Abstract

In this paper, we propose a super-resolution spectral estimation technique to quantify microvascular hemodynamics using optical microangiography (OMAG) based on optical coherence tomography (OCT). The proposed OMAG technique uses both amplitude and phase information of the OCT signals which makes it sensitive to the axial and transverse flows. The scanning protocol for the proposed method is identical to three-dimensional ultrahigh sensitive OMAG, and is applicable for in vivo measurements. In contrast to the existing capillary flow quantification methods, the proposed method is less sensitive to tissue motion and does not have aliasing problems due fast flow within large blood vessels. This method is analogous to power Doppler in ultrasonography and estimates the number of red blood cells passing through the beam as opposed to the velocity of the particles. The technique is tested both qualitatively and quantitatively by using OMAG to image microcirculation within mouse ear flap in vivo.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
    [CrossRef]
  2. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
    [CrossRef]
  3. G. Häusler and M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998).
    [CrossRef] [PubMed]
  4. A. H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett.37(11), 1883–1885 (2012).
    [CrossRef] [PubMed]
  5. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006).
    [CrossRef] [PubMed]
  6. L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt.15(2), 026011 (2010).
    [CrossRef] [PubMed]
  7. L. An and R. K. Wang, “Full range complex ultrahigh sensitive optical microangiography,” Opt. Lett.36(6), 831–833 (2011).
    [CrossRef] [PubMed]
  8. K. Yi, M. Mujat, W. Sun, D. Burnes, M. A. Latina, D. T. Lin, D. G. Deschler, P. A. Rubin, B. H. Park, J. F. de Boer, and T. C. Chen, “Imaging of optic nerve head drusen: improvements with spectral domain optical coherence tomography,” J. Glaucoma18(5), 373–378 (2009).
    [CrossRef] [PubMed]
  9. C. V. Regatieri, L. Branchini, J. G. Fujimoto, and J. S. Duker, “Choroidal imaging using spectral-domain optical coherence tomography,” Retina32(5), 865–876 (2012).
    [CrossRef] [PubMed]
  10. P. Li, L. An, R. Reif, T. T. Shen, M. Johnstone, and R. K. Wang, “In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography,” Biomed. Opt. Express2(11), 3109–3118 (2011).
    [CrossRef] [PubMed]
  11. L. S. Lim, H. T. Aung, T. Aung, and D. T. Tan, “Corneal imaging with anterior segment optical coherence tomography for lamellar keratoplasty procedures,” Am. J. Ophthalmol.145(1), 81–90 (2008).
    [CrossRef] [PubMed]
  12. C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett.37(10), 1625–1627 (2012).
    [CrossRef] [PubMed]
  13. P. Li, R. Reif, Z. Zhi, E. Martin, T. T. Shen, M. Johnstone, and R. K. Wang, “Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes,” J. Biomed. Opt.17(7), 076026 (2012).
    [CrossRef] [PubMed]
  14. G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology112(2), 229–237 (2005).
    [CrossRef] [PubMed]
  15. M. Imai, H. Iijima, and N. Hanada, “Optical coherence tomography of tractional macular elevations in eyes with proliferative diabetic retinopathy,” Am. J. Ophthalmol.132(1), 81–84 (2001).
    [CrossRef] [PubMed]
  16. M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology103(8), 1260–1270 (1996).
    [PubMed]
  17. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express15(7), 4083–4097 (2007).
    [CrossRef] [PubMed]
  18. R. K. Wang and S. Hurst, “Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 μm wavelength,” Opt. Express15(18), 11402–11412 (2007).
    [CrossRef] [PubMed]
  19. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express18(8), 8220–8228 (2010).
    [CrossRef] [PubMed]
  20. R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett.35(9), 1467–1469 (2010).
    [CrossRef] [PubMed]
  21. J. Qin, J. Y. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med.43(2), 122–129 (2011).
    [CrossRef] [PubMed]
  22. L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive Optical Microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt.16(10), 106013 (2011).
    [CrossRef] [PubMed]
  23. S. Yousefi, Z. Zhi, and R. K. Wang, “Eigendecomposition-based clutter filtering technique for optical microangiography,” IEEE Trans. Biomed. Eng.58(8), 2316–2323 (2011).
    [CrossRef]
  24. Y. L. Jia and R. K. Wang, “Label-free in vivo optical imaging of functional microcirculations within meninges and cortex in mice,” J. Neurosci. Methods194(1), 108–115 (2010).
    [CrossRef] [PubMed]
  25. Z. W. Zhi, Y. R. Jung, Y. Jia, L. An, and R. K. Wang, “Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography,” Biomed. Opt. Express2(5), 1059–1068 (2011).
    [CrossRef] [PubMed]
  26. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett.22(18), 1439–1441 (1997).
    [CrossRef] [PubMed]
  27. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett.25(2), 114–116 (2000).
    [CrossRef] [PubMed]
  28. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett.25(18), 1358–1360 (2000).
    [CrossRef] [PubMed]
  29. R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artefacts in spectral-domain optical Doppler tomography,” Opt. Lett.31(20), 3001–3003 (2006).
    [CrossRef] [PubMed]
  30. G. Liu, W. Jia, V. Sun, B. Choi, and Z. Chen, “High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography,” Opt. Express20(7), 7694–7705 (2012).
    [CrossRef] [PubMed]
  31. J. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express13(14), 5234–5239 (2005).
    [CrossRef] [PubMed]
  32. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express15(10), 6121–6139 (2007).
    [CrossRef] [PubMed]
  33. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express20(4), 4710–4725 (2012).
    [CrossRef] [PubMed]
  34. R. Motaghiannezam and S. Fraser, “Logarithmic intensity and speckle-based motion contrast methods for human retinal vasculature visualization using swept source optical coherence tomography,” Biomed. Opt. Express3(3), 503–521 (2012).
    [CrossRef] [PubMed]
  35. Y. Wang and R. K. Wang, “Autocorrelation optical coherence tomography for mapping transverse particle-flow velocity,” Opt. Lett.35(21), 3538–3540 (2010).
    [CrossRef] [PubMed]
  36. Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express16(16), 12350–12361 (2008).
    [CrossRef] [PubMed]
  37. V. J. Srinivasan, H. Radhakrishnan, E. H. Lo, E. T. Mandeville, J. Y. Jiang, S. Barry, and A. E. Cable, “OCT methods for capillary velocimetry,” Biomed. Opt. Express3(3), 612–629 (2012).
    [CrossRef] [PubMed]
  38. R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans. Antenn. Propag.34(3), 276–280 (1986).
    [CrossRef]
  39. S. L. Maple, Jr., Digital Spectral Analysis with Applications (Prentice-Hall, 1987).
  40. J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proc. IEEE57(8), 1408–1418 (1969).
    [CrossRef]
  41. J. P. Burg, “Maximum-entropy spectral analysis,” in 37th Ann. Int. Meet., Soc. Explor. Geophys., Ph.D. thesis, Oklahoma City, Okla., Oct. 31, 1967 (1967).
  42. R. K. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol.51(12), 3231–3239 (2006).
    [CrossRef] [PubMed]
  43. C. E. Shannon, “Communication in the presence of noise,” Proc. IRE37(1), 10–21 (1949).
    [CrossRef]
  44. R. S. C. Cobbold, Foundations of Biomedical Ultrasound (Oxford University Press, 2007), pp. 422–423.
  45. J. M. Rubin and R. S. Adler, “Power Doppler expands standard color capability,” Diagn. Imaging (San Franc.)15(12), 66–69 (1993).
    [PubMed]
  46. D. S. Babcock, H. Patriquin, M. LaFortune, and M. Dauzat, “Power Doppler sonography: basic principles and clinical applications in children,” Pediatr. Radiol.26(2), 109–115 (1996).
    [CrossRef] [PubMed]
  47. D. L. Kellogg., “In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges,” J. Appl. Physiol.100(5), 1709–1718 (2006).
    [CrossRef] [PubMed]
  48. R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. K. Wang, “Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system,” Int. J. Biomed. Imaging2012, 9 (2012).
    [CrossRef] [PubMed]
  49. J. Baun, Vascular Ultrasound: Physics, Instrumentation and Hemodynamics (ProSono Publishing, December 2012).

2012 (9)

C. V. Regatieri, L. Branchini, J. G. Fujimoto, and J. S. Duker, “Choroidal imaging using spectral-domain optical coherence tomography,” Retina32(5), 865–876 (2012).
[CrossRef] [PubMed]

P. Li, R. Reif, Z. Zhi, E. Martin, T. T. Shen, M. Johnstone, and R. K. Wang, “Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes,” J. Biomed. Opt.17(7), 076026 (2012).
[CrossRef] [PubMed]

R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. K. Wang, “Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system,” Int. J. Biomed. Imaging2012, 9 (2012).
[CrossRef] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express20(4), 4710–4725 (2012).
[CrossRef] [PubMed]

R. Motaghiannezam and S. Fraser, “Logarithmic intensity and speckle-based motion contrast methods for human retinal vasculature visualization using swept source optical coherence tomography,” Biomed. Opt. Express3(3), 503–521 (2012).
[CrossRef] [PubMed]

V. J. Srinivasan, H. Radhakrishnan, E. H. Lo, E. T. Mandeville, J. Y. Jiang, S. Barry, and A. E. Cable, “OCT methods for capillary velocimetry,” Biomed. Opt. Express3(3), 612–629 (2012).
[CrossRef] [PubMed]

G. Liu, W. Jia, V. Sun, B. Choi, and Z. Chen, “High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography,” Opt. Express20(7), 7694–7705 (2012).
[CrossRef] [PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett.37(10), 1625–1627 (2012).
[CrossRef] [PubMed]

A. H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett.37(11), 1883–1885 (2012).
[CrossRef] [PubMed]

2011 (6)

J. Qin, J. Y. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med.43(2), 122–129 (2011).
[CrossRef] [PubMed]

L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive Optical Microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt.16(10), 106013 (2011).
[CrossRef] [PubMed]

S. Yousefi, Z. Zhi, and R. K. Wang, “Eigendecomposition-based clutter filtering technique for optical microangiography,” IEEE Trans. Biomed. Eng.58(8), 2316–2323 (2011).
[CrossRef]

L. An and R. K. Wang, “Full range complex ultrahigh sensitive optical microangiography,” Opt. Lett.36(6), 831–833 (2011).
[CrossRef] [PubMed]

Z. W. Zhi, Y. R. Jung, Y. Jia, L. An, and R. K. Wang, “Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography,” Biomed. Opt. Express2(5), 1059–1068 (2011).
[CrossRef] [PubMed]

P. Li, L. An, R. Reif, T. T. Shen, M. Johnstone, and R. K. Wang, “In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography,” Biomed. Opt. Express2(11), 3109–3118 (2011).
[CrossRef] [PubMed]

2010 (5)

2009 (1)

K. Yi, M. Mujat, W. Sun, D. Burnes, M. A. Latina, D. T. Lin, D. G. Deschler, P. A. Rubin, B. H. Park, J. F. de Boer, and T. C. Chen, “Imaging of optic nerve head drusen: improvements with spectral domain optical coherence tomography,” J. Glaucoma18(5), 373–378 (2009).
[CrossRef] [PubMed]

2008 (2)

L. S. Lim, H. T. Aung, T. Aung, and D. T. Tan, “Corneal imaging with anterior segment optical coherence tomography for lamellar keratoplasty procedures,” Am. J. Ophthalmol.145(1), 81–90 (2008).
[CrossRef] [PubMed]

Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express16(16), 12350–12361 (2008).
[CrossRef] [PubMed]

2007 (3)

2006 (4)

D. L. Kellogg., “In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges,” J. Appl. Physiol.100(5), 1709–1718 (2006).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artefacts in spectral-domain optical Doppler tomography,” Opt. Lett.31(20), 3001–3003 (2006).
[CrossRef] [PubMed]

R. K. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol.51(12), 3231–3239 (2006).
[CrossRef] [PubMed]

2005 (3)

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
[CrossRef]

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology112(2), 229–237 (2005).
[CrossRef] [PubMed]

J. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express13(14), 5234–5239 (2005).
[CrossRef] [PubMed]

2003 (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

2001 (1)

M. Imai, H. Iijima, and N. Hanada, “Optical coherence tomography of tractional macular elevations in eyes with proliferative diabetic retinopathy,” Am. J. Ophthalmol.132(1), 81–84 (2001).
[CrossRef] [PubMed]

2000 (2)

1998 (1)

G. Häusler and M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998).
[CrossRef] [PubMed]

1997 (1)

1996 (2)

D. S. Babcock, H. Patriquin, M. LaFortune, and M. Dauzat, “Power Doppler sonography: basic principles and clinical applications in children,” Pediatr. Radiol.26(2), 109–115 (1996).
[CrossRef] [PubMed]

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology103(8), 1260–1270 (1996).
[PubMed]

1993 (1)

J. M. Rubin and R. S. Adler, “Power Doppler expands standard color capability,” Diagn. Imaging (San Franc.)15(12), 66–69 (1993).
[PubMed]

1986 (1)

R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans. Antenn. Propag.34(3), 276–280 (1986).
[CrossRef]

1969 (1)

J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proc. IEEE57(8), 1408–1418 (1969).
[CrossRef]

1949 (1)

C. E. Shannon, “Communication in the presence of noise,” Proc. IRE37(1), 10–21 (1949).
[CrossRef]

Adler, R. S.

J. M. Rubin and R. S. Adler, “Power Doppler expands standard color capability,” Diagn. Imaging (San Franc.)15(12), 66–69 (1993).
[PubMed]

Akiba, M.

An, L.

R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. K. Wang, “Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system,” Int. J. Biomed. Imaging2012, 9 (2012).
[CrossRef] [PubMed]

Z. W. Zhi, Y. R. Jung, Y. Jia, L. An, and R. K. Wang, “Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography,” Biomed. Opt. Express2(5), 1059–1068 (2011).
[CrossRef] [PubMed]

P. Li, L. An, R. Reif, T. T. Shen, M. Johnstone, and R. K. Wang, “In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography,” Biomed. Opt. Express2(11), 3109–3118 (2011).
[CrossRef] [PubMed]

J. Qin, J. Y. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med.43(2), 122–129 (2011).
[CrossRef] [PubMed]

L. An and R. K. Wang, “Full range complex ultrahigh sensitive optical microangiography,” Opt. Lett.36(6), 831–833 (2011).
[CrossRef] [PubMed]

L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive Optical Microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt.16(10), 106013 (2011).
[CrossRef] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express18(8), 8220–8228 (2010).
[CrossRef] [PubMed]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett.35(9), 1467–1469 (2010).
[CrossRef] [PubMed]

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt.15(2), 026011 (2010).
[CrossRef] [PubMed]

Aung, H. T.

L. S. Lim, H. T. Aung, T. Aung, and D. T. Tan, “Corneal imaging with anterior segment optical coherence tomography for lamellar keratoplasty procedures,” Am. J. Ophthalmol.145(1), 81–90 (2008).
[CrossRef] [PubMed]

Aung, T.

L. S. Lim, H. T. Aung, T. Aung, and D. T. Tan, “Corneal imaging with anterior segment optical coherence tomography for lamellar keratoplasty procedures,” Am. J. Ophthalmol.145(1), 81–90 (2008).
[CrossRef] [PubMed]

Babcock, D. S.

D. S. Babcock, H. Patriquin, M. LaFortune, and M. Dauzat, “Power Doppler sonography: basic principles and clinical applications in children,” Pediatr. Radiol.26(2), 109–115 (1996).
[CrossRef] [PubMed]

Barry, S.

Barton, J.

Barton, J. K.

Baumal, C. R.

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology103(8), 1260–1270 (1996).
[PubMed]

Beaton, S.

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology112(2), 229–237 (2005).
[CrossRef] [PubMed]

Branchini, L.

C. V. Regatieri, L. Branchini, J. G. Fujimoto, and J. S. Duker, “Choroidal imaging using spectral-domain optical coherence tomography,” Retina32(5), 865–876 (2012).
[CrossRef] [PubMed]

Burnes, D.

K. Yi, M. Mujat, W. Sun, D. Burnes, M. A. Latina, D. T. Lin, D. G. Deschler, P. A. Rubin, B. H. Park, J. F. de Boer, and T. C. Chen, “Imaging of optic nerve head drusen: improvements with spectral domain optical coherence tomography,” J. Glaucoma18(5), 373–378 (2009).
[CrossRef] [PubMed]

Bustamante, T.

Cable, A. E.

Capon, J.

J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proc. IEEE57(8), 1408–1418 (1969).
[CrossRef]

Chen, T. C.

K. Yi, M. Mujat, W. Sun, D. Burnes, M. A. Latina, D. T. Lin, D. G. Deschler, P. A. Rubin, B. H. Park, J. F. de Boer, and T. C. Chen, “Imaging of optic nerve head drusen: improvements with spectral domain optical coherence tomography,” J. Glaucoma18(5), 373–378 (2009).
[CrossRef] [PubMed]

Chen, Z.

Choi, B.

Coker, J. G.

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology103(8), 1260–1270 (1996).
[PubMed]

Dauzat, M.

D. S. Babcock, H. Patriquin, M. LaFortune, and M. Dauzat, “Power Doppler sonography: basic principles and clinical applications in children,” Pediatr. Radiol.26(2), 109–115 (1996).
[CrossRef] [PubMed]

Davis, A. M.

de Boer, J. F.

Deschler, D. G.

K. Yi, M. Mujat, W. Sun, D. Burnes, M. A. Latina, D. T. Lin, D. G. Deschler, P. A. Rubin, B. H. Park, J. F. de Boer, and T. C. Chen, “Imaging of optic nerve head drusen: improvements with spectral domain optical coherence tomography,” J. Glaucoma18(5), 373–378 (2009).
[CrossRef] [PubMed]

Dhalla, A. H.

Drexler, W.

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology112(2), 229–237 (2005).
[CrossRef] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Duker, J.

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology112(2), 229–237 (2005).
[CrossRef] [PubMed]

Duker, J. S.

C. V. Regatieri, L. Branchini, J. G. Fujimoto, and J. S. Duker, “Choroidal imaging using spectral-domain optical coherence tomography,” Retina32(5), 865–876 (2012).
[CrossRef] [PubMed]

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology103(8), 1260–1270 (1996).
[PubMed]

Dziennis, S.

R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. K. Wang, “Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system,” Int. J. Biomed. Imaging2012, 9 (2012).
[CrossRef] [PubMed]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Francis, P.

Fraser, S.

Fujimoto, J. G.

C. V. Regatieri, L. Branchini, J. G. Fujimoto, and J. S. Duker, “Choroidal imaging using spectral-domain optical coherence tomography,” Retina32(5), 865–876 (2012).
[CrossRef] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express20(4), 4710–4725 (2012).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology112(2), 229–237 (2005).
[CrossRef] [PubMed]

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology103(8), 1260–1270 (1996).
[PubMed]

Gareau, D.

J. Qin, J. Y. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med.43(2), 122–129 (2011).
[CrossRef] [PubMed]

Gruber, A.

Guan, G.

Hanada, N.

M. Imai, H. Iijima, and N. Hanada, “Optical coherence tomography of tractional macular elevations in eyes with proliferative diabetic retinopathy,” Am. J. Ophthalmol.132(1), 81–84 (2001).
[CrossRef] [PubMed]

Hanson, S. R.

Hartl, I.

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology112(2), 229–237 (2005).
[CrossRef] [PubMed]

Häusler, G.

G. Häusler and M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998).
[CrossRef] [PubMed]

Hee, M. R.

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology103(8), 1260–1270 (1996).
[PubMed]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Hong, Y.

Hornegger, J.

Huang, D.

Huang, Z.

Huber, R.

Hurst, S.

Iijima, H.

M. Imai, H. Iijima, and N. Hanada, “Optical coherence tomography of tractional macular elevations in eyes with proliferative diabetic retinopathy,” Am. J. Ophthalmol.132(1), 81–84 (2001).
[CrossRef] [PubMed]

Imai, M.

M. Imai, H. Iijima, and N. Hanada, “Optical coherence tomography of tractional macular elevations in eyes with proliferative diabetic retinopathy,” Am. J. Ophthalmol.132(1), 81–84 (2001).
[CrossRef] [PubMed]

Ishikawa, H.

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology112(2), 229–237 (2005).
[CrossRef] [PubMed]

Izatt, J. A.

Jacques, S. L.

Jia, W.

Jia, Y.

Jia, Y. L.

Y. L. Jia and R. K. Wang, “Label-free in vivo optical imaging of functional microcirculations within meninges and cortex in mice,” J. Neurosci. Methods194(1), 108–115 (2010).
[CrossRef] [PubMed]

Jiang, J. Y.

V. J. Srinivasan, H. Radhakrishnan, E. H. Lo, E. T. Mandeville, J. Y. Jiang, S. Barry, and A. E. Cable, “OCT methods for capillary velocimetry,” Biomed. Opt. Express3(3), 612–629 (2012).
[CrossRef] [PubMed]

J. Qin, J. Y. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med.43(2), 122–129 (2011).
[CrossRef] [PubMed]

Johnstone, M.

Jung, Y. R.

Kellogg, D. L.

D. L. Kellogg., “In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges,” J. Appl. Physiol.100(5), 1709–1718 (2006).
[CrossRef] [PubMed]

Ko, T. H.

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology112(2), 229–237 (2005).
[CrossRef] [PubMed]

Kowalevicz, A.

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology112(2), 229–237 (2005).
[CrossRef] [PubMed]

Kraus, M. F.

Kulkarni, M. D.

Kuo, A.

LaFortune, M.

D. S. Babcock, H. Patriquin, M. LaFortune, and M. Dauzat, “Power Doppler sonography: basic principles and clinical applications in children,” Pediatr. Radiol.26(2), 109–115 (1996).
[CrossRef] [PubMed]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Latina, M. A.

K. Yi, M. Mujat, W. Sun, D. Burnes, M. A. Latina, D. T. Lin, D. G. Deschler, P. A. Rubin, B. H. Park, J. F. de Boer, and T. C. Chen, “Imaging of optic nerve head drusen: improvements with spectral domain optical coherence tomography,” J. Glaucoma18(5), 373–378 (2009).
[CrossRef] [PubMed]

Li, C.

Li, P.

P. Li, R. Reif, Z. Zhi, E. Martin, T. T. Shen, M. Johnstone, and R. K. Wang, “Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes,” J. Biomed. Opt.17(7), 076026 (2012).
[CrossRef] [PubMed]

P. Li, L. An, R. Reif, T. T. Shen, M. Johnstone, and R. K. Wang, “In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography,” Biomed. Opt. Express2(11), 3109–3118 (2011).
[CrossRef] [PubMed]

Lim, L. S.

L. S. Lim, H. T. Aung, T. Aung, and D. T. Tan, “Corneal imaging with anterior segment optical coherence tomography for lamellar keratoplasty procedures,” Am. J. Ophthalmol.145(1), 81–90 (2008).
[CrossRef] [PubMed]

Lin, D. T.

K. Yi, M. Mujat, W. Sun, D. Burnes, M. A. Latina, D. T. Lin, D. G. Deschler, P. A. Rubin, B. H. Park, J. F. de Boer, and T. C. Chen, “Imaging of optic nerve head drusen: improvements with spectral domain optical coherence tomography,” J. Glaucoma18(5), 373–378 (2009).
[CrossRef] [PubMed]

Lindner, M. W.

G. Häusler and M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998).
[CrossRef] [PubMed]

Liu, G.

Liu, J. J.

Lo, E. H.

Ma, Z.

Makita, S.

Mandeville, E. T.

Martin, E.

P. Li, R. Reif, Z. Zhi, E. Martin, T. T. Shen, M. Johnstone, and R. K. Wang, “Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes,” J. Biomed. Opt.17(7), 076026 (2012).
[CrossRef] [PubMed]

Mattox, C.

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology112(2), 229–237 (2005).
[CrossRef] [PubMed]

Miura, M.

Motaghiannezam, R.

Mujat, M.

K. Yi, M. Mujat, W. Sun, D. Burnes, M. A. Latina, D. T. Lin, D. G. Deschler, P. A. Rubin, B. H. Park, J. F. de Boer, and T. C. Chen, “Imaging of optic nerve head drusen: improvements with spectral domain optical coherence tomography,” J. Glaucoma18(5), 373–378 (2009).
[CrossRef] [PubMed]

Nankivil, D.

Nelson, J. S.

Park, B. H.

K. Yi, M. Mujat, W. Sun, D. Burnes, M. A. Latina, D. T. Lin, D. G. Deschler, P. A. Rubin, B. H. Park, J. F. de Boer, and T. C. Chen, “Imaging of optic nerve head drusen: improvements with spectral domain optical coherence tomography,” J. Glaucoma18(5), 373–378 (2009).
[CrossRef] [PubMed]

Patriquin, H.

D. S. Babcock, H. Patriquin, M. LaFortune, and M. Dauzat, “Power Doppler sonography: basic principles and clinical applications in children,” Pediatr. Radiol.26(2), 109–115 (1996).
[CrossRef] [PubMed]

Paunescu, L. A.

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology112(2), 229–237 (2005).
[CrossRef] [PubMed]

Potsaid, B.

Puliafito, C. A.

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology103(8), 1260–1270 (1996).
[PubMed]

Qin, J.

R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. K. Wang, “Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system,” Int. J. Biomed. Imaging2012, 9 (2012).
[CrossRef] [PubMed]

J. Qin, J. Y. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med.43(2), 122–129 (2011).
[CrossRef] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express18(8), 8220–8228 (2010).
[CrossRef] [PubMed]

Radhakrishnan, H.

Regatieri, C. V.

C. V. Regatieri, L. Branchini, J. G. Fujimoto, and J. S. Duker, “Choroidal imaging using spectral-domain optical coherence tomography,” Retina32(5), 865–876 (2012).
[CrossRef] [PubMed]

Reichel, E.

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology103(8), 1260–1270 (1996).
[PubMed]

Reif, R.

R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. K. Wang, “Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system,” Int. J. Biomed. Imaging2012, 9 (2012).
[CrossRef] [PubMed]

P. Li, R. Reif, Z. Zhi, E. Martin, T. T. Shen, M. Johnstone, and R. K. Wang, “Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes,” J. Biomed. Opt.17(7), 076026 (2012).
[CrossRef] [PubMed]

P. Li, L. An, R. Reif, T. T. Shen, M. Johnstone, and R. K. Wang, “In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography,” Biomed. Opt. Express2(11), 3109–3118 (2011).
[CrossRef] [PubMed]

Rubin, J. M.

J. M. Rubin and R. S. Adler, “Power Doppler expands standard color capability,” Diagn. Imaging (San Franc.)15(12), 66–69 (1993).
[PubMed]

Rubin, P. A.

K. Yi, M. Mujat, W. Sun, D. Burnes, M. A. Latina, D. T. Lin, D. G. Deschler, P. A. Rubin, B. H. Park, J. F. de Boer, and T. C. Chen, “Imaging of optic nerve head drusen: improvements with spectral domain optical coherence tomography,” J. Glaucoma18(5), 373–378 (2009).
[CrossRef] [PubMed]

Saxer, C.

Schmidt, R.

R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans. Antenn. Propag.34(3), 276–280 (1986).
[CrossRef]

Schuman, J. S.

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology112(2), 229–237 (2005).
[CrossRef] [PubMed]

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology103(8), 1260–1270 (1996).
[PubMed]

Shannon, C. E.

C. E. Shannon, “Communication in the presence of noise,” Proc. IRE37(1), 10–21 (1949).
[CrossRef]

Shen, Q.

Shen, T. T.

P. Li, R. Reif, Z. Zhi, E. Martin, T. T. Shen, M. Johnstone, and R. K. Wang, “Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes,” J. Biomed. Opt.17(7), 076026 (2012).
[CrossRef] [PubMed]

L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive Optical Microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt.16(10), 106013 (2011).
[CrossRef] [PubMed]

P. Li, L. An, R. Reif, T. T. Shen, M. Johnstone, and R. K. Wang, “In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography,” Biomed. Opt. Express2(11), 3109–3118 (2011).
[CrossRef] [PubMed]

Singh, O.

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology112(2), 229–237 (2005).
[CrossRef] [PubMed]

Srinivasan, V. J.

Stromski, S.

Subhash, H.

Subhush, H. M.

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt.15(2), 026011 (2010).
[CrossRef] [PubMed]

Sun, V.

Sun, W.

K. Yi, M. Mujat, W. Sun, D. Burnes, M. A. Latina, D. T. Lin, D. G. Deschler, P. A. Rubin, B. H. Park, J. F. de Boer, and T. C. Chen, “Imaging of optic nerve head drusen: improvements with spectral domain optical coherence tomography,” J. Glaucoma18(5), 373–378 (2009).
[CrossRef] [PubMed]

Swanson, E. A.

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology103(8), 1260–1270 (1996).
[PubMed]

Tan, D. T.

L. S. Lim, H. T. Aung, T. Aung, and D. T. Tan, “Corneal imaging with anterior segment optical coherence tomography for lamellar keratoplasty procedures,” Am. J. Ophthalmol.145(1), 81–90 (2008).
[CrossRef] [PubMed]

Tan, O.

Tao, Y. K.

Tokayer, J.

Tomlins, P. H.

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
[CrossRef]

Wang, R. K.

R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. K. Wang, “Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system,” Int. J. Biomed. Imaging2012, 9 (2012).
[CrossRef] [PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett.37(10), 1625–1627 (2012).
[CrossRef] [PubMed]

P. Li, R. Reif, Z. Zhi, E. Martin, T. T. Shen, M. Johnstone, and R. K. Wang, “Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes,” J. Biomed. Opt.17(7), 076026 (2012).
[CrossRef] [PubMed]

L. An and R. K. Wang, “Full range complex ultrahigh sensitive optical microangiography,” Opt. Lett.36(6), 831–833 (2011).
[CrossRef] [PubMed]

L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive Optical Microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt.16(10), 106013 (2011).
[CrossRef] [PubMed]

P. Li, L. An, R. Reif, T. T. Shen, M. Johnstone, and R. K. Wang, “In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography,” Biomed. Opt. Express2(11), 3109–3118 (2011).
[CrossRef] [PubMed]

Z. W. Zhi, Y. R. Jung, Y. Jia, L. An, and R. K. Wang, “Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography,” Biomed. Opt. Express2(5), 1059–1068 (2011).
[CrossRef] [PubMed]

S. Yousefi, Z. Zhi, and R. K. Wang, “Eigendecomposition-based clutter filtering technique for optical microangiography,” IEEE Trans. Biomed. Eng.58(8), 2316–2323 (2011).
[CrossRef]

J. Qin, J. Y. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med.43(2), 122–129 (2011).
[CrossRef] [PubMed]

Y. Wang and R. K. Wang, “Autocorrelation optical coherence tomography for mapping transverse particle-flow velocity,” Opt. Lett.35(21), 3538–3540 (2010).
[CrossRef] [PubMed]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett.35(9), 1467–1469 (2010).
[CrossRef] [PubMed]

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt.15(2), 026011 (2010).
[CrossRef] [PubMed]

Y. L. Jia and R. K. Wang, “Label-free in vivo optical imaging of functional microcirculations within meninges and cortex in mice,” J. Neurosci. Methods194(1), 108–115 (2010).
[CrossRef] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express18(8), 8220–8228 (2010).
[CrossRef] [PubMed]

R. K. Wang and S. Hurst, “Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 μm wavelength,” Opt. Express15(18), 11402–11412 (2007).
[CrossRef] [PubMed]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express15(7), 4083–4097 (2007).
[CrossRef] [PubMed]

R. K. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol.51(12), 3231–3239 (2006).
[CrossRef] [PubMed]

R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artefacts in spectral-domain optical Doppler tomography,” Opt. Lett.31(20), 3001–3003 (2006).
[CrossRef] [PubMed]

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
[CrossRef]

Wang, Y.

Welch, A. J.

Wilkins, J. R.

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology103(8), 1260–1270 (1996).
[PubMed]

Wilson, D. J.

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett.35(9), 1467–1469 (2010).
[CrossRef] [PubMed]

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt.15(2), 026011 (2010).
[CrossRef] [PubMed]

Wojtkowski, M.

Wollstein, G.

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology112(2), 229–237 (2005).
[CrossRef] [PubMed]

Xiang, S.

Yamanari, M.

Yasuno, Y.

Yatagai, T.

Yazdanfar, S.

Yi, K.

K. Yi, M. Mujat, W. Sun, D. Burnes, M. A. Latina, D. T. Lin, D. G. Deschler, P. A. Rubin, B. H. Park, J. F. de Boer, and T. C. Chen, “Imaging of optic nerve head drusen: improvements with spectral domain optical coherence tomography,” J. Glaucoma18(5), 373–378 (2009).
[CrossRef] [PubMed]

Yousefi, S.

S. Yousefi, Z. Zhi, and R. K. Wang, “Eigendecomposition-based clutter filtering technique for optical microangiography,” IEEE Trans. Biomed. Eng.58(8), 2316–2323 (2011).
[CrossRef]

Zhao, Y.

Zhi, Z.

P. Li, R. Reif, Z. Zhi, E. Martin, T. T. Shen, M. Johnstone, and R. K. Wang, “Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes,” J. Biomed. Opt.17(7), 076026 (2012).
[CrossRef] [PubMed]

R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. K. Wang, “Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system,” Int. J. Biomed. Imaging2012, 9 (2012).
[CrossRef] [PubMed]

S. Yousefi, Z. Zhi, and R. K. Wang, “Eigendecomposition-based clutter filtering technique for optical microangiography,” IEEE Trans. Biomed. Eng.58(8), 2316–2323 (2011).
[CrossRef]

Zhi, Z. W.

Am. J. Ophthalmol. (2)

M. Imai, H. Iijima, and N. Hanada, “Optical coherence tomography of tractional macular elevations in eyes with proliferative diabetic retinopathy,” Am. J. Ophthalmol.132(1), 81–84 (2001).
[CrossRef] [PubMed]

L. S. Lim, H. T. Aung, T. Aung, and D. T. Tan, “Corneal imaging with anterior segment optical coherence tomography for lamellar keratoplasty procedures,” Am. J. Ophthalmol.145(1), 81–90 (2008).
[CrossRef] [PubMed]

Biomed. Opt. Express (4)

Diagn. Imaging (San Franc.) (1)

J. M. Rubin and R. S. Adler, “Power Doppler expands standard color capability,” Diagn. Imaging (San Franc.)15(12), 66–69 (1993).
[PubMed]

IEEE Trans. Antenn. Propag. (1)

R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans. Antenn. Propag.34(3), 276–280 (1986).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

S. Yousefi, Z. Zhi, and R. K. Wang, “Eigendecomposition-based clutter filtering technique for optical microangiography,” IEEE Trans. Biomed. Eng.58(8), 2316–2323 (2011).
[CrossRef]

Int. J. Biomed. Imaging (1)

R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. K. Wang, “Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system,” Int. J. Biomed. Imaging2012, 9 (2012).
[CrossRef] [PubMed]

J. Appl. Physiol. (1)

D. L. Kellogg., “In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges,” J. Appl. Physiol.100(5), 1709–1718 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive Optical Microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt.16(10), 106013 (2011).
[CrossRef] [PubMed]

G. Häusler and M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998).
[CrossRef] [PubMed]

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt.15(2), 026011 (2010).
[CrossRef] [PubMed]

P. Li, R. Reif, Z. Zhi, E. Martin, T. T. Shen, M. Johnstone, and R. K. Wang, “Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes,” J. Biomed. Opt.17(7), 076026 (2012).
[CrossRef] [PubMed]

J. Glaucoma (1)

K. Yi, M. Mujat, W. Sun, D. Burnes, M. A. Latina, D. T. Lin, D. G. Deschler, P. A. Rubin, B. H. Park, J. F. de Boer, and T. C. Chen, “Imaging of optic nerve head drusen: improvements with spectral domain optical coherence tomography,” J. Glaucoma18(5), 373–378 (2009).
[CrossRef] [PubMed]

J. Neurosci. Methods (1)

Y. L. Jia and R. K. Wang, “Label-free in vivo optical imaging of functional microcirculations within meninges and cortex in mice,” J. Neurosci. Methods194(1), 108–115 (2010).
[CrossRef] [PubMed]

J. Phys. D Appl. Phys. (1)

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
[CrossRef]

Lasers Surg. Med. (1)

J. Qin, J. Y. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med.43(2), 122–129 (2011).
[CrossRef] [PubMed]

Ophthalmology (2)

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology103(8), 1260–1270 (1996).
[PubMed]

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology112(2), 229–237 (2005).
[CrossRef] [PubMed]

Opt. Express (9)

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express15(7), 4083–4097 (2007).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express15(10), 6121–6139 (2007).
[CrossRef] [PubMed]

R. K. Wang and S. Hurst, “Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 μm wavelength,” Opt. Express15(18), 11402–11412 (2007).
[CrossRef] [PubMed]

Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express16(16), 12350–12361 (2008).
[CrossRef] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express18(8), 8220–8228 (2010).
[CrossRef] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express20(4), 4710–4725 (2012).
[CrossRef] [PubMed]

G. Liu, W. Jia, V. Sun, B. Choi, and Z. Chen, “High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography,” Opt. Express20(7), 7694–7705 (2012).
[CrossRef] [PubMed]

J. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express13(14), 5234–5239 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

Opt. Lett. (9)

R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artefacts in spectral-domain optical Doppler tomography,” Opt. Lett.31(20), 3001–3003 (2006).
[CrossRef] [PubMed]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett.25(2), 114–116 (2000).
[CrossRef] [PubMed]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett.22(18), 1439–1441 (1997).
[CrossRef] [PubMed]

Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett.25(18), 1358–1360 (2000).
[CrossRef] [PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett.37(10), 1625–1627 (2012).
[CrossRef] [PubMed]

A. H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett.37(11), 1883–1885 (2012).
[CrossRef] [PubMed]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett.35(9), 1467–1469 (2010).
[CrossRef] [PubMed]

Y. Wang and R. K. Wang, “Autocorrelation optical coherence tomography for mapping transverse particle-flow velocity,” Opt. Lett.35(21), 3538–3540 (2010).
[CrossRef] [PubMed]

L. An and R. K. Wang, “Full range complex ultrahigh sensitive optical microangiography,” Opt. Lett.36(6), 831–833 (2011).
[CrossRef] [PubMed]

Pediatr. Radiol. (1)

D. S. Babcock, H. Patriquin, M. LaFortune, and M. Dauzat, “Power Doppler sonography: basic principles and clinical applications in children,” Pediatr. Radiol.26(2), 109–115 (1996).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

R. K. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol.51(12), 3231–3239 (2006).
[CrossRef] [PubMed]

Proc. IEEE (1)

J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proc. IEEE57(8), 1408–1418 (1969).
[CrossRef]

Proc. IRE (1)

C. E. Shannon, “Communication in the presence of noise,” Proc. IRE37(1), 10–21 (1949).
[CrossRef]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Retina (1)

C. V. Regatieri, L. Branchini, J. G. Fujimoto, and J. S. Duker, “Choroidal imaging using spectral-domain optical coherence tomography,” Retina32(5), 865–876 (2012).
[CrossRef] [PubMed]

Other (4)

S. L. Maple, Jr., Digital Spectral Analysis with Applications (Prentice-Hall, 1987).

R. S. C. Cobbold, Foundations of Biomedical Ultrasound (Oxford University Press, 2007), pp. 422–423.

J. P. Burg, “Maximum-entropy spectral analysis,” in 37th Ann. Int. Meet., Soc. Explor. Geophys., Ph.D. thesis, Oklahoma City, Okla., Oct. 31, 1967 (1967).

J. Baun, Vascular Ultrasound: Physics, Instrumentation and Hemodynamics (ProSono Publishing, December 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(A) Schematic diagram of the imaging system. (B) A digital image of the mouse ear pinna flat mounted. The rectangle on the ear shows a typical OCT imaging field of view which is 2.2 × 2.2 mm2 in our experiment.

Fig. 2
Fig. 2

MUSIC-OMAG visualization. (A) Lower-band power, gray-coded. (B) Upper-band power, color-coded. (C) Combined MUSIC-OMAG power, where upper-band power is overlaid on the lower-band power. (D) UHS-OMAG of the corresponding data set processing using ED method (The scale bar = 500 μm).

Fig. 3
Fig. 3

(A) UHS-OMAG image of the entire mouse ear processing using ED method, stitched together. (B) MUSIC-OMAG processing of the same data set of (A). Large vessels and faster flow are color-coded while slower flow and capillary loops are gray-coded. The bar size is 1x1 mm.

Fig. 4
Fig. 4

MUSIC-OMAG monitoring the vasculature response to the thermoregulatory challenge. During the hyperthermia (39.5 °C), new capillaries appear while most of the small vessels and capillaries disappear during hypothermia (32.0 °C), and they go back to the baseline image when returning to normothermia (37.8 °C) (The scale bar = 500 μm).

Fig. 5
Fig. 5

Normalized total blood flow (A) and normalized vessel area density (B) average in response to the thermoregulatory challenge.

Fig. 6
Fig. 6

Flow profile characteristics of vessels using MUSIC-OMAG method. (A) MUSIC-OMAG processing. (B) Zoomed in version of (A) color-coded for better visualization. (C and D) Flow profile of the vessels marked in box (I) and (II) in (B), respectively (The scale bar = 500 μm).

Fig. 7
Fig. 7

A comparison between MUSIC-OMAG (A-D), autocorrelation method (E-H) and UHS-OMAG (I-L) processing of the mouse ear capillary response to thermoregulatory challenge, where the first column (A, E and I) is the normothermia condition (37.5 °C), the second column (B, F and J) is hyperthermia condition (39.5 °C), the third column (C, G and K) is hypothermia (32.0 °C) and the last column (D, H and L) is return to the normothermia condition (37.8 °C) (The scale bar = 500 μm).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I(k)=S(k) E R 2 +2S(k) E R a(z)cos(2knz)dz +2S(k) E R a( z 1 )cos[2kn( z 1 vt)]
x[ n ]=  i=1 P a i e j( n ω i + ϕ i )
r xx [ k ]=E{ x[ n ]x[ nk ] }= i=1 P A i e jn ω i
R xx = [ r xx [ 0 ] r xx [ 1 ] r xx [ 1 ] r xx [ 0 ] r xx [ ( M1 ) ] r xx [ ( M2 ) ] r xx [ M1 ] r xx [ M2 ] r xx [ 0 ] ]
Rank{ R xx }=min{ M,P }=P.
R xx = i=1 M λ i u i u i H .
R xx = i=1 P λ i u i u i H .
R xx = k=1 P A k s k s k H =SA S H
k=P+1 M α k | S H ( ω ) u k | 2 = S H ( ω )( k=P+1 M α k u k u k H  ) S( ω )
P( ω )= 1 k=p+1 M | S H ( ω ) u k | 2

Metrics