Abstract

Traditional Doppler OCT is highly sensitive to motion artifacts due to the dependence on the Doppler angle. This limits its accuracy in clinical practice. To overcome this limitation, we use a bidirectional dual beam technique equipped with a novel rotating scanning scheme employing a Dove prism. The volume is probed from two distinct illumination directions with variable controlled incidence plane, allowing for reconstruction of the true flow velocity at arbitrary vessel orientations. The principle is implemented with Swept Source OCT at 1060nm with 100,000 A-Scans/s. We apply the system to resolve pulsatile retinal absolute blood velocity by performing segment scans around the optic nerve head and circumpapillary scan time series.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography—Technology and Applications (Springer, 2008).
  2. R. A. Leitgeb, “Current technologies for high speed and functional imaging with optical coherence tomography,” in Advances in Imaging and Electron Physics, Volume 168: Optics of Charged Particle Analyzers, P. W. Hawkes, ed. (Elsevier, 2011), Chap. 3.
  3. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol.121(2), 235–239 (2003).
    [CrossRef] [PubMed]
  4. Z. Ding, Y. Zhao, H. Ren, J. S. Nelson, and Z. Chen, “Real-time phase-resolved optical coherence tomography and optical Doppler tomography,” Opt. Express10(5), 236–245 (2002).
    [CrossRef] [PubMed]
  5. V. Yang, M. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. Wilson, and I. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express11(7), 794–809 (2003).
    [CrossRef] [PubMed]
  6. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express11(23), 3116–3121 (2003).
    [CrossRef] [PubMed]
  7. N. Nassif, B. Cense, B. Hyle Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004).
    [CrossRef] [PubMed]
  8. J. Zhang and Z. Chen, “In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography,” Opt. Express13(19), 7449–7457 (2005).
    [CrossRef] [PubMed]
  9. B. Rao, L. F. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. P. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt.13(4), 040505 (2008).
    [CrossRef] [PubMed]
  10. T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express17(5), 4166–4176 (2009).
    [CrossRef] [PubMed]
  11. I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express17(26), 23736–23754 (2009).
    [CrossRef] [PubMed]
  12. J. E. Grunwald, C. E. Riva, J. Baine, and A. J. Brucker, “Total retinal volumetric blood flow rate in diabetic patients with poor glycemic control,” Invest. Ophthalmol. Vis. Sci.33(2), 356–363 (1992).
    [PubMed]
  13. G. Garhofer, R. Werkmeister, N. Dragostinoff, and L. Schmetterer, “Retinal blood flow in healthy young subjects,” Invest. Ophthalmol. Vis. Sci.53(2), 698–703 (2012).
    [CrossRef] [PubMed]
  14. C. E. Riva, M. Geiser, and B. L. Petrig, “Ocular blood flow assessment using continuous laser Doppler flowmetry,” Acta Ophthalmol. (Copenh.)88(6), 622–629 (2010).
    [CrossRef] [PubMed]
  15. J. P. Garcia, P. T. Garcia, and R. B. Rosen, “Retinal blood flow in the normal human eye using the canon laser blood flowmeter,” Ophthalmic Res.34(5), 295–299 (2002).
    [CrossRef] [PubMed]
  16. D. Schmidl, A. Boltz, S. Kaya, M. Lasta, B. Pemp, G. Fuchsjager-Mayrl, A. Hommer, G. Garhofer, and L. Schmetterer, “Role of nitric oxide in optic nerve head blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Vis. Sci.54(3), 1964–1970 (2013).
    [CrossRef] [PubMed]
  17. R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt.12(4), 041213–041217 (2007).
    [CrossRef] [PubMed]
  18. S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett.33(8), 836–838 (2008).
    [CrossRef] [PubMed]
  19. Y. M. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.13(6), 064003 (2008).
    [CrossRef] [PubMed]
  20. Y. M. Wang, A. A. Fawzi, R. Varma, A. A. Sadun, X. B. Zhang, O. Tan, J. A. Izatt, and D. Huang, “Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases,” Invest. Ophthalmol. Vis. Sci.52(2), 840–845 (2011).
    [CrossRef] [PubMed]
  21. A. S. Singh, C. Kolbitsch, T. Schmoll, and R. A. Leitgeb, “Stable absolute flow estimation with Doppler OCT based on virtual circumpapillary scans,” Biomed. Opt. Express1(4), 1047–1058 (2010).
    [CrossRef] [PubMed]
  22. V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. C. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express18(3), 2477–2494 (2010).
    [CrossRef] [PubMed]
  23. B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express2(6), 1539–1552 (2011).
    [CrossRef] [PubMed]
  24. W. Choi, B. Baumann, J. J. Liu, A. C. Clermont, E. P. Feener, J. S. Duker, and J. G. Fujimoto, “Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT,” Biomed. Opt. Express3(5), 1047–1061 (2012).
    [CrossRef] [PubMed]
  25. T. Schmoll and R. A. Leitgeb, “Heart-beat-phase-coherent Doppler optical coherence tomography for measuring pulsatile ocular blood flow,” J. Biophotonics6(3), 275–282 (2013).
    [CrossRef] [PubMed]
  26. Y.-C. Ahn, W. Jung, and Z. Chen, “Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography,” Opt. Lett.32(11), 1587–1589 (2007).
    [CrossRef] [PubMed]
  27. C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett.32(5), 506–508 (2007).
    [CrossRef] [PubMed]
  28. B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm,” Opt. Express13(11), 3931–3944 (2005).
    [CrossRef] [PubMed]
  29. N. V. Iftimia, D. X. Hammer, R. D. Ferguson, M. Mujat, D. Vu, and A. A. Ferrante, “Dual-beam Fourier domain optical Doppler tomography of zebrafish,” Opt. Express16(18), 13624–13636 (2008).
    [CrossRef] [PubMed]
  30. R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett.33(24), 2967–2969 (2008).
    [CrossRef] [PubMed]
  31. R. M. Werkmeister, N. Dragostinoff, S. Palkovits, R. Told, A. Boltz, R. A. Leitgeb, M. Gröschl, G. Garhöfer, and L. Schmetterer, “Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.53(10), 6062–6071 (2012).
    [CrossRef] [PubMed]
  32. R. M. Werkmeister, S. Palkovits, R. Told, M. Gröschl, R. A. Leitgeb, G. Garhöfer, and L. Schmetterer, “Response of retinal blood flow to systemic hyperoxia as measured with dual-beam bidirectional Doppler Fourier-domain optical coherence tomography,” PLoS ONE7(9), e45876 (2012).
    [CrossRef] [PubMed]
  33. H. C. Hendargo, R. P. McNabb, A.-H. Dhalla, N. Shepherd, and J. A. Izatt, “Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography,” Biomed. Opt. Express2(8), 2175–2188 (2011).
    [CrossRef] [PubMed]
  34. B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt.12(4), 041211 (2007).
    [CrossRef] [PubMed]
  35. Y. L. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, “Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging,” J. Biomed. Opt.14(2), 024016 (2009).
    [CrossRef] [PubMed]
  36. C. E. Riva, G. T. Feke, B. Eberli, and V. Benary, “Bidirectional LDV system for absolute measurement of blood speed in retinal vessels,” Appl. Opt.18(13), 2301–2306 (1979).
    [CrossRef] [PubMed]
  37. C. Kolbitsch, T. Schmoll, and R. A. Leitgeb, “Histogram-based filtering for quantitative 3D retinal angiography,” J Biophotonics2(6-7), 416–425 (2009).
    [CrossRef] [PubMed]
  38. P. Meemon and J. P. Rolland, “Swept-source based, single-shot, multi-detectable velocity range Doppler optical coherence tomography,” Biomed. Opt. Express1(3), 955–966 (2010).
    [CrossRef] [PubMed]
  39. C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow rate in human retinal vessels,” Invest. Ophthalmol. Vis. Sci.26(8), 1124–1132 (1985).
    [PubMed]
  40. B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. J. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express11(17), 1980–1986 (2003).
    [CrossRef] [PubMed]
  41. B. Braaf, K. A. Vermeer, V. A. D. P. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid,” Opt. Express19(21), 20886–20903 (2011).
    [CrossRef] [PubMed]
  42. M. Miura, S. Makita, T. Iwasaki, and Y. Yasuno, “An approach to measure blood flow in single choroidal vessel using Doppler optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.53(11), 7137–7141 (2012).
    [CrossRef] [PubMed]
  43. T. Schmoll, A. S. Singh, C. Blatter, S. Schriefl, C. Ahlers, U. Schmidt-Erfurth, and R. A. Leitgeb, “Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension,” Biomed. Opt. Express2(5), 1159–1168 (2011).
    [CrossRef] [PubMed]
  44. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express18(8), 8220–8228 (2010).
    [CrossRef] [PubMed]
  45. D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express2(6), 1504–1513 (2011).
    [CrossRef] [PubMed]
  46. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett.33(13), 1530–1532 (2008).
    [CrossRef] [PubMed]
  47. B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express20(18), 20516–20534 (2012).
    [CrossRef] [PubMed]
  48. C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt.17(7), 070505 (2012).
    [CrossRef] [PubMed]

2013 (2)

D. Schmidl, A. Boltz, S. Kaya, M. Lasta, B. Pemp, G. Fuchsjager-Mayrl, A. Hommer, G. Garhofer, and L. Schmetterer, “Role of nitric oxide in optic nerve head blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Vis. Sci.54(3), 1964–1970 (2013).
[CrossRef] [PubMed]

T. Schmoll and R. A. Leitgeb, “Heart-beat-phase-coherent Doppler optical coherence tomography for measuring pulsatile ocular blood flow,” J. Biophotonics6(3), 275–282 (2013).
[CrossRef] [PubMed]

2012 (7)

R. M. Werkmeister, N. Dragostinoff, S. Palkovits, R. Told, A. Boltz, R. A. Leitgeb, M. Gröschl, G. Garhöfer, and L. Schmetterer, “Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.53(10), 6062–6071 (2012).
[CrossRef] [PubMed]

R. M. Werkmeister, S. Palkovits, R. Told, M. Gröschl, R. A. Leitgeb, G. Garhöfer, and L. Schmetterer, “Response of retinal blood flow to systemic hyperoxia as measured with dual-beam bidirectional Doppler Fourier-domain optical coherence tomography,” PLoS ONE7(9), e45876 (2012).
[CrossRef] [PubMed]

M. Miura, S. Makita, T. Iwasaki, and Y. Yasuno, “An approach to measure blood flow in single choroidal vessel using Doppler optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.53(11), 7137–7141 (2012).
[CrossRef] [PubMed]

C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt.17(7), 070505 (2012).
[CrossRef] [PubMed]

G. Garhofer, R. Werkmeister, N. Dragostinoff, and L. Schmetterer, “Retinal blood flow in healthy young subjects,” Invest. Ophthalmol. Vis. Sci.53(2), 698–703 (2012).
[CrossRef] [PubMed]

W. Choi, B. Baumann, J. J. Liu, A. C. Clermont, E. P. Feener, J. S. Duker, and J. G. Fujimoto, “Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT,” Biomed. Opt. Express3(5), 1047–1061 (2012).
[CrossRef] [PubMed]

B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express20(18), 20516–20534 (2012).
[CrossRef] [PubMed]

2011 (6)

T. Schmoll, A. S. Singh, C. Blatter, S. Schriefl, C. Ahlers, U. Schmidt-Erfurth, and R. A. Leitgeb, “Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension,” Biomed. Opt. Express2(5), 1159–1168 (2011).
[CrossRef] [PubMed]

D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express2(6), 1504–1513 (2011).
[CrossRef] [PubMed]

B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express2(6), 1539–1552 (2011).
[CrossRef] [PubMed]

H. C. Hendargo, R. P. McNabb, A.-H. Dhalla, N. Shepherd, and J. A. Izatt, “Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography,” Biomed. Opt. Express2(8), 2175–2188 (2011).
[CrossRef] [PubMed]

B. Braaf, K. A. Vermeer, V. A. D. P. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid,” Opt. Express19(21), 20886–20903 (2011).
[CrossRef] [PubMed]

Y. M. Wang, A. A. Fawzi, R. Varma, A. A. Sadun, X. B. Zhang, O. Tan, J. A. Izatt, and D. Huang, “Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases,” Invest. Ophthalmol. Vis. Sci.52(2), 840–845 (2011).
[CrossRef] [PubMed]

2010 (5)

2009 (4)

Y. L. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, “Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging,” J. Biomed. Opt.14(2), 024016 (2009).
[CrossRef] [PubMed]

C. Kolbitsch, T. Schmoll, and R. A. Leitgeb, “Histogram-based filtering for quantitative 3D retinal angiography,” J Biophotonics2(6-7), 416–425 (2009).
[CrossRef] [PubMed]

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express17(5), 4166–4176 (2009).
[CrossRef] [PubMed]

I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express17(26), 23736–23754 (2009).
[CrossRef] [PubMed]

2008 (6)

B. Rao, L. F. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. P. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt.13(4), 040505 (2008).
[CrossRef] [PubMed]

Y. M. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.13(6), 064003 (2008).
[CrossRef] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett.33(8), 836–838 (2008).
[CrossRef] [PubMed]

A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett.33(13), 1530–1532 (2008).
[CrossRef] [PubMed]

N. V. Iftimia, D. X. Hammer, R. D. Ferguson, M. Mujat, D. Vu, and A. A. Ferrante, “Dual-beam Fourier domain optical Doppler tomography of zebrafish,” Opt. Express16(18), 13624–13636 (2008).
[CrossRef] [PubMed]

R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett.33(24), 2967–2969 (2008).
[CrossRef] [PubMed]

2007 (4)

C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett.32(5), 506–508 (2007).
[CrossRef] [PubMed]

Y.-C. Ahn, W. Jung, and Z. Chen, “Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography,” Opt. Lett.32(11), 1587–1589 (2007).
[CrossRef] [PubMed]

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt.12(4), 041213–041217 (2007).
[CrossRef] [PubMed]

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt.12(4), 041211 (2007).
[CrossRef] [PubMed]

2005 (2)

2004 (1)

2003 (4)

2002 (2)

J. P. Garcia, P. T. Garcia, and R. B. Rosen, “Retinal blood flow in the normal human eye using the canon laser blood flowmeter,” Ophthalmic Res.34(5), 295–299 (2002).
[CrossRef] [PubMed]

Z. Ding, Y. Zhao, H. Ren, J. S. Nelson, and Z. Chen, “Real-time phase-resolved optical coherence tomography and optical Doppler tomography,” Opt. Express10(5), 236–245 (2002).
[CrossRef] [PubMed]

1992 (1)

J. E. Grunwald, C. E. Riva, J. Baine, and A. J. Brucker, “Total retinal volumetric blood flow rate in diabetic patients with poor glycemic control,” Invest. Ophthalmol. Vis. Sci.33(2), 356–363 (1992).
[PubMed]

1985 (1)

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow rate in human retinal vessels,” Invest. Ophthalmol. Vis. Sci.26(8), 1124–1132 (1985).
[PubMed]

1979 (1)

Ahlers, C.

Ahn, Y.-C.

Ahnelt, P.

An, L.

Andre, R.

C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt.17(7), 070505 (2012).
[CrossRef] [PubMed]

Bachmann, A. H.

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt.12(4), 041213–041217 (2007).
[CrossRef] [PubMed]

Baine, J.

J. E. Grunwald, C. E. Riva, J. Baine, and A. J. Brucker, “Total retinal volumetric blood flow rate in diabetic patients with poor glycemic control,” Invest. Ophthalmol. Vis. Sci.33(2), 356–363 (1992).
[PubMed]

Bajraszewski, T.

Baumann, B.

Benary, V.

Bizheva, K.

Blatter, C.

C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt.17(7), 070505 (2012).
[CrossRef] [PubMed]

T. Schmoll, A. S. Singh, C. Blatter, S. Schriefl, C. Ahlers, U. Schmidt-Erfurth, and R. A. Leitgeb, “Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension,” Biomed. Opt. Express2(5), 1159–1168 (2011).
[CrossRef] [PubMed]

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt.12(4), 041213–041217 (2007).
[CrossRef] [PubMed]

Blinder, S.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt.12(4), 041211 (2007).
[CrossRef] [PubMed]

Boas, D. A.

Boltz, A.

D. Schmidl, A. Boltz, S. Kaya, M. Lasta, B. Pemp, G. Fuchsjager-Mayrl, A. Hommer, G. Garhofer, and L. Schmetterer, “Role of nitric oxide in optic nerve head blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Vis. Sci.54(3), 1964–1970 (2013).
[CrossRef] [PubMed]

R. M. Werkmeister, N. Dragostinoff, S. Palkovits, R. Told, A. Boltz, R. A. Leitgeb, M. Gröschl, G. Garhöfer, and L. Schmetterer, “Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.53(10), 6062–6071 (2012).
[CrossRef] [PubMed]

Bouma, B. E.

Bower, B. A.

Y. M. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.13(6), 064003 (2008).
[CrossRef] [PubMed]

Braaf, B.

Brucker, A. J.

J. E. Grunwald, C. E. Riva, J. Baine, and A. J. Brucker, “Total retinal volumetric blood flow rate in diabetic patients with poor glycemic control,” Invest. Ophthalmol. Vis. Sci.33(2), 356–363 (1992).
[PubMed]

Burnes, D. L.

Y. L. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, “Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging,” J. Biomed. Opt.14(2), 024016 (2009).
[CrossRef] [PubMed]

Cable, A.

Cable, A. E.

Cense, B.

Chen, T. C.

Chen, Y. L.

Y. L. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, “Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging,” J. Biomed. Opt.14(2), 024016 (2009).
[CrossRef] [PubMed]

Chen, Z.

Chen, Z. P.

B. Rao, L. F. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. P. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt.13(4), 040505 (2008).
[CrossRef] [PubMed]

Chiang, H. K.

B. Rao, L. F. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. P. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt.13(4), 040505 (2008).
[CrossRef] [PubMed]

Choi, W.

Clermont, A. C.

de Boer, J. F.

de Bruin, M.

Y. L. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, “Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging,” J. Biomed. Opt.14(2), 024016 (2009).
[CrossRef] [PubMed]

Dhalla, A.-H.

Ding, Z.

Dragostinoff, N.

R. M. Werkmeister, N. Dragostinoff, S. Palkovits, R. Told, A. Boltz, R. A. Leitgeb, M. Gröschl, G. Garhöfer, and L. Schmetterer, “Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.53(10), 6062–6071 (2012).
[CrossRef] [PubMed]

G. Garhofer, R. Werkmeister, N. Dragostinoff, and L. Schmetterer, “Retinal blood flow in healthy young subjects,” Invest. Ophthalmol. Vis. Sci.53(2), 698–703 (2012).
[CrossRef] [PubMed]

R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett.33(24), 2967–2969 (2008).
[CrossRef] [PubMed]

Drexler, W.

Duker, J. S.

Eberli, B.

Fabritius, T.

Falkner-Radler, C.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt.12(4), 041211 (2007).
[CrossRef] [PubMed]

Fawzi, A. A.

Y. M. Wang, A. A. Fawzi, R. Varma, A. A. Sadun, X. B. Zhang, O. Tan, J. A. Izatt, and D. Huang, “Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases,” Invest. Ophthalmol. Vis. Sci.52(2), 840–845 (2011).
[CrossRef] [PubMed]

Feener, E. P.

Feke, G. T.

Fercher, A.

Fercher, A. F.

Ferguson, R. D.

Ferrante, A. A.

Fingler, J.

Fraser, S. E.

Fuchsjager-Mayrl, G.

D. Schmidl, A. Boltz, S. Kaya, M. Lasta, B. Pemp, G. Fuchsjager-Mayrl, A. Hommer, G. Garhofer, and L. Schmetterer, “Role of nitric oxide in optic nerve head blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Vis. Sci.54(3), 1964–1970 (2013).
[CrossRef] [PubMed]

Fujimoto, J. G.

Garcia, J. P.

J. P. Garcia, P. T. Garcia, and R. B. Rosen, “Retinal blood flow in the normal human eye using the canon laser blood flowmeter,” Ophthalmic Res.34(5), 295–299 (2002).
[CrossRef] [PubMed]

Garcia, P. T.

J. P. Garcia, P. T. Garcia, and R. B. Rosen, “Retinal blood flow in the normal human eye using the canon laser blood flowmeter,” Ophthalmic Res.34(5), 295–299 (2002).
[CrossRef] [PubMed]

Garhofer, G.

D. Schmidl, A. Boltz, S. Kaya, M. Lasta, B. Pemp, G. Fuchsjager-Mayrl, A. Hommer, G. Garhofer, and L. Schmetterer, “Role of nitric oxide in optic nerve head blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Vis. Sci.54(3), 1964–1970 (2013).
[CrossRef] [PubMed]

G. Garhofer, R. Werkmeister, N. Dragostinoff, and L. Schmetterer, “Retinal blood flow in healthy young subjects,” Invest. Ophthalmol. Vis. Sci.53(2), 698–703 (2012).
[CrossRef] [PubMed]

Garhöfer, G.

R. M. Werkmeister, N. Dragostinoff, S. Palkovits, R. Told, A. Boltz, R. A. Leitgeb, M. Gröschl, G. Garhöfer, and L. Schmetterer, “Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.53(10), 6062–6071 (2012).
[CrossRef] [PubMed]

R. M. Werkmeister, S. Palkovits, R. Told, M. Gröschl, R. A. Leitgeb, G. Garhöfer, and L. Schmetterer, “Response of retinal blood flow to systemic hyperoxia as measured with dual-beam bidirectional Doppler Fourier-domain optical coherence tomography,” PLoS ONE7(9), e45876 (2012).
[CrossRef] [PubMed]

Geiser, M.

C. E. Riva, M. Geiser, and B. L. Petrig, “Ocular blood flow assessment using continuous laser Doppler flowmetry,” Acta Ophthalmol. (Copenh.)88(6), 622–629 (2010).
[CrossRef] [PubMed]

Glittenberg, C.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt.12(4), 041211 (2007).
[CrossRef] [PubMed]

Gorczynska, I.

Gordon, M.

Götzinger, E.

Grajciar, B.

C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt.17(7), 070505 (2012).
[CrossRef] [PubMed]

Gröschl, M.

R. M. Werkmeister, N. Dragostinoff, S. Palkovits, R. Told, A. Boltz, R. A. Leitgeb, M. Gröschl, G. Garhöfer, and L. Schmetterer, “Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.53(10), 6062–6071 (2012).
[CrossRef] [PubMed]

R. M. Werkmeister, S. Palkovits, R. Told, M. Gröschl, R. A. Leitgeb, G. Garhöfer, and L. Schmetterer, “Response of retinal blood flow to systemic hyperoxia as measured with dual-beam bidirectional Doppler Fourier-domain optical coherence tomography,” PLoS ONE7(9), e45876 (2012).
[CrossRef] [PubMed]

Grulkowski, I.

Grunwald, J. E.

J. E. Grunwald, C. E. Riva, J. Baine, and A. J. Brucker, “Total retinal volumetric blood flow rate in diabetic patients with poor glycemic control,” Invest. Ophthalmol. Vis. Sci.33(2), 356–363 (1992).
[PubMed]

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow rate in human retinal vessels,” Invest. Ophthalmol. Vis. Sci.26(8), 1124–1132 (1985).
[PubMed]

Hammer, D. X.

Hendargo, H. C.

Hermann, B.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt.12(4), 041211 (2007).
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. J. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express11(17), 1980–1986 (2003).
[CrossRef] [PubMed]

Hitzenberger, C. K.

Hofer, B.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt.12(4), 041211 (2007).
[CrossRef] [PubMed]

Holzwarth, R.

Hommer, A.

D. Schmidl, A. Boltz, S. Kaya, M. Lasta, B. Pemp, G. Fuchsjager-Mayrl, A. Hommer, G. Garhofer, and L. Schmetterer, “Role of nitric oxide in optic nerve head blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Vis. Sci.54(3), 1964–1970 (2013).
[CrossRef] [PubMed]

Hornegger, J.

Huang, D.

B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express2(6), 1539–1552 (2011).
[CrossRef] [PubMed]

Y. M. Wang, A. A. Fawzi, R. Varma, A. A. Sadun, X. B. Zhang, O. Tan, J. A. Izatt, and D. Huang, “Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases,” Invest. Ophthalmol. Vis. Sci.52(2), 840–845 (2011).
[CrossRef] [PubMed]

Y. M. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.13(6), 064003 (2008).
[CrossRef] [PubMed]

C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett.32(5), 506–508 (2007).
[CrossRef] [PubMed]

Huber, R.

C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt.17(7), 070505 (2012).
[CrossRef] [PubMed]

Hyle Park, B.

Iftimia, N. V.

Iwasaki, T.

M. Miura, S. Makita, T. Iwasaki, and Y. Yasuno, “An approach to measure blood flow in single choroidal vessel using Doppler optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.53(11), 7137–7141 (2012).
[CrossRef] [PubMed]

Izatt, J. A.

Y. M. Wang, A. A. Fawzi, R. Varma, A. A. Sadun, X. B. Zhang, O. Tan, J. A. Izatt, and D. Huang, “Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases,” Invest. Ophthalmol. Vis. Sci.52(2), 840–845 (2011).
[CrossRef] [PubMed]

H. C. Hendargo, R. P. McNabb, A.-H. Dhalla, N. Shepherd, and J. A. Izatt, “Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography,” Biomed. Opt. Express2(8), 2175–2188 (2011).
[CrossRef] [PubMed]

Y. M. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.13(6), 064003 (2008).
[CrossRef] [PubMed]

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol.121(2), 235–239 (2003).
[CrossRef] [PubMed]

Jiang, J.

Jung, W.

Kaya, S.

D. Schmidl, A. Boltz, S. Kaya, M. Lasta, B. Pemp, G. Fuchsjager-Mayrl, A. Hommer, G. Garhofer, and L. Schmetterer, “Role of nitric oxide in optic nerve head blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Vis. Sci.54(3), 1964–1970 (2013).
[CrossRef] [PubMed]

Khurana, M.

Kim, D. Y.

Klein, T.

C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt.17(7), 070505 (2012).
[CrossRef] [PubMed]

Knight, J.

Kolbitsch, C.

Kowalczyk, A.

Kraus, M. F.

Kuppermann, B. D.

B. Rao, L. F. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. P. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt.13(4), 040505 (2008).
[CrossRef] [PubMed]

Kurtz, R. M.

B. Rao, L. F. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. P. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt.13(4), 040505 (2008).
[CrossRef] [PubMed]

Lasser, T.

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt.12(4), 041213–041217 (2007).
[CrossRef] [PubMed]

Lasta, M.

D. Schmidl, A. Boltz, S. Kaya, M. Lasta, B. Pemp, G. Fuchsjager-Mayrl, A. Hommer, G. Garhofer, and L. Schmetterer, “Role of nitric oxide in optic nerve head blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Vis. Sci.54(3), 1964–1970 (2013).
[CrossRef] [PubMed]

Leitgeb, R. A.

T. Schmoll and R. A. Leitgeb, “Heart-beat-phase-coherent Doppler optical coherence tomography for measuring pulsatile ocular blood flow,” J. Biophotonics6(3), 275–282 (2013).
[CrossRef] [PubMed]

R. M. Werkmeister, S. Palkovits, R. Told, M. Gröschl, R. A. Leitgeb, G. Garhöfer, and L. Schmetterer, “Response of retinal blood flow to systemic hyperoxia as measured with dual-beam bidirectional Doppler Fourier-domain optical coherence tomography,” PLoS ONE7(9), e45876 (2012).
[CrossRef] [PubMed]

C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt.17(7), 070505 (2012).
[CrossRef] [PubMed]

R. M. Werkmeister, N. Dragostinoff, S. Palkovits, R. Told, A. Boltz, R. A. Leitgeb, M. Gröschl, G. Garhöfer, and L. Schmetterer, “Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.53(10), 6062–6071 (2012).
[CrossRef] [PubMed]

T. Schmoll, A. S. Singh, C. Blatter, S. Schriefl, C. Ahlers, U. Schmidt-Erfurth, and R. A. Leitgeb, “Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension,” Biomed. Opt. Express2(5), 1159–1168 (2011).
[CrossRef] [PubMed]

A. S. Singh, C. Kolbitsch, T. Schmoll, and R. A. Leitgeb, “Stable absolute flow estimation with Doppler OCT based on virtual circumpapillary scans,” Biomed. Opt. Express1(4), 1047–1058 (2010).
[CrossRef] [PubMed]

I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express17(26), 23736–23754 (2009).
[CrossRef] [PubMed]

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express17(5), 4166–4176 (2009).
[CrossRef] [PubMed]

C. Kolbitsch, T. Schmoll, and R. A. Leitgeb, “Histogram-based filtering for quantitative 3D retinal angiography,” J Biophotonics2(6-7), 416–425 (2009).
[CrossRef] [PubMed]

R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett.33(24), 2967–2969 (2008).
[CrossRef] [PubMed]

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt.12(4), 041213–041217 (2007).
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express11(23), 3116–3121 (2003).
[CrossRef] [PubMed]

Leung, M. K. K.

Liu, J. J.

Lo, S.

Makita, S.

M. Miura, S. Makita, T. Iwasaki, and Y. Yasuno, “An approach to measure blood flow in single choroidal vessel using Doppler optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.53(11), 7137–7141 (2012).
[CrossRef] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett.33(8), 836–838 (2008).
[CrossRef] [PubMed]

Mariampillai, A.

McNabb, R. P.

Meemon, P.

Mei, M.

Michaely, R.

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt.12(4), 041213–041217 (2007).
[CrossRef] [PubMed]

Miura, M.

M. Miura, S. Makita, T. Iwasaki, and Y. Yasuno, “An approach to measure blood flow in single choroidal vessel using Doppler optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.53(11), 7137–7141 (2012).
[CrossRef] [PubMed]

Mok, A.

Morgan, J. E.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt.12(4), 041211 (2007).
[CrossRef] [PubMed]

Moriyama, E. H.

Mujat, M.

Munce, N. R.

Nassif, N.

Nelson, J. S.

Palkovits, S.

R. M. Werkmeister, S. Palkovits, R. Told, M. Gröschl, R. A. Leitgeb, G. Garhöfer, and L. Schmetterer, “Response of retinal blood flow to systemic hyperoxia as measured with dual-beam bidirectional Doppler Fourier-domain optical coherence tomography,” PLoS ONE7(9), e45876 (2012).
[CrossRef] [PubMed]

R. M. Werkmeister, N. Dragostinoff, S. Palkovits, R. Told, A. Boltz, R. A. Leitgeb, M. Gröschl, G. Garhöfer, and L. Schmetterer, “Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.53(10), 6062–6071 (2012).
[CrossRef] [PubMed]

Park, B. H.

Pedersen, C. J.

Pekar, J.

Pemp, B.

D. Schmidl, A. Boltz, S. Kaya, M. Lasta, B. Pemp, G. Fuchsjager-Mayrl, A. Hommer, G. Garhofer, and L. Schmetterer, “Role of nitric oxide in optic nerve head blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Vis. Sci.54(3), 1964–1970 (2013).
[CrossRef] [PubMed]

Petrig, B. L.

C. E. Riva, M. Geiser, and B. L. Petrig, “Ocular blood flow assessment using continuous laser Doppler flowmetry,” Acta Ophthalmol. (Copenh.)88(6), 622–629 (2010).
[CrossRef] [PubMed]

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow rate in human retinal vessels,” Invest. Ophthalmol. Vis. Sci.26(8), 1124–1132 (1985).
[PubMed]

Pierce, M. C.

Pircher, M.

Potsaid, B.

Povazay, B.

Považay, B.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt.12(4), 041211 (2007).
[CrossRef] [PubMed]

Qi, B.

Qin, J.

Rao, B.

B. Rao, L. F. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. P. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt.13(4), 040505 (2008).
[CrossRef] [PubMed]

Ren, H.

Riva, C. E.

C. E. Riva, M. Geiser, and B. L. Petrig, “Ocular blood flow assessment using continuous laser Doppler flowmetry,” Acta Ophthalmol. (Copenh.)88(6), 622–629 (2010).
[CrossRef] [PubMed]

J. E. Grunwald, C. E. Riva, J. Baine, and A. J. Brucker, “Total retinal volumetric blood flow rate in diabetic patients with poor glycemic control,” Invest. Ophthalmol. Vis. Sci.33(2), 356–363 (1992).
[PubMed]

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow rate in human retinal vessels,” Invest. Ophthalmol. Vis. Sci.26(8), 1124–1132 (1985).
[PubMed]

C. E. Riva, G. T. Feke, B. Eberli, and V. Benary, “Bidirectional LDV system for absolute measurement of blood speed in retinal vessels,” Appl. Opt.18(13), 2301–2306 (1979).
[CrossRef] [PubMed]

Rolland, J. P.

Rollins, A. M.

C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett.32(5), 506–508 (2007).
[CrossRef] [PubMed]

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol.121(2), 235–239 (2003).
[CrossRef] [PubMed]

Rosen, R. B.

J. P. Garcia, P. T. Garcia, and R. B. Rosen, “Retinal blood flow in the normal human eye using the canon laser blood flowmeter,” Ophthalmic Res.34(5), 295–299 (2002).
[CrossRef] [PubMed]

Russell, P. S. J.

Ruvinskaya, S.

Sadun, A. A.

Y. M. Wang, A. A. Fawzi, R. Varma, A. A. Sadun, X. B. Zhang, O. Tan, J. A. Izatt, and D. Huang, “Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases,” Invest. Ophthalmol. Vis. Sci.52(2), 840–845 (2011).
[CrossRef] [PubMed]

Sakadzic, S.

Sattmann, H.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt.12(4), 041211 (2007).
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. J. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express11(17), 1980–1986 (2003).
[CrossRef] [PubMed]

Schmetterer, L.

D. Schmidl, A. Boltz, S. Kaya, M. Lasta, B. Pemp, G. Fuchsjager-Mayrl, A. Hommer, G. Garhofer, and L. Schmetterer, “Role of nitric oxide in optic nerve head blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Vis. Sci.54(3), 1964–1970 (2013).
[CrossRef] [PubMed]

G. Garhofer, R. Werkmeister, N. Dragostinoff, and L. Schmetterer, “Retinal blood flow in healthy young subjects,” Invest. Ophthalmol. Vis. Sci.53(2), 698–703 (2012).
[CrossRef] [PubMed]

R. M. Werkmeister, N. Dragostinoff, S. Palkovits, R. Told, A. Boltz, R. A. Leitgeb, M. Gröschl, G. Garhöfer, and L. Schmetterer, “Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.53(10), 6062–6071 (2012).
[CrossRef] [PubMed]

R. M. Werkmeister, S. Palkovits, R. Told, M. Gröschl, R. A. Leitgeb, G. Garhöfer, and L. Schmetterer, “Response of retinal blood flow to systemic hyperoxia as measured with dual-beam bidirectional Doppler Fourier-domain optical coherence tomography,” PLoS ONE7(9), e45876 (2012).
[CrossRef] [PubMed]

R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett.33(24), 2967–2969 (2008).
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express11(23), 3116–3121 (2003).
[CrossRef] [PubMed]

Schmidl, D.

D. Schmidl, A. Boltz, S. Kaya, M. Lasta, B. Pemp, G. Fuchsjager-Mayrl, A. Hommer, G. Garhofer, and L. Schmetterer, “Role of nitric oxide in optic nerve head blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Vis. Sci.54(3), 1964–1970 (2013).
[CrossRef] [PubMed]

Schmidt-Erfurth, U.

Schmoll, T.

T. Schmoll and R. A. Leitgeb, “Heart-beat-phase-coherent Doppler optical coherence tomography for measuring pulsatile ocular blood flow,” J. Biophotonics6(3), 275–282 (2013).
[CrossRef] [PubMed]

C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt.17(7), 070505 (2012).
[CrossRef] [PubMed]

T. Schmoll, A. S. Singh, C. Blatter, S. Schriefl, C. Ahlers, U. Schmidt-Erfurth, and R. A. Leitgeb, “Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension,” Biomed. Opt. Express2(5), 1159–1168 (2011).
[CrossRef] [PubMed]

A. S. Singh, C. Kolbitsch, T. Schmoll, and R. A. Leitgeb, “Stable absolute flow estimation with Doppler OCT based on virtual circumpapillary scans,” Biomed. Opt. Express1(4), 1047–1058 (2010).
[CrossRef] [PubMed]

C. Kolbitsch, T. Schmoll, and R. A. Leitgeb, “Histogram-based filtering for quantitative 3D retinal angiography,” J Biophotonics2(6-7), 416–425 (2009).
[CrossRef] [PubMed]

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express17(5), 4166–4176 (2009).
[CrossRef] [PubMed]

Schriefl, S.

Schubert, C.

Schwartz, D. M.

Seng-Yue, E.

Shepherd, N.

Shure, M. A.

Sicam, V. A. D. P.

Sinclair, S. H.

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow rate in human retinal vessels,” Invest. Ophthalmol. Vis. Sci.26(8), 1124–1132 (1985).
[PubMed]

Singh, A. S.

Srinivasan, V. J.

Standish, B. A.

Szkulmowska, A.

Szkulmowski, M.

Szlag, D.

Tan, O.

Y. M. Wang, A. A. Fawzi, R. Varma, A. A. Sadun, X. B. Zhang, O. Tan, J. A. Izatt, and D. Huang, “Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases,” Invest. Ophthalmol. Vis. Sci.52(2), 840–845 (2011).
[CrossRef] [PubMed]

Y. M. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.13(6), 064003 (2008).
[CrossRef] [PubMed]

Tearney, G. J.

Told, R.

R. M. Werkmeister, S. Palkovits, R. Told, M. Gröschl, R. A. Leitgeb, G. Garhöfer, and L. Schmetterer, “Response of retinal blood flow to systemic hyperoxia as measured with dual-beam bidirectional Doppler Fourier-domain optical coherence tomography,” PLoS ONE7(9), e45876 (2012).
[CrossRef] [PubMed]

R. M. Werkmeister, N. Dragostinoff, S. Palkovits, R. Told, A. Boltz, R. A. Leitgeb, M. Gröschl, G. Garhöfer, and L. Schmetterer, “Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.53(10), 6062–6071 (2012).
[CrossRef] [PubMed]

Unterhuber, A.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt.12(4), 041211 (2007).
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. J. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express11(17), 1980–1986 (2003).
[CrossRef] [PubMed]

van Meurs, J. C.

van Zeeburg, E.

Varma, R.

Y. M. Wang, A. A. Fawzi, R. Varma, A. A. Sadun, X. B. Zhang, O. Tan, J. A. Izatt, and D. Huang, “Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases,” Invest. Ophthalmol. Vis. Sci.52(2), 840–845 (2011).
[CrossRef] [PubMed]

Vermeer, K. A.

Vienola, K. V.

Villiger, M. L.

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt.12(4), 041213–041217 (2007).
[CrossRef] [PubMed]

Vitkin, I.

Vitkin, I. A.

Vu, D.

Wadsworth, W.

Wang, R. K.

Wang, Y. M.

Y. M. Wang, A. A. Fawzi, R. Varma, A. A. Sadun, X. B. Zhang, O. Tan, J. A. Izatt, and D. Huang, “Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases,” Invest. Ophthalmol. Vis. Sci.52(2), 840–845 (2011).
[CrossRef] [PubMed]

Y. M. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.13(6), 064003 (2008).
[CrossRef] [PubMed]

Werkmeister, R.

G. Garhofer, R. Werkmeister, N. Dragostinoff, and L. Schmetterer, “Retinal blood flow in healthy young subjects,” Invest. Ophthalmol. Vis. Sci.53(2), 698–703 (2012).
[CrossRef] [PubMed]

Werkmeister, R. M.

R. M. Werkmeister, N. Dragostinoff, S. Palkovits, R. Told, A. Boltz, R. A. Leitgeb, M. Gröschl, G. Garhöfer, and L. Schmetterer, “Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.53(10), 6062–6071 (2012).
[CrossRef] [PubMed]

R. M. Werkmeister, S. Palkovits, R. Told, M. Gröschl, R. A. Leitgeb, G. Garhöfer, and L. Schmetterer, “Response of retinal blood flow to systemic hyperoxia as measured with dual-beam bidirectional Doppler Fourier-domain optical coherence tomography,” PLoS ONE7(9), e45876 (2012).
[CrossRef] [PubMed]

R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett.33(24), 2967–2969 (2008).
[CrossRef] [PubMed]

Werner, J. S.

Wieser, W.

C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt.17(7), 070505 (2012).
[CrossRef] [PubMed]

Wilson, B.

Wilson, B. C.

Wojtkowski, M.

Wu, W. C.

Yang, V.

Yang, V. X. D.

Yasuno, Y.

M. Miura, S. Makita, T. Iwasaki, and Y. Yasuno, “An approach to measure blood flow in single choroidal vessel using Doppler optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.53(11), 7137–7141 (2012).
[CrossRef] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett.33(8), 836–838 (2008).
[CrossRef] [PubMed]

Yazdanfar, S.

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol.121(2), 235–239 (2003).
[CrossRef] [PubMed]

Yu, L. F.

B. Rao, L. F. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. P. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt.13(4), 040505 (2008).
[CrossRef] [PubMed]

Yun, S. H.

Zacharias, L. C.

B. Rao, L. F. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. P. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt.13(4), 040505 (2008).
[CrossRef] [PubMed]

Zawadzki, R. J.

Zeiler, F.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt.12(4), 041211 (2007).
[CrossRef] [PubMed]

Zhang, J.

Zhang, X. B.

Y. M. Wang, A. A. Fawzi, R. Varma, A. A. Sadun, X. B. Zhang, O. Tan, J. A. Izatt, and D. Huang, “Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases,” Invest. Ophthalmol. Vis. Sci.52(2), 840–845 (2011).
[CrossRef] [PubMed]

Zhao, Y.

Acta Ophthalmol. (Copenh.) (1)

C. E. Riva, M. Geiser, and B. L. Petrig, “Ocular blood flow assessment using continuous laser Doppler flowmetry,” Acta Ophthalmol. (Copenh.)88(6), 622–629 (2010).
[CrossRef] [PubMed]

Appl. Opt. (1)

Arch. Ophthalmol. (1)

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol.121(2), 235–239 (2003).
[CrossRef] [PubMed]

Biomed. Opt. Express (7)

P. Meemon and J. P. Rolland, “Swept-source based, single-shot, multi-detectable velocity range Doppler optical coherence tomography,” Biomed. Opt. Express1(3), 955–966 (2010).
[CrossRef] [PubMed]

A. S. Singh, C. Kolbitsch, T. Schmoll, and R. A. Leitgeb, “Stable absolute flow estimation with Doppler OCT based on virtual circumpapillary scans,” Biomed. Opt. Express1(4), 1047–1058 (2010).
[CrossRef] [PubMed]

T. Schmoll, A. S. Singh, C. Blatter, S. Schriefl, C. Ahlers, U. Schmidt-Erfurth, and R. A. Leitgeb, “Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension,” Biomed. Opt. Express2(5), 1159–1168 (2011).
[CrossRef] [PubMed]

D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express2(6), 1504–1513 (2011).
[CrossRef] [PubMed]

B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express2(6), 1539–1552 (2011).
[CrossRef] [PubMed]

H. C. Hendargo, R. P. McNabb, A.-H. Dhalla, N. Shepherd, and J. A. Izatt, “Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography,” Biomed. Opt. Express2(8), 2175–2188 (2011).
[CrossRef] [PubMed]

W. Choi, B. Baumann, J. J. Liu, A. C. Clermont, E. P. Feener, J. S. Duker, and J. G. Fujimoto, “Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT,” Biomed. Opt. Express3(5), 1047–1061 (2012).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (7)

J. E. Grunwald, C. E. Riva, J. Baine, and A. J. Brucker, “Total retinal volumetric blood flow rate in diabetic patients with poor glycemic control,” Invest. Ophthalmol. Vis. Sci.33(2), 356–363 (1992).
[PubMed]

G. Garhofer, R. Werkmeister, N. Dragostinoff, and L. Schmetterer, “Retinal blood flow in healthy young subjects,” Invest. Ophthalmol. Vis. Sci.53(2), 698–703 (2012).
[CrossRef] [PubMed]

D. Schmidl, A. Boltz, S. Kaya, M. Lasta, B. Pemp, G. Fuchsjager-Mayrl, A. Hommer, G. Garhofer, and L. Schmetterer, “Role of nitric oxide in optic nerve head blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Vis. Sci.54(3), 1964–1970 (2013).
[CrossRef] [PubMed]

Y. M. Wang, A. A. Fawzi, R. Varma, A. A. Sadun, X. B. Zhang, O. Tan, J. A. Izatt, and D. Huang, “Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases,” Invest. Ophthalmol. Vis. Sci.52(2), 840–845 (2011).
[CrossRef] [PubMed]

R. M. Werkmeister, N. Dragostinoff, S. Palkovits, R. Told, A. Boltz, R. A. Leitgeb, M. Gröschl, G. Garhöfer, and L. Schmetterer, “Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.53(10), 6062–6071 (2012).
[CrossRef] [PubMed]

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow rate in human retinal vessels,” Invest. Ophthalmol. Vis. Sci.26(8), 1124–1132 (1985).
[PubMed]

M. Miura, S. Makita, T. Iwasaki, and Y. Yasuno, “An approach to measure blood flow in single choroidal vessel using Doppler optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.53(11), 7137–7141 (2012).
[CrossRef] [PubMed]

J Biophotonics (1)

C. Kolbitsch, T. Schmoll, and R. A. Leitgeb, “Histogram-based filtering for quantitative 3D retinal angiography,” J Biophotonics2(6-7), 416–425 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt. (6)

C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt.17(7), 070505 (2012).
[CrossRef] [PubMed]

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt.12(4), 041211 (2007).
[CrossRef] [PubMed]

Y. L. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, “Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging,” J. Biomed. Opt.14(2), 024016 (2009).
[CrossRef] [PubMed]

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt.12(4), 041213–041217 (2007).
[CrossRef] [PubMed]

B. Rao, L. F. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. P. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt.13(4), 040505 (2008).
[CrossRef] [PubMed]

Y. M. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.13(6), 064003 (2008).
[CrossRef] [PubMed]

J. Biophotonics (1)

T. Schmoll and R. A. Leitgeb, “Heart-beat-phase-coherent Doppler optical coherence tomography for measuring pulsatile ocular blood flow,” J. Biophotonics6(3), 275–282 (2013).
[CrossRef] [PubMed]

Ophthalmic Res. (1)

J. P. Garcia, P. T. Garcia, and R. B. Rosen, “Retinal blood flow in the normal human eye using the canon laser blood flowmeter,” Ophthalmic Res.34(5), 295–299 (2002).
[CrossRef] [PubMed]

Opt. Express (13)

N. V. Iftimia, D. X. Hammer, R. D. Ferguson, M. Mujat, D. Vu, and A. A. Ferrante, “Dual-beam Fourier domain optical Doppler tomography of zebrafish,” Opt. Express16(18), 13624–13636 (2008).
[CrossRef] [PubMed]

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express17(5), 4166–4176 (2009).
[CrossRef] [PubMed]

I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express17(26), 23736–23754 (2009).
[CrossRef] [PubMed]

V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. C. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express18(3), 2477–2494 (2010).
[CrossRef] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express18(8), 8220–8228 (2010).
[CrossRef] [PubMed]

Z. Ding, Y. Zhao, H. Ren, J. S. Nelson, and Z. Chen, “Real-time phase-resolved optical coherence tomography and optical Doppler tomography,” Opt. Express10(5), 236–245 (2002).
[CrossRef] [PubMed]

V. Yang, M. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. Wilson, and I. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express11(7), 794–809 (2003).
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. J. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express11(17), 1980–1986 (2003).
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express11(23), 3116–3121 (2003).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm,” Opt. Express13(11), 3931–3944 (2005).
[CrossRef] [PubMed]

J. Zhang and Z. Chen, “In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography,” Opt. Express13(19), 7449–7457 (2005).
[CrossRef] [PubMed]

B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express20(18), 20516–20534 (2012).
[CrossRef] [PubMed]

B. Braaf, K. A. Vermeer, V. A. D. P. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid,” Opt. Express19(21), 20886–20903 (2011).
[CrossRef] [PubMed]

Opt. Lett. (6)

C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett.32(5), 506–508 (2007).
[CrossRef] [PubMed]

Y.-C. Ahn, W. Jung, and Z. Chen, “Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography,” Opt. Lett.32(11), 1587–1589 (2007).
[CrossRef] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett.33(8), 836–838 (2008).
[CrossRef] [PubMed]

A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett.33(13), 1530–1532 (2008).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. Hyle Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004).
[CrossRef] [PubMed]

R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett.33(24), 2967–2969 (2008).
[CrossRef] [PubMed]

PLoS ONE (1)

R. M. Werkmeister, S. Palkovits, R. Told, M. Gröschl, R. A. Leitgeb, G. Garhöfer, and L. Schmetterer, “Response of retinal blood flow to systemic hyperoxia as measured with dual-beam bidirectional Doppler Fourier-domain optical coherence tomography,” PLoS ONE7(9), e45876 (2012).
[CrossRef] [PubMed]

Other (2)

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography—Technology and Applications (Springer, 2008).

R. A. Leitgeb, “Current technologies for high speed and functional imaging with optical coherence tomography,” in Advances in Imaging and Electron Physics, Volume 168: Optics of Charged Particle Analyzers, P. W. Hawkes, ed. (Elsevier, 2011), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

3D geometry of the optical illumination. The tissue is illuminated from two different directions ( k A and k B ) with a separation angle Δα. Blood vessels (red) have a Doppler angle α between the flow direction v and the optical axis z. In the fundus projection (grayscale), vessels have an angle β relative to the scanning coordinates system (x,y) and, in general case, an angle Δβ to the plane formed by k A and k B .

Fig. 2
Fig. 2

Optical Setup of the rotating Dove prism based dual-beam bidirectional OCT system. Red: beam A, blue: beam B. SS: Swept source, FC: Fiber coupler, PC: Polarization control, L1 to L5: Lenses, M: Mirror, LD: LED, P: PIN diode, Prism: rotating Dove prism, DC: DC motor, Galvo: Scanning mirrors, D: dichroic mirror, F: fixation screen, DM: Dispersion matching, DBD: Dual-balanced detector.

Fig. 3
Fig. 3

Synchronisation of the rotation for circular scan. (a) en face (x,y) view at the exit of the Dove prism. The mechanical rotation (δ(β/2)) doubles the optical rotation (δ(β)). Beam A and B are represented by red and blue disks respectively. Light and saturated colors account for beams at the entrance and exit of the prism respectively. (b) Electronical synchronization between TTL signal derived from the light barrier and scanner driving signals. The light barrier delivers two pulses by Dove prism rotation. (c) Theoretical circular scan location around the ONH. The color lines indicate the rotating incidence plane that allows maintaining small Δβ for every crossed vessel.

Fig. 4
Fig. 4

Representative circular scan of ~2.5° diameter crossing the perfused capillary twice. (a) Intensity tomogram. (b) Absolute velocity tomogram. Scale bar is valid for both images.

Fig. 5
Fig. 5

In vitro measurement with capillary showing the axial velocity (left scale) for channel A (red) and B (blue), as well as the absolute velocity (right scale, black), for different tilt and two different velocities in the capillary, respectively V1 = 52mm/s (X) and V2 = −33mm/s (O), compared to the set velocities (dotted line). The left column was measured with static beams, the right with the synchronous rotation. The rows are acquired for different orientations of the capillary: vertical, angled and horizontal, for the top, middle and bottom line respectively (see graphic representation in the middle, where the line and the circle represent the capillary orientation and the circular scan position respectively). The markers represent the average velocity over twenty scans and the error bars show the standard deviation. If not displayed, it is smaller than the marker size, with a relative error of <3%.

Fig. 6
Fig. 6

Representative segment scans of ~7° consisting of 3250 A-scans. (a,c): beam A, (b,d): beam B. (a,b): intensity tomograms, (c,d): high dynamic range quantitative Doppler tomograms obtained by combining phase difference values from different A-Scans intervals (1,3 and 4). Scan position is indicated by a dashed white line in Fig. 8(e).

Fig. 7
Fig. 7

DOCT segment scans of beam B spanning a range of ~7° consisting of 3250 A-scans with phase differences calculated between A-Scans (i;i + 1), (i;i + 3) and (i;i + 4) in (a), (b) and (c) respectively, used to create the high dynamic range DOCT image in Fig. 6(d). Scan position is indicated by a dashed white line in Fig. 8(e).

Fig. 8
Fig. 8

Blood flow velocity evolution in selected vessels obtained from several segment scan time series. Red and blue represent the axial velocity measured for beam A and B respectively, left scale. It permits to calculate the absolute velocity (black line) and its mean value (dotted line), right scale. (e) is a ~15° fundus view centered at the ONH obtained by calculating the en-face mean projection of an OCT 3D data set. The positions of the segment scans are overlaid as black lines. The crossing with blood vessels is indicated by colored circles, red and blue for arteries and veins respectively, and letters that correspond to the surrounding time traces. Position of scans in Fig. 6 and Fig. 7 is indicated by a dashed white line.

Fig. 9
Fig. 9

Deliberate wrong orientation of incidence plane with respect to the vessels leading to an erroneous calculation of the blood flow velocity evolution for an artery and a vein in (a) and (b) respectively. Red and blue represent the axial velocity (left scale) measured for beam A and B respectively. Δβ was set to 90° and the absolute velocity (black line) and its mean value (dotted line) (right scale) were not scaled by the cos(Δβ) factor in Eq. (2).

Fig. 10
Fig. 10

Representative circumpapillary scans at the ONH spanning ~9° diameter and consisting of 6500 A-scans. (a,c): beam A, (b,d): beam B. (a,b): intensity tomograms, (c,d): high dynamic range quantitative Doppler tomograms obtained by combining vessel value from phase difference between successive A-Scans and between A-Scan i and i + 2.

Fig. 11
Fig. 11

Blood flow velocity evolution in selected vessels obtained by a circumpapillary scan. Red and blue represent the axial velocity measured for beam A and B respectively. It permits to calculate the absolute velocity (black line) and its mean value (dotted line). The traces were averaged over two points. (e) is a ~15° fundus view centered at the ONH obtained by calculating the en face mean projection of an OCT 3D data set. The black circle indicates the theoretical position and shape of the ~9° diameter circumpapillary scan. The black arrow shows the direction and start position of rotation. The crossing with blood vessels is indicated by colored circles, red and blue for arteries and veins respectively, and letters that correspond to the surrounding time traces.

Fig. 12
Fig. 12

Quantitative choroidal blood flow velocity analysis. (a) Segment scan of ~3° consisting of 3250 A-Scans. The Doppler channel (colored lookup table) is overlaid on the structural information (grayscale). (b) Quantitative analysis of the scan time series. The axial velocity (left scale) for single channels is shown in red and blue for A and B respectively and the absolute velocity (continuous line, right scale) and its mean value (dotted line) in black. The single channels show a drift that is absent from the absolute velocity. The absence of strong pulsatility suggests that this vessel is a vein.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

v= v a cos(α) = Δϕ 2nkTcos(α) ,
v= v a (A) v a (B) Δαcos(Δβ) = Δ ϕ A Δ ϕ B 2nkTΔαcos(Δβ) ,

Metrics