, C. K.

Lee, H. C.

Lee, P. L.

Leff, D. R.

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G. Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage54(4), 2922–2936 (2011).
[CrossRef] [PubMed]

Lengyel, A.

G. Settakis, A. Lengyel, C. Molnár, D. Bereczki, L. Csiba, and B. Fülesdi, “Transcranial Doppler study of the cerebral hemodynamic changes during breath-holding and hyperventilation tests,” J. Neuroimaging12(3), 252–258 (2002).
[PubMed]

Lesage, F.

Li, J.

Liang, J.

Liao, S. M.

S. M. Liao, S. L. Ferradal, B. R. White, N. Gregg, T. E. Inder, and J. P. Culver, “High-density diffuse optical tomography of term infant visual cortex in the nursery,” J. Biomed. Opt.17(8), 081414 (2012).
[CrossRef] [PubMed]

Licht, D. J.

Litterio, P.

S. Viola, P. Viola, P. Litterio, M. P. Buongarzone, and L. Fiorelli, “Correlation between the arterial pulse wave of the cerebral microcirculation and CBF during breath holding and hyperventilation in human,” Clin. Neurophysiol.123(10), 1931–1936 (2012).
[CrossRef] [PubMed]

Maas, A. I. R.

N. Stocchetti, A. I. R. Maas, A. Chieregato, and A. A. van der Plas, “Hyperventilation in head injury: a review,” Chest127(5), 1812–1827 (2005).
[CrossRef] [PubMed]

Majmundar, A. J.

Maret, G.

Maude, R. J.

C. Kolyva, H. Kingston, I. Tachtsidis, S. Mohanty, S. Mishra, R. Patnaik, R. J. Maude, A. M. Dondorp, and C. E. Elwell, “Oscillations in cerebral haemodynamics in patients with falciparum malaria,” Adv. Exp. Med. Biol.765, 101–107 (2013).
[CrossRef] [PubMed]

Mesquita, R. C.

R. C. Mesquita, S. W. Han, J. Miller, S. S. Schenkel, A. Pole, T. V. Esipova, S. A. Vinogradov, M. E. Putt, A. G. Yodh, and T. M. Busch, “Tumor blood flow differs between mouse strains: consequences for vasoresponse to photodynamic therapy,” PLoS ONE7(5), e37322 (2012).
[CrossRef] [PubMed]

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. R. Soc. A369(1955), 4390–4406 (2011).
[CrossRef] [PubMed]

G. M. Tellis, R. C. Mesquita, and A. G. Yodh, “Use of diffuse correlation spectroscopy to measure brain blood flow differences during speaking and nonspeaking tasks for fluent speakers and persons who stutter,” Persp. Fluency Fluency Disord.21(3), 96–106 (2011).
[CrossRef]

R. C. Mesquita, N. Skuli, M. N. Kim, J. Liang, S. S. Schenkel, A. J. Majmundar, M. C. Simon, and A. G. Yodh, “Hemodynamic and metabolic diffuse optical monitoring in a mouse model of hindlimb ischemia,” Biomed. Opt. Express1(4), 1173–1187 (2010).
[CrossRef] [PubMed]

R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express1(1), 324–336 (2010).
[CrossRef] [PubMed]

Mik, E. G.

E. I. Dieters, S. H. Hidding, M. Kalisvaart, and E. G. Mik, “Near infrared spectroscopy: an asset to the diagnosis and treatment of traumatic brain injury,” Erasmus J. Med.1(2), 23–26 (2011).

Miller, J.

R. C. Mesquita, S. W. Han, J. Miller, S. S. Schenkel, A. Pole, T. V. Esipova, S. A. Vinogradov, M. E. Putt, A. G. Yodh, and T. M. Busch, “Tumor blood flow differs between mouse strains: consequences for vasoresponse to photodynamic therapy,” PLoS ONE7(5), e37322 (2012).
[CrossRef] [PubMed]

Mishra, S.

C. Kolyva, H. Kingston, I. Tachtsidis, S. Mohanty, S. Mishra, R. Patnaik, R. J. Maude, A. M. Dondorp, and C. E. Elwell, “Oscillations in cerebral haemodynamics in patients with falciparum malaria,” Adv. Exp. Med. Biol.765, 101–107 (2013).
[CrossRef] [PubMed]

Mohanty, S.

C. Kolyva, H. Kingston, I. Tachtsidis, S. Mohanty, S. Mishra, R. Patnaik, R. J. Maude, A. M. Dondorp, and C. E. Elwell, “Oscillations in cerebral haemodynamics in patients with falciparum malaria,” Adv. Exp. Med. Biol.765, 101–107 (2013).
[CrossRef] [PubMed]

Molnár, C.

G. Settakis, A. Lengyel, C. Molnár, D. Bereczki, L. Csiba, and B. Fülesdi, “Transcranial Doppler study of the cerebral hemodynamic changes during breath-holding and hyperventilation tests,” J. Neuroimaging12(3), 252–258 (2002).
[PubMed]

Moroz, T.

T. Moroz, M. Banaji, M. Tisdall, C. E. Cooper, C. E. Elwell, and I. Tachtsidis, “Development of a model to aid NIRS data interpretation: results from a hypercapnia study in healthy adults,” Adv. Exp. Med. Biol.737, 293–300 (2012).
[CrossRef] [PubMed]

Muehlschlegel, S.

S. Muehlschlegel, J. Selb, M. Patel, S. G. Diamond, M. A. Franceschini, A. G. Sorensen, D. A. Boas, and L. H. Schwamm, “Feasibility of NIRS in the neurointensive care unit: a pilot study in stroke using physiological oscillations,” Neurocrit. Care11(2), 288–295 (2009).
[CrossRef] [PubMed]

Niessing, M.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

Nobesawa, S.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage29(3), 697–705 (2006).
[CrossRef] [PubMed]

Obrig, H.

H. Obrig and J. Steinbrink, “Non-invasive optical imaging of stroke,” Philos. Trans. R. Soc. A369(1955), 4470–4494 (2011).
[CrossRef] [PubMed]

Oda, M.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage29(3), 697–705 (2006).
[CrossRef] [PubMed]

Ohmae, E.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage29(3), 697–705 (2006).
[CrossRef] [PubMed]

Okada, H.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage29(3), 697–705 (2006).
[CrossRef] [PubMed]

Orihuela-Espina, F.

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G. Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage54(4), 2922–2936 (2011).
[CrossRef] [PubMed]

Ouchi, Y.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage29(3), 697–705 (2006).
[CrossRef] [PubMed]

Patel, M.

S. Muehlschlegel, J. Selb, M. Patel, S. G. Diamond, M. A. Franceschini, A. G. Sorensen, D. A. Boas, and L. H. Schwamm, “Feasibility of NIRS in the neurointensive care unit: a pilot study in stroke using physiological oscillations,” Neurocrit. Care11(2), 288–295 (2009).
[CrossRef] [PubMed]

Patnaik, R.

C. Kolyva, H. Kingston, I. Tachtsidis, S. Mohanty, S. Mishra, R. Patnaik, R. J. Maude, A. M. Dondorp, and C. E. Elwell, “Oscillations in cerebral haemodynamics in patients with falciparum malaria,” Adv. Exp. Med. Biol.765, 101–107 (2013).
[CrossRef] [PubMed]

Perdue, K. L.

L. Gagnon, M. A. Yücel, M. Dehaes, R. J. Cooper, K. L. Perdue, J. Selb, T. J. Huppert, R. D. Hoge, and D. A. Boas, “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements,” Neuroimage59(4), 3933–3940 (2012).
[CrossRef] [PubMed]

Pike, G. B.

J. J. Chen and G. B. Pike, “Global cerebral oxidative metabolism during hypercapnia and hypocapnia in humans: implications for BOLD fMRI,” J. Cereb. Blood Flow Metab.30(6), 1094–1099 (2010).
[CrossRef] [PubMed]

Pole, A.

R. C. Mesquita, S. W. Han, J. Miller, S. S. Schenkel, A. Pole, T. V. Esipova, S. A. Vinogradov, M. E. Putt, A. G. Yodh, and T. M. Busch, “Tumor blood flow differs between mouse strains: consequences for vasoresponse to photodynamic therapy,” PLoS ONE7(5), e37322 (2012).
[CrossRef] [PubMed]

Pott, F.

E. Rostrup, I. Law, F. Pott, K. Ide, and G. M. Knudsen, “Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans,” Brain Res.954(2), 183–193 (2002).
[CrossRef] [PubMed]

Putt, M. E.

R. C. Mesquita, S. W. Han, J. Miller, S. S. Schenkel, A. Pole, T. V. Esipova, S. A. Vinogradov, M. E. Putt, A. G. Yodh, and T. M. Busch, “Tumor blood flow differs between mouse strains: consequences for vasoresponse to photodynamic therapy,” PLoS ONE7(5), e37322 (2012).
[CrossRef] [PubMed]

B. L. Edlow, M. N. Kim, T. Durduran, C. Zhou, M. E. Putt, A. G. Yodh, J. H. Greenberg, and J. A. Detre, “The effects of healthy aging on cerebral hemodynamic responses to posture change,” Physiol. Meas.31(4), 477–495 (2010).
[CrossRef] [PubMed]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express17(15), 12571–12581 (2009).
[CrossRef] [PubMed]

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express17(5), 3884–3902 (2009).
[CrossRef] [PubMed]

Rangel-Castilla, L.

L. Rangel-Castilla, L. R. Lara, S. Gopinath, P. R. Swank, A. Valadka, and C. Robertson, “Cerebral hemodynamic effects of acute hyperoxia and hyperventilation after severe traumatic brain injury,” J. Neurotrauma27(10), 1853–1863 (2010).
[CrossRef] [PubMed]

Robertson, C.

L. Rangel-Castilla, L. R. Lara, S. Gopinath, P. R. Swank, A. Valadka, and C. Robertson, “Cerebral hemodynamic effects of acute hyperoxia and hyperventilation after severe traumatic brain injury,” J. Neurotrauma27(10), 1853–1863 (2010).
[CrossRef] [PubMed]

Roche-Labarbe, N.

N. Roche-Labarbe, A. Fenoglio, A. Aggarwal, M. Dehaes, S. A. Carp, M. A. Franceschini, and P. E. Grant, “Near-infrared spectroscopy assessment of cerebral oxygen metabolism in the developing premature brain,” J. Cereb. Blood Flow Metab.32(3), 481–488 (2012).
[CrossRef] [PubMed]

Rosenberg, I. H.

B. Hallacoglu, A. Sassaroli, M. Wysocki, E. Guerrero-Berroa, M. Schnaider Beeri, V. Haroutunian, M. Shaul, I. H. Rosenberg, A. M. Troen, and S. Fantini, “Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy,” J. Biomed. Opt.17(8), 081406 (2012).
[CrossRef] [PubMed]

Rostrup, E.

E. Rostrup, I. Law, F. Pott, K. Ide, and G. M. Knudsen, “Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans,” Brain Res.954(2), 183–193 (2002).
[CrossRef] [PubMed]

Saager, R.

R. Saager and A. Berger, “Measurement of layer-like hemodynamic trends in scalp and cortex: implications for physiological baseline suppression in functional near-infrared spectroscopy,” J. Biomed. Opt.13(3), 034017 (2008).
[CrossRef] [PubMed]

Saager, R. B.

R. B. Saager, N. L. Telleri, and A. J. Berger, “Two-detector Corrected Near Infrared Spectroscopy (C-NIRS) detects hemodynamic activation responses more robustly than single-detector NIRS,” Neuroimage55(4), 1679–1685 (2011).
[CrossRef] [PubMed]

R. B. Saager and A. J. Berger, “Direct characterization and removal of interfering absorption trends in two-layer turbid media,” J. Opt. Soc. Am. A22(9), 1874–1882 (2005).
[CrossRef] [PubMed]

Sassaroli, A.

B. Hallacoglu, A. Sassaroli, M. Wysocki, E. Guerrero-Berroa, M. Schnaider Beeri, V. Haroutunian, M. Shaul, I. H. Rosenberg, A. M. Troen, and S. Fantini, “Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy,” J. Biomed. Opt.17(8), 081406 (2012).
[CrossRef] [PubMed]

Schenkel, S. S.

R. C. Mesquita, S. W. Han, J. Miller, S. S. Schenkel, A. Pole, T. V. Esipova, S. A. Vinogradov, M. E. Putt, A. G. Yodh, and T. M. Busch, “Tumor blood flow differs between mouse strains: consequences for vasoresponse to photodynamic therapy,” PLoS ONE7(5), e37322 (2012).
[CrossRef] [PubMed]

R. C. Mesquita, N. Skuli, M. N. Kim, J. Liang, S. S. Schenkel, A. J. Majmundar, M. C. Simon, and A. G. Yodh, “Hemodynamic and metabolic diffuse optical monitoring in a mouse model of hindlimb ischemia,” Biomed. Opt. Express1(4), 1173–1187 (2010).
[CrossRef] [PubMed]

Schnaider Beeri, M.

B. Hallacoglu, A. Sassaroli, M. Wysocki, E. Guerrero-Berroa, M. Schnaider Beeri, V. Haroutunian, M. Shaul, I. H. Rosenberg, A. M. Troen, and S. Fantini, “Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy,” J. Biomed. Opt.17(8), 081406 (2012).
[CrossRef] [PubMed]

Schultz, S.

Schwamm, L. H.

S. Muehlschlegel, J. Selb, M. Patel, S. G. Diamond, M. A. Franceschini, A. G. Sorensen, D. A. Boas, and L. H. Schwamm, “Feasibility of NIRS in the neurointensive care unit: a pilot study in stroke using physiological oscillations,” Neurocrit. Care11(2), 288–295 (2009).
[CrossRef] [PubMed]

Sehgal, C. M.

Selb, J.

L. Gagnon, M. A. Yücel, M. Dehaes, R. J. Cooper, K. L. Perdue, J. Selb, T. J. Huppert, R. D. Hoge, and D. A. Boas, “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements,” Neuroimage59(4), 3933–3940 (2012).
[CrossRef] [PubMed]

S. Muehlschlegel, J. Selb, M. Patel, S. G. Diamond, M. A. Franceschini, A. G. Sorensen, D. A. Boas, and L. H. Schwamm, “Feasibility of NIRS in the neurointensive care unit: a pilot study in stroke using physiological oscillations,” Neurocrit. Care11(2), 288–295 (2009).
[CrossRef] [PubMed]

Settakis, G.

G. Settakis, A. Lengyel, C. Molnár, D. Bereczki, L. Csiba, and B. Fülesdi, “Transcranial Doppler study of the cerebral hemodynamic changes during breath-holding and hyperventilation tests,” J. Neuroimaging12(3), 252–258 (2002).
[PubMed]

Shah, Q.

Shaul, M.

B. Hallacoglu, A. Sassaroli, M. Wysocki, E. Guerrero-Berroa, M. Schnaider Beeri, V. Haroutunian, M. Shaul, I. H. Rosenberg, A. M. Troen, and S. Fantini, “Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy,” J. Biomed. Opt.17(8), 081406 (2012).
[CrossRef] [PubMed]

Shibuya, S.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage57(3), 991–1002 (2011).
[CrossRef] [PubMed]

Simon, M. C.

Skipetrov, S. E.

Skolnick, B. E.

J. M. Clark, B. E. Skolnick, R. Gelfand, R. E. Farber, M. Stierheim, W. C. Stevens, G. Beck, and C. J. Lambertsen, “Relationship of 133Xe cerebral blood flow to middle cerebral arterial flow velocity in men at rest,” J. Cereb. Blood Flow Metab.16(6), 1255–1262 (1996).
[CrossRef] [PubMed]

Skuli, N.

Sorensen, A. G.

S. Muehlschlegel, J. Selb, M. Patel, S. G. Diamond, M. A. Franceschini, A. G. Sorensen, D. A. Boas, and L. H. Schwamm, “Feasibility of NIRS in the neurointensive care unit: a pilot study in stroke using physiological oscillations,” Neurocrit. Care11(2), 288–295 (2009).
[CrossRef] [PubMed]

Steinbrink, J.

H. Obrig and J. Steinbrink, “Non-invasive optical imaging of stroke,” Philos. Trans. R. Soc. A369(1955), 4470–4494 (2011).
[CrossRef] [PubMed]

Stevens, W. C.

J. M. Clark, B. E. Skolnick, R. Gelfand, R. E. Farber, M. Stierheim, W. C. Stevens, G. Beck, and C. J. Lambertsen, “Relationship of 133Xe cerebral blood flow to middle cerebral arterial flow velocity in men at rest,” J. Cereb. Blood Flow Metab.16(6), 1255–1262 (1996).
[CrossRef] [PubMed]

Stierheim, M.

J. M. Clark, B. E. Skolnick, R. Gelfand, R. E. Farber, M. Stierheim, W. C. Stevens, G. Beck, and C. J. Lambertsen, “Relationship of 133Xe cerebral blood flow to middle cerebral arterial flow velocity in men at rest,” J. Cereb. Blood Flow Metab.16(6), 1255–1262 (1996).
[CrossRef] [PubMed]

Stocchetti, N.

N. Stocchetti, A. I. R. Maas, A. Chieregato, and A. A. van der Plas, “Hyperventilation in head injury: a review,” Chest127(5), 1812–1827 (2005).
[CrossRef] [PubMed]

Sun, C. W.

Sunar, U.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. R. Soc. A369(1955), 4390–4406 (2011).
[CrossRef] [PubMed]

Suzuki, T.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage29(3), 697–705 (2006).
[CrossRef] [PubMed]

Swank, P. R.

L. Rangel-Castilla, L. R. Lara, S. Gopinath, P. R. Swank, A. Valadka, and C. Robertson, “Cerebral hemodynamic effects of acute hyperoxia and hyperventilation after severe traumatic brain injury,” J. Neurotrauma27(10), 1853–1863 (2010).
[CrossRef] [PubMed]

Tachtsidis, I.

C. Kolyva, H. Kingston, I. Tachtsidis, S. Mohanty, S. Mishra, R. Patnaik, R. J. Maude, A. M. Dondorp, and C. E. Elwell, “Oscillations in cerebral haemodynamics in patients with falciparum malaria,” Adv. Exp. Med. Biol.765, 101–107 (2013).
[CrossRef] [PubMed]

T. Moroz, M. Banaji, M. Tisdall, C. E. Cooper, C. E. Elwell, and I. Tachtsidis, “Development of a model to aid NIRS data interpretation: results from a hypercapnia study in healthy adults,” Adv. Exp. Med. Biol.737, 293–300 (2012).
[CrossRef] [PubMed]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

Takahashi, T.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage57(3), 991–1002 (2011).
[CrossRef] [PubMed]

Takikawa, Y.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage57(3), 991–1002 (2011).
[CrossRef] [PubMed]

Tarvainen, T.

J. Heiskala, V. Kolehmainen, T. Tarvainen, J. P. Kaipio, and S. R. Arridge, “Approximation error method can reduce artifacts due to scalp blood flow in optical brain activation imaging,” J. Biomed. Opt.17(9), 096012 (2012).
[CrossRef] [PubMed]

Telleri, N. L.

R. B. Saager, N. L. Telleri, and A. J. Berger, “Two-detector Corrected Near Infrared Spectroscopy (C-NIRS) detects hemodynamic activation responses more robustly than single-detector NIRS,” Neuroimage55(4), 1679–1685 (2011).
[CrossRef] [PubMed]

Tellis, G. M.

G. M. Tellis, R. C. Mesquita, and A. G. Yodh, “Use of diffuse correlation spectroscopy to measure brain blood flow differences during speaking and nonspeaking tasks for fluent speakers and persons who stutter,” Persp. Fluency Fluency Disord.21(3), 96–106 (2011).
[CrossRef]

Tisdall, M.

T. Moroz, M. Banaji, M. Tisdall, C. E. Cooper, C. E. Elwell, and I. Tachtsidis, “Development of a model to aid NIRS data interpretation: results from a hypercapnia study in healthy adults,” Adv. Exp. Med. Biol.737, 293–300 (2012).
[CrossRef] [PubMed]

Tong, Y. P.

Troen, A. M.

B. Hallacoglu, A. Sassaroli, M. Wysocki, E. Guerrero-Berroa, M. Schnaider Beeri, V. Haroutunian, M. Shaul, I. H. Rosenberg, A. M. Troen, and S. Fantini, “Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy,” J. Biomed. Opt.17(8), 081406 (2012).
[CrossRef] [PubMed]

Ueda, Y.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage29(3), 697–705 (2006).
[CrossRef] [PubMed]

Valadka, A.

L. Rangel-Castilla, L. R. Lara, S. Gopinath, P. R. Swank, A. Valadka, and C. Robertson, “Cerebral hemodynamic effects of acute hyperoxia and hyperventilation after severe traumatic brain injury,” J. Neurotrauma27(10), 1853–1863 (2010).
[CrossRef] [PubMed]

van der Plas, A. A.

N. Stocchetti, A. I. R. Maas, A. Chieregato, and A. A. van der Plas, “Hyperventilation in head injury: a review,” Chest127(5), 1812–1827 (2005).
[CrossRef] [PubMed]

Vinogradov, S. A.

R. C. Mesquita, S. W. Han, J. Miller, S. S. Schenkel, A. Pole, T. V. Esipova, S. A. Vinogradov, M. E. Putt, A. G. Yodh, and T. M. Busch, “Tumor blood flow differs between mouse strains: consequences for vasoresponse to photodynamic therapy,” PLoS ONE7(5), e37322 (2012).
[CrossRef] [PubMed]

Viola, P.

S. Viola, P. Viola, P. Litterio, M. P. Buongarzone, and L. Fiorelli, “Correlation between the arterial pulse wave of the cerebral microcirculation and CBF during breath holding and hyperventilation in human,” Clin. Neurophysiol.123(10), 1931–1936 (2012).
[CrossRef] [PubMed]

Viola, S.

S. Viola, P. Viola, P. Litterio, M. P. Buongarzone, and L. Fiorelli, “Correlation between the arterial pulse wave of the cerebral microcirculation and CBF during breath holding and hyperventilation in human,” Clin. Neurophysiol.123(10), 1931–1936 (2012).
[CrossRef] [PubMed]

Wabnitz, H.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

Wang, J.

White, B. R.

S. M. Liao, S. L. Ferradal, B. R. White, N. Gregg, T. E. Inder, and J. P. Culver, “High-density diffuse optical tomography of term infant visual cortex in the nursery,” J. Biomed. Opt.17(8), 081414 (2012).
[CrossRef] [PubMed]

N. M. Gregg, B. R. White, B. W. Zeff, A. J. Berger, and J. P. Culver, “Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography,” Front. Neuroenergetics2, 14 (2010).
[PubMed]

Wysocki, M.

B. Hallacoglu, A. Sassaroli, M. Wysocki, E. Guerrero-Berroa, M. Schnaider Beeri, V. Haroutunian, M. Shaul, I. H. Rosenberg, A. M. Troen, and S. Fantini, “Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy,” J. Biomed. Opt.17(8), 081406 (2012).
[CrossRef] [PubMed]

Yamashita, Y.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage29(3), 697–705 (2006).
[CrossRef] [PubMed]

Yang, C.

Yang, G. Z.

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G. Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage54(4), 2922–2936 (2011).
[CrossRef] [PubMed]

Yeh, T. C.

Yodh, A. G.

R. C. Mesquita, S. W. Han, J. Miller, S. S. Schenkel, A. Pole, T. V. Esipova, S. A. Vinogradov, M. E. Putt, A. G. Yodh, and T. M. Busch, “Tumor blood flow differs between mouse strains: consequences for vasoresponse to photodynamic therapy,” PLoS ONE7(5), e37322 (2012).
[CrossRef] [PubMed]

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. R. Soc. A369(1955), 4390–4406 (2011).
[CrossRef] [PubMed]

G. M. Tellis, R. C. Mesquita, and A. G. Yodh, “Use of diffuse correlation spectroscopy to measure brain blood flow differences during speaking and nonspeaking tasks for fluent speakers and persons who stutter,” Persp. Fluency Fluency Disord.21(3), 96–106 (2011).
[CrossRef]

B. L. Edlow, M. N. Kim, T. Durduran, C. Zhou, M. E. Putt, A. G. Yodh, J. H. Greenberg, and J. A. Detre, “The effects of healthy aging on cerebral hemodynamic responses to posture change,” Physiol. Meas.31(4), 477–495 (2010).
[CrossRef] [PubMed]

R. C. Mesquita, N. Skuli, M. N. Kim, J. Liang, S. S. Schenkel, A. J. Majmundar, M. C. Simon, and A. G. Yodh, “Hemodynamic and metabolic diffuse optical monitoring in a mouse model of hindlimb ischemia,” Biomed. Opt. Express1(4), 1173–1187 (2010).
[CrossRef] [PubMed]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express17(5), 3884–3902 (2009).
[CrossRef] [PubMed]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express17(15), 12571–12581 (2009).
[CrossRef] [PubMed]

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett.29(15), 1766–1768 (2004).
[CrossRef] [PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett.75(9), 1855–1858 (1995).
[CrossRef] [PubMed]

Yoshikawa, E.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage29(3), 697–705 (2006).
[CrossRef] [PubMed]

Yu, G.

Yücel, M. A.

L. Gagnon, M. A. Yücel, M. Dehaes, R. J. Cooper, K. L. Perdue, J. Selb, T. J. Huppert, R. D. Hoge, and D. A. Boas, “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements,” Neuroimage59(4), 3933–3940 (2012).
[CrossRef] [PubMed]

Zeff, B. W.

N. M. Gregg, B. R. White, B. W. Zeff, A. J. Berger, and J. P. Culver, “Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography,” Front. Neuroenergetics2, 14 (2010).
[PubMed]

Zhou, C.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. R. Soc. A369(1955), 4390–4406 (2011).
[CrossRef] [PubMed]

B. L. Edlow, M. N. Kim, T. Durduran, C. Zhou, M. E. Putt, A. G. Yodh, J. H. Greenberg, and J. A. Detre, “The effects of healthy aging on cerebral hemodynamic responses to posture change,” Physiol. Meas.31(4), 477–495 (2010).
[CrossRef] [PubMed]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express17(15), 12571–12581 (2009).
[CrossRef] [PubMed]

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express17(5), 3884–3902 (2009).
[CrossRef] [PubMed]

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett.29(15), 1766–1768 (2004).
[CrossRef] [PubMed]

Adv. Exp. Med. Biol.

C. Kolyva, H. Kingston, I. Tachtsidis, S. Mohanty, S. Mishra, R. Patnaik, R. J. Maude, A. M. Dondorp, and C. E. Elwell, “Oscillations in cerebral haemodynamics in patients with falciparum malaria,” Adv. Exp. Med. Biol.765, 101–107 (2013).
[CrossRef] [PubMed]

T. Moroz, M. Banaji, M. Tisdall, C. E. Cooper, C. E. Elwell, and I. Tachtsidis, “Development of a model to aid NIRS data interpretation: results from a hypercapnia study in healthy adults,” Adv. Exp. Med. Biol.737, 293–300 (2012).
[CrossRef] [PubMed]

Biomed. Opt. Express

Brain Res.

E. Rostrup, I. Law, F. Pott, K. Ide, and G. M. Knudsen, “Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans,” Brain Res.954(2), 183–193 (2002).
[CrossRef] [PubMed]

Chest

N. Stocchetti, A. I. R. Maas, A. Chieregato, and A. A. van der Plas, “Hyperventilation in head injury: a review,” Chest127(5), 1812–1827 (2005).
[CrossRef] [PubMed]

Clin. Neurophysiol.

S. Viola, P. Viola, P. Litterio, M. P. Buongarzone, and L. Fiorelli, “Correlation between the arterial pulse wave of the cerebral microcirculation and CBF during breath holding and hyperventilation in human,” Clin. Neurophysiol.123(10), 1931–1936 (2012).
[CrossRef] [PubMed]

Erasmus J. Med.

E. I. Dieters, S. H. Hidding, M. Kalisvaart, and E. G. Mik, “Near infrared spectroscopy: an asset to the diagnosis and treatment of traumatic brain injury,” Erasmus J. Med.1(2), 23–26 (2011).

Front. Neuroenergetics

N. M. Gregg, B. R. White, B. W. Zeff, A. J. Berger, and J. P. Culver, “Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography,” Front. Neuroenergetics2, 14 (2010).
[PubMed]

J. Biomed. Opt.

B. Hallacoglu, A. Sassaroli, M. Wysocki, E. Guerrero-Berroa, M. Schnaider Beeri, V. Haroutunian, M. Shaul, I. H. Rosenberg, A. M. Troen, and S. Fantini, “Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy,” J. Biomed. Opt.17(8), 081406 (2012).
[CrossRef] [PubMed]

J. Heiskala, V. Kolehmainen, T. Tarvainen, J. P. Kaipio, and S. R. Arridge, “Approximation error method can reduce artifacts due to scalp blood flow in optical brain activation imaging,” J. Biomed. Opt.17(9), 096012 (2012).
[CrossRef] [PubMed]

R. Saager and A. Berger, “Measurement of layer-like hemodynamic trends in scalp and cortex: implications for physiological baseline suppression in functional near-infrared spectroscopy,” J. Biomed. Opt.13(3), 034017 (2008).
[CrossRef] [PubMed]

S. M. Liao, S. L. Ferradal, B. R. White, N. Gregg, T. E. Inder, and J. P. Culver, “High-density diffuse optical tomography of term infant visual cortex in the nursery,” J. Biomed. Opt.17(8), 081414 (2012).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

N. Roche-Labarbe, A. Fenoglio, A. Aggarwal, M. Dehaes, S. A. Carp, M. A. Franceschini, and P. E. Grant, “Near-infrared spectroscopy assessment of cerebral oxygen metabolism in the developing premature brain,” J. Cereb. Blood Flow Metab.32(3), 481–488 (2012).
[CrossRef] [PubMed]

J. M. Clark, B. E. Skolnick, R. Gelfand, R. E. Farber, M. Stierheim, W. C. Stevens, G. Beck, and C. J. Lambertsen, “Relationship of 133Xe cerebral blood flow to middle cerebral arterial flow velocity in men at rest,” J. Cereb. Blood Flow Metab.16(6), 1255–1262 (1996).
[CrossRef] [PubMed]

J. J. Chen and G. B. Pike, “Global cerebral oxidative metabolism during hypercapnia and hypocapnia in humans: implications for BOLD fMRI,” J. Cereb. Blood Flow Metab.30(6), 1094–1099 (2010).
[CrossRef] [PubMed]

J. Neuroimaging

G. Settakis, A. Lengyel, C. Molnár, D. Bereczki, L. Csiba, and B. Fülesdi, “Transcranial Doppler study of the cerebral hemodynamic changes during breath-holding and hyperventilation tests,” J. Neuroimaging12(3), 252–258 (2002).
[PubMed]

J. Neurotrauma

L. Rangel-Castilla, L. R. Lara, S. Gopinath, P. R. Swank, A. Valadka, and C. Robertson, “Cerebral hemodynamic effects of acute hyperoxia and hyperventilation after severe traumatic brain injury,” J. Neurotrauma27(10), 1853–1863 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Physiol.

T. J. H. Clark and S. Godfrey, “The effect of CO2 on ventilation and breath-holding during exercise and while breathing through an added resistance,” J. Physiol.201(3), 551–566 (1969).
[PubMed]

Magn. Reson. Med.

D. P. Bulte, K. Drescher, and P. Jezzard, “Comparison of hypercapnia-based calibration techniques for measurement of cerebral oxygen metabolism with MRI,” Magn. Reson. Med.61(2), 391–398 (2009).
[CrossRef] [PubMed]

Neurocrit. Care

S. Muehlschlegel, J. Selb, M. Patel, S. G. Diamond, M. A. Franceschini, A. G. Sorensen, D. A. Boas, and L. H. Schwamm, “Feasibility of NIRS in the neurointensive care unit: a pilot study in stroke using physiological oscillations,” Neurocrit. Care11(2), 288–295 (2009).
[CrossRef] [PubMed]

Neuroimage

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G. Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage54(4), 2922–2936 (2011).
[CrossRef] [PubMed]

L. Gagnon, M. A. Yücel, M. Dehaes, R. J. Cooper, K. L. Perdue, J. Selb, T. J. Huppert, R. D. Hoge, and D. A. Boas, “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements,” Neuroimage59(4), 3933–3940 (2012).
[CrossRef] [PubMed]

R. B. Saager, N. L. Telleri, and A. J. Berger, “Two-detector Corrected Near Infrared Spectroscopy (C-NIRS) detects hemodynamic activation responses more robustly than single-detector NIRS,” Neuroimage55(4), 1679–1685 (2011).
[CrossRef] [PubMed]

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage57(3), 991–1002 (2011).
[CrossRef] [PubMed]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage29(3), 697–705 (2006).
[CrossRef] [PubMed]

Opt. Express

C. K. Lee, C. W. Sun, P. L. Lee, H. C. Lee, C. Yang, C. P. Jiang, Y. P. Tong, T. C. Yeh, and J. C. Hsieh, “Study of photon migration with various source-detector separations in near-infrared spectroscopic brain imaging based on three-dimensional Monte Carlo modeling,” Opt. Express13(21), 8339–8348 (2005).
[CrossRef] [PubMed]

F. Jaillon, S. E. Skipetrov, J. Li, G. Dietsche, G. Maret, and T. Gisler, “Diffusing-wave spectroscopy from head-like tissue phantoms: influence of a non-scattering layer,” Opt. Express14(22), 10181–10194 (2006).
[CrossRef] [PubMed]

L. Gagnon, M. Desjardins, J. Jehanne-Lacasse, L. Bherer, and F. Lesage, “Investigation of diffuse correlation spectroscopy in multi-layered media including the human head,” Opt. Express16(20), 15514–15530 (2008).
[CrossRef] [PubMed]

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express17(5), 3884–3902 (2009).
[CrossRef] [PubMed]

F. Jaillon, J. Li, G. Dietsche, T. Elbert, and T. Gisler, “Activity of the human visual cortex measured non-invasively by diffusing-wave spectroscopy,” Opt. Express15(11), 6643–6650 (2007).
[CrossRef] [PubMed]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express17(15), 12571–12581 (2009).
[CrossRef] [PubMed]

Opt. Lett.

Persp. Fluency Fluency Disord.

G. M. Tellis, R. C. Mesquita, and A. G. Yodh, “Use of diffuse correlation spectroscopy to measure brain blood flow differences during speaking and nonspeaking tasks for fluent speakers and persons who stutter,” Persp. Fluency Fluency Disord.21(3), 96–106 (2011).
[CrossRef]

Philos. Trans. R. Soc. A

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. R. Soc. A369(1955), 4390–4406 (2011).
[CrossRef] [PubMed]

H. Obrig and J. Steinbrink, “Non-invasive optical imaging of stroke,” Philos. Trans. R. Soc. A369(1955), 4470–4494 (2011).
[CrossRef] [PubMed]

Phys. Rev. Lett.

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett.75(9), 1855–1858 (1995).
[CrossRef] [PubMed]

Physiol. Meas.

B. L. Edlow, M. N. Kim, T. Durduran, C. Zhou, M. E. Putt, A. G. Yodh, J. H. Greenberg, and J. A. Detre, “The effects of healthy aging on cerebral hemodynamic responses to posture change,” Physiol. Meas.31(4), 477–495 (2010).
[CrossRef] [PubMed]

PLoS ONE

R. C. Mesquita, S. W. Han, J. Miller, S. S. Schenkel, A. Pole, T. V. Esipova, S. A. Vinogradov, M. E. Putt, A. G. Yodh, and T. M. Busch, “Tumor blood flow differs between mouse strains: consequences for vasoresponse to photodynamic therapy,” PLoS ONE7(5), e37322 (2012).
[CrossRef] [PubMed]

Rep. Prog. Phys.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

Respir. Physiol.

S. Godfrey and E. J. M. Campbell, “The control of breath holding,” Respir. Physiol.5(3), 385–400 (1968).
[CrossRef] [PubMed]

Other

T. Durduran, “Non-invasive measurements of tissue hemodynamics with hybrid diffuse optical methods,” Ph.D. dissertation (University of Pennsylvania, Philadelphia, 2004).

G. Yu, T. Durduran, C. Zhou, R. Cheng, and A. G. Yodh, “Near-infrared diffuse correlation spectroscopy for assessment of tissue blood flow,” in Handbook of Biomedical Optics, D. A. Boas, C. Pitris, and N. Ramanujam, eds. (CRC Press, 2011).

H. Tsunashima, K. Yanagisawa, and M. Iwadate, “Measurement of brain function using near-infrared spectroscopy (NIRS),” in Neuroimaging – Methods, P. Bright, ed. (InTech, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(A) Experimental setup showing the optical probe schematics. The separations between the sources and detectors were 0.5 cm, 1.5 cm, 2.5 cm, and 3.0 cm. (B) Experiment protocol timeline summarizing the session events.

Fig. 2
Fig. 2

Representative temporal intensity autocorrelation curves, g2(τ), during a baseline time point for a single subject at source-detector separation of (A) 0.5 cm, (B) 1.5 cm, and (C) 2.5 cm. Gray circles (Black crosses) represent baseline measurements without (with) pressure applied to the head by the probe. The fitted decay rate is used to determine the BFI from DCS data. (D) Variation in normalized BFI during baseline as function of applied pressure (see text for normalization definition). Error bars represent the standard deviation of all analyzed baseline frames. The dashed lines are linear fits (see main text).

Fig. 3
Fig. 3

Representative average CBF response during breath-holding task for a single subject at (A) 0.5 cm and (B) 2.5 cm source-detector separations, both in the absence (gray circles) and in the presence (black squares) of applied pressure on the probe. The shaded area represents the task period. (C) Maximum change in BFI, as function of pressure, during the breath-holding intervention.

Fig. 4
Fig. 4

Representative average CBF response during the hyperventilation task for a single subject at (A) 0.5 cm and (B) 2.5 cm source-detector separations, both in the absence (gray circles) and in the presence (black squares) of applied pressure on the probe. The shaded area represents the task period. (C) Minimum change in BFI, as function of pressure, during the hyperventilation intervention.

Fig. 5
Fig. 5

Scatter plot comparing DCS and TCD measured changes due to both breath-holding and hyperventilation tasks, for source-detector separations of 0.5 cm (blue), 1.5 cm (red) and 2.5 cm (black), respectively, when (A) no pressure was applied on the probe and when (B) pressure was applied on the probe. The error bars represent the standard error over the three different tasks per subject, and the solid lines represent the best linear fit of the data.

Tables (3)

Tables Icon

Table 1 Baseline Blood Flow Contributions Estimated by Applying Pressure on the Probe as a Function of Source-Detector Separationa

Tables Icon

Table 2 Perfusion Changes Measured During Ventilation Induced Perturbations

Tables Icon

Table 3 DCS Comparison with TCD Measurements During Perturbation

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

[ ( D(r,t) )v μ a (r,t) α 3 v μ s k 0 2 Δ r 2 (t,τ) ] G 1 (r,t,τ)=vS(r,t,τ).
G 1 (r,t,τ)= v 4πD ( e K(τ) r 1 r 1 e K(τ) r b r b ),
K 2 ( τ )=( μ a ( λ )+ 1 3 α μ s k 0 2 Δ r 2 (τ) )/( 3 μ s )
r 1 = (z l t ) 2 + ρ 2 and r b = (z+2 z b + l t ) 2 + ρ 2 ,
g 2 (r,t,τ)=1+β | g 1 (r,t,τ) | 2 .
BFI(t,P,ρ)=B F ec (t,P)+ γ ρ CBF(t).
rBFI(t)= BFI(t) BFI( t 0 ) =1+ ΔB F ec (t,P)+ γ ρ ΔCBF(t) B F ec ( t 0 ,P)+ γ ρ CBF( t 0 ) .

Metrics