Abstract

In this paper, we propose a super-resolution spectral estimation technique to quantify microvascular hemodynamics using optical microangiography (OMAG) based on optical coherence tomography (OCT). The proposed OMAG technique uses both amplitude and phase information of the OCT signals which makes it sensitive to the axial and transverse flows. The scanning protocol for the proposed method is identical to three-dimensional ultrahigh sensitive OMAG, and is applicable for in vivo measurements. In contrast to the existing capillary flow quantification methods, the proposed method is less sensitive to tissue motion and does not have aliasing problems due fast flow within large blood vessels. This method is analogous to power Doppler in ultrasonography and estimates the number of red blood cells passing through the beam as opposed to the velocity of the particles. The technique is tested both qualitatively and quantitatively by using OMAG to image microcirculation within mouse ear flap in vivo.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [CrossRef]
  2. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005).
    [CrossRef]
  3. G. Häusler and M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
    [CrossRef] [PubMed]
  4. A. H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett. 37(11), 1883–1885 (2012).
    [CrossRef] [PubMed]
  5. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [CrossRef] [PubMed]
  6. L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
    [CrossRef] [PubMed]
  7. L. An and R. K. Wang, “Full range complex ultrahigh sensitive optical microangiography,” Opt. Lett. 36(6), 831–833 (2011).
    [CrossRef] [PubMed]
  8. K. Yi, M. Mujat, W. Sun, D. Burnes, M. A. Latina, D. T. Lin, D. G. Deschler, P. A. Rubin, B. H. Park, J. F. de Boer, and T. C. Chen, “Imaging of optic nerve head drusen: improvements with spectral domain optical coherence tomography,” J. Glaucoma 18(5), 373–378 (2009).
    [CrossRef] [PubMed]
  9. C. V. Regatieri, L. Branchini, J. G. Fujimoto, and J. S. Duker, “Choroidal imaging using spectral-domain optical coherence tomography,” Retina 32(5), 865–876 (2012).
    [CrossRef] [PubMed]
  10. P. Li, L. An, R. Reif, T. T. Shen, M. Johnstone, and R. K. Wang, “In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography,” Biomed. Opt. Express 2(11), 3109–3118 (2011).
    [CrossRef] [PubMed]
  11. L. S. Lim, H. T. Aung, T. Aung, and D. T. Tan, “Corneal imaging with anterior segment optical coherence tomography for lamellar keratoplasty procedures,” Am. J. Ophthalmol. 145(1), 81–90 (2008).
    [CrossRef] [PubMed]
  12. C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37(10), 1625–1627 (2012).
    [CrossRef] [PubMed]
  13. P. Li, R. Reif, Z. Zhi, E. Martin, T. T. Shen, M. Johnstone, and R. K. Wang, “Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes,” J. Biomed. Opt. 17(7), 076026 (2012).
    [CrossRef] [PubMed]
  14. G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology 112(2), 229–237 (2005).
    [CrossRef] [PubMed]
  15. M. Imai, H. Iijima, and N. Hanada, “Optical coherence tomography of tractional macular elevations in eyes with proliferative diabetic retinopathy,” Am. J. Ophthalmol. 132(1), 81–84 (2001).
    [CrossRef] [PubMed]
  16. M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology 103(8), 1260–1270 (1996).
    [PubMed]
  17. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
    [CrossRef] [PubMed]
  18. R. K. Wang and S. Hurst, “Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 μm wavelength,” Opt. Express 15(18), 11402–11412 (2007).
    [CrossRef] [PubMed]
  19. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
    [CrossRef] [PubMed]
  20. R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
    [CrossRef] [PubMed]
  21. J. Qin, J. Y. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med. 43(2), 122–129 (2011).
    [CrossRef] [PubMed]
  22. L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive Optical Microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt. 16(10), 106013 (2011).
    [CrossRef] [PubMed]
  23. S. Yousefi, Z. Zhi, and R. K. Wang, “Eigendecomposition-based clutter filtering technique for optical microangiography,” IEEE Trans. Biomed. Eng. 58(8), 2316–2323 (2011).
    [CrossRef]
  24. Y. L. Jia and R. K. Wang, “Label-free in vivo optical imaging of functional microcirculations within meninges and cortex in mice,” J. Neurosci. Methods 194(1), 108–115 (2010).
    [CrossRef] [PubMed]
  25. Z. W. Zhi, Y. R. Jung, Y. Jia, L. An, and R. K. Wang, “Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography,” Biomed. Opt. Express 2(5), 1059–1068 (2011).
    [CrossRef] [PubMed]
  26. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22(18), 1439–1441 (1997).
    [CrossRef] [PubMed]
  27. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000).
    [CrossRef] [PubMed]
  28. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25(18), 1358–1360 (2000).
    [CrossRef] [PubMed]
  29. R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artefacts in spectral-domain optical Doppler tomography,” Opt. Lett. 31(20), 3001–3003 (2006).
    [CrossRef] [PubMed]
  30. G. Liu, W. Jia, V. Sun, B. Choi, and Z. Chen, “High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography,” Opt. Express 20(7), 7694–7705 (2012).
    [CrossRef] [PubMed]
  31. J. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express 13(14), 5234–5239 (2005).
    [CrossRef] [PubMed]
  32. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007).
    [CrossRef] [PubMed]
  33. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
    [CrossRef] [PubMed]
  34. R. Motaghiannezam and S. Fraser, “Logarithmic intensity and speckle-based motion contrast methods for human retinal vasculature visualization using swept source optical coherence tomography,” Biomed. Opt. Express 3(3), 503–521 (2012).
    [CrossRef] [PubMed]
  35. Y. Wang and R. K. Wang, “Autocorrelation optical coherence tomography for mapping transverse particle-flow velocity,” Opt. Lett. 35(21), 3538–3540 (2010).
    [CrossRef] [PubMed]
  36. Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express 16(16), 12350–12361 (2008).
    [CrossRef] [PubMed]
  37. V. J. Srinivasan, H. Radhakrishnan, E. H. Lo, E. T. Mandeville, J. Y. Jiang, S. Barry, and A. E. Cable, “OCT methods for capillary velocimetry,” Biomed. Opt. Express 3(3), 612–629 (2012).
    [CrossRef] [PubMed]
  38. R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans. Antenn. Propag. 34(3), 276–280 (1986).
    [CrossRef]
  39. S. L. Maple, Jr., Digital Spectral Analysis with Applications (Prentice-Hall, 1987).
  40. J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proc. IEEE 57(8), 1408–1418 (1969).
    [CrossRef]
  41. J. P. Burg, “Maximum-entropy spectral analysis,” in 37th Ann. Int. Meet., Soc. Explor. Geophys., Ph.D. thesis, Oklahoma City, Okla., Oct. 31, 1967 (1967).
  42. R. K. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol. 51(12), 3231–3239 (2006).
    [CrossRef] [PubMed]
  43. C. E. Shannon, “Communication in the presence of noise,” Proc. IRE 37(1), 10–21 (1949).
    [CrossRef]
  44. R. S. C. Cobbold, Foundations of Biomedical Ultrasound (Oxford University Press, 2007), pp. 422–423.
  45. J. M. Rubin and R. S. Adler, “Power Doppler expands standard color capability,” Diagn. Imaging (San Franc.) 15(12), 66–69 (1993).
    [PubMed]
  46. D. S. Babcock, H. Patriquin, M. LaFortune, and M. Dauzat, “Power Doppler sonography: basic principles and clinical applications in children,” Pediatr. Radiol. 26(2), 109–115 (1996).
    [CrossRef] [PubMed]
  47. D. L. Kellogg., “In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges,” J. Appl. Physiol. 100(5), 1709–1718 (2006).
    [CrossRef] [PubMed]
  48. R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. K. Wang, “Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system,” Int. J. Biomed. Imaging 2012, 9 (2012).
    [CrossRef] [PubMed]
  49. J. Baun, Vascular Ultrasound: Physics, Instrumentation and Hemodynamics (ProSono Publishing, December 2012).

2012 (9)

A. H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett. 37(11), 1883–1885 (2012).
[CrossRef] [PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37(10), 1625–1627 (2012).
[CrossRef] [PubMed]

P. Li, R. Reif, Z. Zhi, E. Martin, T. T. Shen, M. Johnstone, and R. K. Wang, “Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes,” J. Biomed. Opt. 17(7), 076026 (2012).
[CrossRef] [PubMed]

C. V. Regatieri, L. Branchini, J. G. Fujimoto, and J. S. Duker, “Choroidal imaging using spectral-domain optical coherence tomography,” Retina 32(5), 865–876 (2012).
[CrossRef] [PubMed]

G. Liu, W. Jia, V. Sun, B. Choi, and Z. Chen, “High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography,” Opt. Express 20(7), 7694–7705 (2012).
[CrossRef] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[CrossRef] [PubMed]

R. Motaghiannezam and S. Fraser, “Logarithmic intensity and speckle-based motion contrast methods for human retinal vasculature visualization using swept source optical coherence tomography,” Biomed. Opt. Express 3(3), 503–521 (2012).
[CrossRef] [PubMed]

V. J. Srinivasan, H. Radhakrishnan, E. H. Lo, E. T. Mandeville, J. Y. Jiang, S. Barry, and A. E. Cable, “OCT methods for capillary velocimetry,” Biomed. Opt. Express 3(3), 612–629 (2012).
[CrossRef] [PubMed]

R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. K. Wang, “Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system,” Int. J. Biomed. Imaging 2012, 9 (2012).
[CrossRef] [PubMed]

2011 (6)

J. Qin, J. Y. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med. 43(2), 122–129 (2011).
[CrossRef] [PubMed]

L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive Optical Microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt. 16(10), 106013 (2011).
[CrossRef] [PubMed]

S. Yousefi, Z. Zhi, and R. K. Wang, “Eigendecomposition-based clutter filtering technique for optical microangiography,” IEEE Trans. Biomed. Eng. 58(8), 2316–2323 (2011).
[CrossRef]

Z. W. Zhi, Y. R. Jung, Y. Jia, L. An, and R. K. Wang, “Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography,” Biomed. Opt. Express 2(5), 1059–1068 (2011).
[CrossRef] [PubMed]

P. Li, L. An, R. Reif, T. T. Shen, M. Johnstone, and R. K. Wang, “In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography,” Biomed. Opt. Express 2(11), 3109–3118 (2011).
[CrossRef] [PubMed]

L. An and R. K. Wang, “Full range complex ultrahigh sensitive optical microangiography,” Opt. Lett. 36(6), 831–833 (2011).
[CrossRef] [PubMed]

2010 (5)

2009 (1)

K. Yi, M. Mujat, W. Sun, D. Burnes, M. A. Latina, D. T. Lin, D. G. Deschler, P. A. Rubin, B. H. Park, J. F. de Boer, and T. C. Chen, “Imaging of optic nerve head drusen: improvements with spectral domain optical coherence tomography,” J. Glaucoma 18(5), 373–378 (2009).
[CrossRef] [PubMed]

2008 (2)

L. S. Lim, H. T. Aung, T. Aung, and D. T. Tan, “Corneal imaging with anterior segment optical coherence tomography for lamellar keratoplasty procedures,” Am. J. Ophthalmol. 145(1), 81–90 (2008).
[CrossRef] [PubMed]

Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express 16(16), 12350–12361 (2008).
[CrossRef] [PubMed]

2007 (3)

2006 (4)

R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artefacts in spectral-domain optical Doppler tomography,” Opt. Lett. 31(20), 3001–3003 (2006).
[CrossRef] [PubMed]

R. K. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol. 51(12), 3231–3239 (2006).
[CrossRef] [PubMed]

D. L. Kellogg., “In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges,” J. Appl. Physiol. 100(5), 1709–1718 (2006).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

2005 (3)

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005).
[CrossRef]

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology 112(2), 229–237 (2005).
[CrossRef] [PubMed]

J. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express 13(14), 5234–5239 (2005).
[CrossRef] [PubMed]

2003 (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

2001 (1)

M. Imai, H. Iijima, and N. Hanada, “Optical coherence tomography of tractional macular elevations in eyes with proliferative diabetic retinopathy,” Am. J. Ophthalmol. 132(1), 81–84 (2001).
[CrossRef] [PubMed]

2000 (2)

1998 (1)

G. Häusler and M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[CrossRef] [PubMed]

1997 (1)

1996 (2)

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology 103(8), 1260–1270 (1996).
[PubMed]

D. S. Babcock, H. Patriquin, M. LaFortune, and M. Dauzat, “Power Doppler sonography: basic principles and clinical applications in children,” Pediatr. Radiol. 26(2), 109–115 (1996).
[CrossRef] [PubMed]

1993 (1)

J. M. Rubin and R. S. Adler, “Power Doppler expands standard color capability,” Diagn. Imaging (San Franc.) 15(12), 66–69 (1993).
[PubMed]

1986 (1)

R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans. Antenn. Propag. 34(3), 276–280 (1986).
[CrossRef]

1969 (1)

J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proc. IEEE 57(8), 1408–1418 (1969).
[CrossRef]

1949 (1)

C. E. Shannon, “Communication in the presence of noise,” Proc. IRE 37(1), 10–21 (1949).
[CrossRef]

Adler, R. S.

J. M. Rubin and R. S. Adler, “Power Doppler expands standard color capability,” Diagn. Imaging (San Franc.) 15(12), 66–69 (1993).
[PubMed]

Akiba, M.

An, L.

R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. K. Wang, “Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system,” Int. J. Biomed. Imaging 2012, 9 (2012).
[CrossRef] [PubMed]

L. An and R. K. Wang, “Full range complex ultrahigh sensitive optical microangiography,” Opt. Lett. 36(6), 831–833 (2011).
[CrossRef] [PubMed]

P. Li, L. An, R. Reif, T. T. Shen, M. Johnstone, and R. K. Wang, “In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography,” Biomed. Opt. Express 2(11), 3109–3118 (2011).
[CrossRef] [PubMed]

J. Qin, J. Y. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med. 43(2), 122–129 (2011).
[CrossRef] [PubMed]

L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive Optical Microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt. 16(10), 106013 (2011).
[CrossRef] [PubMed]

Z. W. Zhi, Y. R. Jung, Y. Jia, L. An, and R. K. Wang, “Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography,” Biomed. Opt. Express 2(5), 1059–1068 (2011).
[CrossRef] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
[CrossRef] [PubMed]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
[CrossRef] [PubMed]

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[CrossRef] [PubMed]

Aung, H. T.

L. S. Lim, H. T. Aung, T. Aung, and D. T. Tan, “Corneal imaging with anterior segment optical coherence tomography for lamellar keratoplasty procedures,” Am. J. Ophthalmol. 145(1), 81–90 (2008).
[CrossRef] [PubMed]

Aung, T.

L. S. Lim, H. T. Aung, T. Aung, and D. T. Tan, “Corneal imaging with anterior segment optical coherence tomography for lamellar keratoplasty procedures,” Am. J. Ophthalmol. 145(1), 81–90 (2008).
[CrossRef] [PubMed]

Babcock, D. S.

D. S. Babcock, H. Patriquin, M. LaFortune, and M. Dauzat, “Power Doppler sonography: basic principles and clinical applications in children,” Pediatr. Radiol. 26(2), 109–115 (1996).
[CrossRef] [PubMed]

Barry, S.

Barton, J.

Barton, J. K.

Baumal, C. R.

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology 103(8), 1260–1270 (1996).
[PubMed]

Beaton, S.

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology 112(2), 229–237 (2005).
[CrossRef] [PubMed]

Branchini, L.

C. V. Regatieri, L. Branchini, J. G. Fujimoto, and J. S. Duker, “Choroidal imaging using spectral-domain optical coherence tomography,” Retina 32(5), 865–876 (2012).
[CrossRef] [PubMed]

Burnes, D.

K. Yi, M. Mujat, W. Sun, D. Burnes, M. A. Latina, D. T. Lin, D. G. Deschler, P. A. Rubin, B. H. Park, J. F. de Boer, and T. C. Chen, “Imaging of optic nerve head drusen: improvements with spectral domain optical coherence tomography,” J. Glaucoma 18(5), 373–378 (2009).
[CrossRef] [PubMed]

Bustamante, T.

Cable, A. E.

Capon, J.

J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proc. IEEE 57(8), 1408–1418 (1969).
[CrossRef]

Chen, T. C.

K. Yi, M. Mujat, W. Sun, D. Burnes, M. A. Latina, D. T. Lin, D. G. Deschler, P. A. Rubin, B. H. Park, J. F. de Boer, and T. C. Chen, “Imaging of optic nerve head drusen: improvements with spectral domain optical coherence tomography,” J. Glaucoma 18(5), 373–378 (2009).
[CrossRef] [PubMed]

Chen, Z.

Choi, B.

Coker, J. G.

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology 103(8), 1260–1270 (1996).
[PubMed]

Dauzat, M.

D. S. Babcock, H. Patriquin, M. LaFortune, and M. Dauzat, “Power Doppler sonography: basic principles and clinical applications in children,” Pediatr. Radiol. 26(2), 109–115 (1996).
[CrossRef] [PubMed]

Davis, A. M.

de Boer, J. F.

Deschler, D. G.

K. Yi, M. Mujat, W. Sun, D. Burnes, M. A. Latina, D. T. Lin, D. G. Deschler, P. A. Rubin, B. H. Park, J. F. de Boer, and T. C. Chen, “Imaging of optic nerve head drusen: improvements with spectral domain optical coherence tomography,” J. Glaucoma 18(5), 373–378 (2009).
[CrossRef] [PubMed]

Dhalla, A. H.

Drexler, W.

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology 112(2), 229–237 (2005).
[CrossRef] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Duker, J.

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology 112(2), 229–237 (2005).
[CrossRef] [PubMed]

Duker, J. S.

C. V. Regatieri, L. Branchini, J. G. Fujimoto, and J. S. Duker, “Choroidal imaging using spectral-domain optical coherence tomography,” Retina 32(5), 865–876 (2012).
[CrossRef] [PubMed]

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology 103(8), 1260–1270 (1996).
[PubMed]

Dziennis, S.

R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. K. Wang, “Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system,” Int. J. Biomed. Imaging 2012, 9 (2012).
[CrossRef] [PubMed]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Francis, P.

Fraser, S.

Fujimoto, J. G.

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[CrossRef] [PubMed]

C. V. Regatieri, L. Branchini, J. G. Fujimoto, and J. S. Duker, “Choroidal imaging using spectral-domain optical coherence tomography,” Retina 32(5), 865–876 (2012).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology 112(2), 229–237 (2005).
[CrossRef] [PubMed]

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology 103(8), 1260–1270 (1996).
[PubMed]

Gareau, D.

J. Qin, J. Y. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med. 43(2), 122–129 (2011).
[CrossRef] [PubMed]

Gruber, A.

Guan, G.

Hanada, N.

M. Imai, H. Iijima, and N. Hanada, “Optical coherence tomography of tractional macular elevations in eyes with proliferative diabetic retinopathy,” Am. J. Ophthalmol. 132(1), 81–84 (2001).
[CrossRef] [PubMed]

Hanson, S. R.

Hartl, I.

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology 112(2), 229–237 (2005).
[CrossRef] [PubMed]

Häusler, G.

G. Häusler and M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[CrossRef] [PubMed]

Hee, M. R.

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology 103(8), 1260–1270 (1996).
[PubMed]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Hong, Y.

Hornegger, J.

Huang, D.

Huang, Z.

Huber, R.

Hurst, S.

Iijima, H.

M. Imai, H. Iijima, and N. Hanada, “Optical coherence tomography of tractional macular elevations in eyes with proliferative diabetic retinopathy,” Am. J. Ophthalmol. 132(1), 81–84 (2001).
[CrossRef] [PubMed]

Imai, M.

M. Imai, H. Iijima, and N. Hanada, “Optical coherence tomography of tractional macular elevations in eyes with proliferative diabetic retinopathy,” Am. J. Ophthalmol. 132(1), 81–84 (2001).
[CrossRef] [PubMed]

Ishikawa, H.

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology 112(2), 229–237 (2005).
[CrossRef] [PubMed]

Izatt, J. A.

Jacques, S. L.

Jia, W.

Jia, Y.

Jia, Y. L.

Y. L. Jia and R. K. Wang, “Label-free in vivo optical imaging of functional microcirculations within meninges and cortex in mice,” J. Neurosci. Methods 194(1), 108–115 (2010).
[CrossRef] [PubMed]

Jiang, J. Y.

V. J. Srinivasan, H. Radhakrishnan, E. H. Lo, E. T. Mandeville, J. Y. Jiang, S. Barry, and A. E. Cable, “OCT methods for capillary velocimetry,” Biomed. Opt. Express 3(3), 612–629 (2012).
[CrossRef] [PubMed]

J. Qin, J. Y. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med. 43(2), 122–129 (2011).
[CrossRef] [PubMed]

Johnstone, M.

Jung, Y. R.

Kellogg, D. L.

D. L. Kellogg., “In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges,” J. Appl. Physiol. 100(5), 1709–1718 (2006).
[CrossRef] [PubMed]

Ko, T. H.

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology 112(2), 229–237 (2005).
[CrossRef] [PubMed]

Kowalevicz, A.

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology 112(2), 229–237 (2005).
[CrossRef] [PubMed]

Kraus, M. F.

Kulkarni, M. D.

Kuo, A.

LaFortune, M.

D. S. Babcock, H. Patriquin, M. LaFortune, and M. Dauzat, “Power Doppler sonography: basic principles and clinical applications in children,” Pediatr. Radiol. 26(2), 109–115 (1996).
[CrossRef] [PubMed]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Latina, M. A.

K. Yi, M. Mujat, W. Sun, D. Burnes, M. A. Latina, D. T. Lin, D. G. Deschler, P. A. Rubin, B. H. Park, J. F. de Boer, and T. C. Chen, “Imaging of optic nerve head drusen: improvements with spectral domain optical coherence tomography,” J. Glaucoma 18(5), 373–378 (2009).
[CrossRef] [PubMed]

Li, C.

Li, P.

P. Li, R. Reif, Z. Zhi, E. Martin, T. T. Shen, M. Johnstone, and R. K. Wang, “Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes,” J. Biomed. Opt. 17(7), 076026 (2012).
[CrossRef] [PubMed]

P. Li, L. An, R. Reif, T. T. Shen, M. Johnstone, and R. K. Wang, “In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography,” Biomed. Opt. Express 2(11), 3109–3118 (2011).
[CrossRef] [PubMed]

Lim, L. S.

L. S. Lim, H. T. Aung, T. Aung, and D. T. Tan, “Corneal imaging with anterior segment optical coherence tomography for lamellar keratoplasty procedures,” Am. J. Ophthalmol. 145(1), 81–90 (2008).
[CrossRef] [PubMed]

Lin, D. T.

K. Yi, M. Mujat, W. Sun, D. Burnes, M. A. Latina, D. T. Lin, D. G. Deschler, P. A. Rubin, B. H. Park, J. F. de Boer, and T. C. Chen, “Imaging of optic nerve head drusen: improvements with spectral domain optical coherence tomography,” J. Glaucoma 18(5), 373–378 (2009).
[CrossRef] [PubMed]

Lindner, M. W.

G. Häusler and M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[CrossRef] [PubMed]

Liu, G.

Liu, J. J.

Lo, E. H.

Ma, Z.

Makita, S.

Mandeville, E. T.

Martin, E.

P. Li, R. Reif, Z. Zhi, E. Martin, T. T. Shen, M. Johnstone, and R. K. Wang, “Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes,” J. Biomed. Opt. 17(7), 076026 (2012).
[CrossRef] [PubMed]

Mattox, C.

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology 112(2), 229–237 (2005).
[CrossRef] [PubMed]

Miura, M.

Motaghiannezam, R.

Mujat, M.

K. Yi, M. Mujat, W. Sun, D. Burnes, M. A. Latina, D. T. Lin, D. G. Deschler, P. A. Rubin, B. H. Park, J. F. de Boer, and T. C. Chen, “Imaging of optic nerve head drusen: improvements with spectral domain optical coherence tomography,” J. Glaucoma 18(5), 373–378 (2009).
[CrossRef] [PubMed]

Nankivil, D.

Nelson, J. S.

Park, B. H.

K. Yi, M. Mujat, W. Sun, D. Burnes, M. A. Latina, D. T. Lin, D. G. Deschler, P. A. Rubin, B. H. Park, J. F. de Boer, and T. C. Chen, “Imaging of optic nerve head drusen: improvements with spectral domain optical coherence tomography,” J. Glaucoma 18(5), 373–378 (2009).
[CrossRef] [PubMed]

Patriquin, H.

D. S. Babcock, H. Patriquin, M. LaFortune, and M. Dauzat, “Power Doppler sonography: basic principles and clinical applications in children,” Pediatr. Radiol. 26(2), 109–115 (1996).
[CrossRef] [PubMed]

Paunescu, L. A.

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology 112(2), 229–237 (2005).
[CrossRef] [PubMed]

Potsaid, B.

Puliafito, C. A.

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology 103(8), 1260–1270 (1996).
[PubMed]

Qin, J.

R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. K. Wang, “Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system,” Int. J. Biomed. Imaging 2012, 9 (2012).
[CrossRef] [PubMed]

J. Qin, J. Y. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med. 43(2), 122–129 (2011).
[CrossRef] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
[CrossRef] [PubMed]

Radhakrishnan, H.

Regatieri, C. V.

C. V. Regatieri, L. Branchini, J. G. Fujimoto, and J. S. Duker, “Choroidal imaging using spectral-domain optical coherence tomography,” Retina 32(5), 865–876 (2012).
[CrossRef] [PubMed]

Reichel, E.

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology 103(8), 1260–1270 (1996).
[PubMed]

Reif, R.

P. Li, R. Reif, Z. Zhi, E. Martin, T. T. Shen, M. Johnstone, and R. K. Wang, “Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes,” J. Biomed. Opt. 17(7), 076026 (2012).
[CrossRef] [PubMed]

R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. K. Wang, “Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system,” Int. J. Biomed. Imaging 2012, 9 (2012).
[CrossRef] [PubMed]

P. Li, L. An, R. Reif, T. T. Shen, M. Johnstone, and R. K. Wang, “In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography,” Biomed. Opt. Express 2(11), 3109–3118 (2011).
[CrossRef] [PubMed]

Rubin, J. M.

J. M. Rubin and R. S. Adler, “Power Doppler expands standard color capability,” Diagn. Imaging (San Franc.) 15(12), 66–69 (1993).
[PubMed]

Rubin, P. A.

K. Yi, M. Mujat, W. Sun, D. Burnes, M. A. Latina, D. T. Lin, D. G. Deschler, P. A. Rubin, B. H. Park, J. F. de Boer, and T. C. Chen, “Imaging of optic nerve head drusen: improvements with spectral domain optical coherence tomography,” J. Glaucoma 18(5), 373–378 (2009).
[CrossRef] [PubMed]

Saxer, C.

Schmidt, R.

R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans. Antenn. Propag. 34(3), 276–280 (1986).
[CrossRef]

Schuman, J. S.

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology 112(2), 229–237 (2005).
[CrossRef] [PubMed]

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology 103(8), 1260–1270 (1996).
[PubMed]

Shannon, C. E.

C. E. Shannon, “Communication in the presence of noise,” Proc. IRE 37(1), 10–21 (1949).
[CrossRef]

Shen, Q.

Shen, T. T.

P. Li, R. Reif, Z. Zhi, E. Martin, T. T. Shen, M. Johnstone, and R. K. Wang, “Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes,” J. Biomed. Opt. 17(7), 076026 (2012).
[CrossRef] [PubMed]

P. Li, L. An, R. Reif, T. T. Shen, M. Johnstone, and R. K. Wang, “In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography,” Biomed. Opt. Express 2(11), 3109–3118 (2011).
[CrossRef] [PubMed]

L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive Optical Microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt. 16(10), 106013 (2011).
[CrossRef] [PubMed]

Singh, O.

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology 112(2), 229–237 (2005).
[CrossRef] [PubMed]

Srinivasan, V. J.

Stromski, S.

Subhash, H.

Subhush, H. M.

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[CrossRef] [PubMed]

Sun, V.

Sun, W.

K. Yi, M. Mujat, W. Sun, D. Burnes, M. A. Latina, D. T. Lin, D. G. Deschler, P. A. Rubin, B. H. Park, J. F. de Boer, and T. C. Chen, “Imaging of optic nerve head drusen: improvements with spectral domain optical coherence tomography,” J. Glaucoma 18(5), 373–378 (2009).
[CrossRef] [PubMed]

Swanson, E. A.

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology 103(8), 1260–1270 (1996).
[PubMed]

Tan, D. T.

L. S. Lim, H. T. Aung, T. Aung, and D. T. Tan, “Corneal imaging with anterior segment optical coherence tomography for lamellar keratoplasty procedures,” Am. J. Ophthalmol. 145(1), 81–90 (2008).
[CrossRef] [PubMed]

Tan, O.

Tao, Y. K.

Tokayer, J.

Tomlins, P. H.

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005).
[CrossRef]

Wang, R. K.

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37(10), 1625–1627 (2012).
[CrossRef] [PubMed]

P. Li, R. Reif, Z. Zhi, E. Martin, T. T. Shen, M. Johnstone, and R. K. Wang, “Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes,” J. Biomed. Opt. 17(7), 076026 (2012).
[CrossRef] [PubMed]

R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. K. Wang, “Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system,” Int. J. Biomed. Imaging 2012, 9 (2012).
[CrossRef] [PubMed]

P. Li, L. An, R. Reif, T. T. Shen, M. Johnstone, and R. K. Wang, “In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography,” Biomed. Opt. Express 2(11), 3109–3118 (2011).
[CrossRef] [PubMed]

L. An and R. K. Wang, “Full range complex ultrahigh sensitive optical microangiography,” Opt. Lett. 36(6), 831–833 (2011).
[CrossRef] [PubMed]

L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive Optical Microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt. 16(10), 106013 (2011).
[CrossRef] [PubMed]

J. Qin, J. Y. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med. 43(2), 122–129 (2011).
[CrossRef] [PubMed]

Z. W. Zhi, Y. R. Jung, Y. Jia, L. An, and R. K. Wang, “Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography,” Biomed. Opt. Express 2(5), 1059–1068 (2011).
[CrossRef] [PubMed]

S. Yousefi, Z. Zhi, and R. K. Wang, “Eigendecomposition-based clutter filtering technique for optical microangiography,” IEEE Trans. Biomed. Eng. 58(8), 2316–2323 (2011).
[CrossRef]

Y. L. Jia and R. K. Wang, “Label-free in vivo optical imaging of functional microcirculations within meninges and cortex in mice,” J. Neurosci. Methods 194(1), 108–115 (2010).
[CrossRef] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
[CrossRef] [PubMed]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
[CrossRef] [PubMed]

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[CrossRef] [PubMed]

Y. Wang and R. K. Wang, “Autocorrelation optical coherence tomography for mapping transverse particle-flow velocity,” Opt. Lett. 35(21), 3538–3540 (2010).
[CrossRef] [PubMed]

R. K. Wang and S. Hurst, “Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 μm wavelength,” Opt. Express 15(18), 11402–11412 (2007).
[CrossRef] [PubMed]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
[CrossRef] [PubMed]

R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artefacts in spectral-domain optical Doppler tomography,” Opt. Lett. 31(20), 3001–3003 (2006).
[CrossRef] [PubMed]

R. K. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol. 51(12), 3231–3239 (2006).
[CrossRef] [PubMed]

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005).
[CrossRef]

Wang, Y.

Welch, A. J.

Wilkins, J. R.

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology 103(8), 1260–1270 (1996).
[PubMed]

Wilson, D. J.

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
[CrossRef] [PubMed]

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[CrossRef] [PubMed]

Wojtkowski, M.

Wollstein, G.

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology 112(2), 229–237 (2005).
[CrossRef] [PubMed]

Xiang, S.

Yamanari, M.

Yasuno, Y.

Yatagai, T.

Yazdanfar, S.

Yi, K.

K. Yi, M. Mujat, W. Sun, D. Burnes, M. A. Latina, D. T. Lin, D. G. Deschler, P. A. Rubin, B. H. Park, J. F. de Boer, and T. C. Chen, “Imaging of optic nerve head drusen: improvements with spectral domain optical coherence tomography,” J. Glaucoma 18(5), 373–378 (2009).
[CrossRef] [PubMed]

Yousefi, S.

S. Yousefi, Z. Zhi, and R. K. Wang, “Eigendecomposition-based clutter filtering technique for optical microangiography,” IEEE Trans. Biomed. Eng. 58(8), 2316–2323 (2011).
[CrossRef]

Zhao, Y.

Zhi, Z.

P. Li, R. Reif, Z. Zhi, E. Martin, T. T. Shen, M. Johnstone, and R. K. Wang, “Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes,” J. Biomed. Opt. 17(7), 076026 (2012).
[CrossRef] [PubMed]

R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. K. Wang, “Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system,” Int. J. Biomed. Imaging 2012, 9 (2012).
[CrossRef] [PubMed]

S. Yousefi, Z. Zhi, and R. K. Wang, “Eigendecomposition-based clutter filtering technique for optical microangiography,” IEEE Trans. Biomed. Eng. 58(8), 2316–2323 (2011).
[CrossRef]

Zhi, Z. W.

Am. J. Ophthalmol. (2)

L. S. Lim, H. T. Aung, T. Aung, and D. T. Tan, “Corneal imaging with anterior segment optical coherence tomography for lamellar keratoplasty procedures,” Am. J. Ophthalmol. 145(1), 81–90 (2008).
[CrossRef] [PubMed]

M. Imai, H. Iijima, and N. Hanada, “Optical coherence tomography of tractional macular elevations in eyes with proliferative diabetic retinopathy,” Am. J. Ophthalmol. 132(1), 81–84 (2001).
[CrossRef] [PubMed]

Biomed. Opt. Express (4)

Diagn. Imaging (San Franc.) (1)

J. M. Rubin and R. S. Adler, “Power Doppler expands standard color capability,” Diagn. Imaging (San Franc.) 15(12), 66–69 (1993).
[PubMed]

IEEE Trans. Antenn. Propag. (1)

R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans. Antenn. Propag. 34(3), 276–280 (1986).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

S. Yousefi, Z. Zhi, and R. K. Wang, “Eigendecomposition-based clutter filtering technique for optical microangiography,” IEEE Trans. Biomed. Eng. 58(8), 2316–2323 (2011).
[CrossRef]

Int. J. Biomed. Imaging (1)

R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. K. Wang, “Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system,” Int. J. Biomed. Imaging 2012, 9 (2012).
[CrossRef] [PubMed]

J. Appl. Physiol. (1)

D. L. Kellogg., “In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges,” J. Appl. Physiol. 100(5), 1709–1718 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

P. Li, R. Reif, Z. Zhi, E. Martin, T. T. Shen, M. Johnstone, and R. K. Wang, “Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes,” J. Biomed. Opt. 17(7), 076026 (2012).
[CrossRef] [PubMed]

L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive Optical Microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt. 16(10), 106013 (2011).
[CrossRef] [PubMed]

G. Häusler and M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[CrossRef] [PubMed]

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[CrossRef] [PubMed]

J. Glaucoma (1)

K. Yi, M. Mujat, W. Sun, D. Burnes, M. A. Latina, D. T. Lin, D. G. Deschler, P. A. Rubin, B. H. Park, J. F. de Boer, and T. C. Chen, “Imaging of optic nerve head drusen: improvements with spectral domain optical coherence tomography,” J. Glaucoma 18(5), 373–378 (2009).
[CrossRef] [PubMed]

J. Neurosci. Methods (1)

Y. L. Jia and R. K. Wang, “Label-free in vivo optical imaging of functional microcirculations within meninges and cortex in mice,” J. Neurosci. Methods 194(1), 108–115 (2010).
[CrossRef] [PubMed]

J. Phys. D Appl. Phys. (1)

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005).
[CrossRef]

Lasers Surg. Med. (1)

J. Qin, J. Y. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med. 43(2), 122–129 (2011).
[CrossRef] [PubMed]

Ophthalmology (2)

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler, and J. S. Schuman, “Ultrahigh-resolution optical coherence tomography in glaucoma,” Ophthalmology 112(2), 229–237 (2005).
[CrossRef] [PubMed]

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology 103(8), 1260–1270 (1996).
[PubMed]

Opt. Express (9)

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
[CrossRef] [PubMed]

R. K. Wang and S. Hurst, “Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 μm wavelength,” Opt. Express 15(18), 11402–11412 (2007).
[CrossRef] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

G. Liu, W. Jia, V. Sun, B. Choi, and Z. Chen, “High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography,” Opt. Express 20(7), 7694–7705 (2012).
[CrossRef] [PubMed]

J. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express 13(14), 5234–5239 (2005).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007).
[CrossRef] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[CrossRef] [PubMed]

Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express 16(16), 12350–12361 (2008).
[CrossRef] [PubMed]

Opt. Lett. (9)

Y. Wang and R. K. Wang, “Autocorrelation optical coherence tomography for mapping transverse particle-flow velocity,” Opt. Lett. 35(21), 3538–3540 (2010).
[CrossRef] [PubMed]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22(18), 1439–1441 (1997).
[CrossRef] [PubMed]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000).
[CrossRef] [PubMed]

Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25(18), 1358–1360 (2000).
[CrossRef] [PubMed]

R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artefacts in spectral-domain optical Doppler tomography,” Opt. Lett. 31(20), 3001–3003 (2006).
[CrossRef] [PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37(10), 1625–1627 (2012).
[CrossRef] [PubMed]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
[CrossRef] [PubMed]

A. H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett. 37(11), 1883–1885 (2012).
[CrossRef] [PubMed]

L. An and R. K. Wang, “Full range complex ultrahigh sensitive optical microangiography,” Opt. Lett. 36(6), 831–833 (2011).
[CrossRef] [PubMed]

Pediatr. Radiol. (1)

D. S. Babcock, H. Patriquin, M. LaFortune, and M. Dauzat, “Power Doppler sonography: basic principles and clinical applications in children,” Pediatr. Radiol. 26(2), 109–115 (1996).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

R. K. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol. 51(12), 3231–3239 (2006).
[CrossRef] [PubMed]

Proc. IEEE (1)

J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proc. IEEE 57(8), 1408–1418 (1969).
[CrossRef]

Proc. IRE (1)

C. E. Shannon, “Communication in the presence of noise,” Proc. IRE 37(1), 10–21 (1949).
[CrossRef]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Retina (1)

C. V. Regatieri, L. Branchini, J. G. Fujimoto, and J. S. Duker, “Choroidal imaging using spectral-domain optical coherence tomography,” Retina 32(5), 865–876 (2012).
[CrossRef] [PubMed]

Other (4)

R. S. C. Cobbold, Foundations of Biomedical Ultrasound (Oxford University Press, 2007), pp. 422–423.

J. P. Burg, “Maximum-entropy spectral analysis,” in 37th Ann. Int. Meet., Soc. Explor. Geophys., Ph.D. thesis, Oklahoma City, Okla., Oct. 31, 1967 (1967).

S. L. Maple, Jr., Digital Spectral Analysis with Applications (Prentice-Hall, 1987).

J. Baun, Vascular Ultrasound: Physics, Instrumentation and Hemodynamics (ProSono Publishing, December 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(A) Schematic diagram of the imaging system. (B) A digital image of the mouse ear pinna flat mounted. The rectangle on the ear shows a typical OCT imaging field of view which is 2.2 × 2.2 mm2 in our experiment.

Fig. 2
Fig. 2

MUSIC-OMAG visualization. (A) Lower-band power, gray-coded. (B) Upper-band power, color-coded. (C) Combined MUSIC-OMAG power, where upper-band power is overlaid on the lower-band power. (D) UHS-OMAG of the corresponding data set processing using ED method (The scale bar = 500 μm).

Fig. 3
Fig. 3

(A) UHS-OMAG image of the entire mouse ear processing using ED method, stitched together. (B) MUSIC-OMAG processing of the same data set of (A). Large vessels and faster flow are color-coded while slower flow and capillary loops are gray-coded. The bar size is 1x1 mm.

Fig. 4
Fig. 4

MUSIC-OMAG monitoring the vasculature response to the thermoregulatory challenge. During the hyperthermia (39.5 °C), new capillaries appear while most of the small vessels and capillaries disappear during hypothermia (32.0 °C), and they go back to the baseline image when returning to normothermia (37.8 °C) (The scale bar = 500 μm).

Fig. 5
Fig. 5

Normalized total blood flow (A) and normalized vessel area density (B) average in response to the thermoregulatory challenge.

Fig. 6
Fig. 6

Flow profile characteristics of vessels using MUSIC-OMAG method. (A) MUSIC-OMAG processing. (B) Zoomed in version of (A) color-coded for better visualization. (C and D) Flow profile of the vessels marked in box (I) and (II) in (B), respectively (The scale bar = 500 μm).

Fig. 7
Fig. 7

A comparison between MUSIC-OMAG (A-D), autocorrelation method (E-H) and UHS-OMAG (I-L) processing of the mouse ear capillary response to thermoregulatory challenge, where the first column (A, E and I) is the normothermia condition (37.5 °C), the second column (B, F and J) is hyperthermia condition (39.5 °C), the third column (C, G and K) is hypothermia (32.0 °C) and the last column (D, H and L) is return to the normothermia condition (37.8 °C) (The scale bar = 500 μm).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I(k)=S(k) E R 2 +2S(k) E R a(z)cos(2knz)dz +2S(k) E R a( z 1 )cos[2kn( z 1 vt)]
x[ n ]=  i=1 P a i e j( n ω i + ϕ i )
r xx [ k ]=E{ x[ n ]x[ nk ] }= i=1 P A i e jn ω i
R xx = [ r xx [ 0 ] r xx [ 1 ] r xx [ 1 ] r xx [ 0 ] r xx [ ( M1 ) ] r xx [ ( M2 ) ] r xx [ M1 ] r xx [ M2 ] r xx [ 0 ] ]
Rank{ R xx }=min{ M,P }=P.
R xx = i=1 M λ i u i u i H .
R xx = i=1 P λ i u i u i H .
R xx = k=1 P A k s k s k H =SA S H
k=P+1 M α k | S H ( ω ) u k | 2 = S H ( ω )( k=P+1 M α k u k u k H  ) S( ω )
P( ω )= 1 k=p+1 M | S H ( ω ) u k | 2

Metrics