Abstract

Immobilization and marker-based motion tracking in radiation therapy often cause decreased patient comfort. However, the more comfortable alternative of optical surface tracking is highly inaccurate due to missing point-to-point correspondences between subsequent point clouds as well as elastic deformation of soft tissue. In this study, we present a proof of concept for measuring subcutaneous features with a laser scanner setup focusing on the skin thickness as additional input for high accuracy optical surface tracking. Using Monte-Carlo simulations for multi-layered tissue, we show that informative features can be extracted from the simulated tissue reflection by integrating intensities within concentric ROIs around the laser spot center. Training a regression model with a simulated data set identifies patterns that allow for predicting skin thickness with a root mean square error of down to 18 µm. Different approaches to compensate for varying observation angles were shown to yield errors still below 90 µm. Finally, this initial study provides a very promising proof of concept and encourages research towards a practical prototype.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Buatti, F. J. Bova, W. A. Friedman, S. L. Meeks, R. B. Marcus, J. P. Mickle, T. L. Ellis, and W. M. Mendenhall, “Preliminary experience with frameless stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys.42(3), 591–599 (1998).
    [CrossRef] [PubMed]
  2. H. M. Kooy, S. F. Dunbar, N. J. Tarbell, E. Mannarino, N. Ferarro, S. Shusterman, M. Bellerive, L. Finn, C. V. McDonough, and J. S. Loeffler, “Adaptation and verification of the relocatable Gill–Thomas–Cosman frame in stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys.30(3), 685–691 (1994).
    [CrossRef] [PubMed]
  3. M. Fuss, B. J. Salter, D. Cheek, A. Sadeghi, J. M. Hevezi, and T. S. Herman, “Repositioning accuracy of a commercially available thermoplastic mask system,” Radiother. Oncol.71(3), 339–345 (2004).
    [CrossRef] [PubMed]
  4. J. L. Robar, B. G. Clark, J. W. Schella, and C. S. Kim, “Analysis of patient repositioning accuracy in precision radiation therapy using automated image fusion,” J. Appl. Clin. Med. Phys.6(1), 71–83 (2005).
    [CrossRef] [PubMed]
  5. G. Minniti, M. Valeriani, E. Clarke, M. D’Arienzo, M. Ciotti, R. Montagnoli, F. Saporetti, and R. M. Enrici, “Fractionated stereotactic radiotherapy for skull base tumors: analysis of treatment accuracy using a stereotactic mask fixation system,” Radiat. Oncol.5(1), 1 (2010).
    [CrossRef] [PubMed]
  6. E. Tryggestad, M. Christian, E. Ford, C. Kut, Y. Le, G. Sanguineti, D. Y. Song, and L. Kleinberg, “Inter- and intrafraction patient positioning uncertainties for intracranial radiotherapy: a study of four frameless, thermoplastic mask-based immobilization strategies using daily cone-beam CT,” Int. J. Radiat. Oncol., Biol., Phys.80(1), 281–290 (2011).
    [CrossRef] [PubMed]
  7. T. H. Wagner, S. L. Meeks, F. J. Bova, W. A. Friedman, T. R. Willoughby, P. A. Kupelian, and W. Tome, “Optical tracking technology in stereotactic radiation therapy,” Med. Dosim.32(2), 111–120 (2007).
    [CrossRef] [PubMed]
  8. P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,” IEEE Trans. Pattern Anal. Mach. Intell.14(2), 239–256 (1992).
    [CrossRef]
  9. J. Xia and R. A. Siochi, “A real-time respiratory motion monitoring system using KINECT: proof of concept,” Med. Phys.39(5), 2682–2685 (2012).
    [CrossRef] [PubMed]
  10. J. Schaerer, A. Fassi, M. Riboldi, P. Cerveri, G. Baroni, and D. Sarrut, “Multi-dimensional respiratory motion tracking from markerless optical surface imaging based on deformable mesh registration,” Phys. Med. Biol.57(2), 357–373 (2012).
    [CrossRef] [PubMed]
  11. L. Wang, S. L. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
    [CrossRef] [PubMed]
  12. D. M. Mancini, L. Bolinger, H. Li, K. Kendrick, B. Chance, and J. R. Wilson, “Validation of near-infrared spectroscopy in humans,” J. Appl. Physiol.77(6), 2740–2747 (1994).
    [PubMed]
  13. L. Kilpatrick-Liverman, P. Kazmi, E. Wolff, and T. G. Polefka, “The use of near-infrared spectroscopy in skin care applications,” Skin Res. Technol.12(3), 162–169 (2006).
    [CrossRef] [PubMed]
  14. E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006).
    [CrossRef] [PubMed]
  15. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
    [CrossRef]
  16. J. A. Wahr, K. K. Tremper, S. Samra, and D. T. Delpy, “Near-infrared spectroscopy: theory and applications,” J. Cardiothorac. Vasc. Anesth.10(3), 406–418 (1996).
    [CrossRef] [PubMed]
  17. I. Bodén, D. Nilsson, P. Naredi, and B. Lindholm-Sethson, “Characterization of healthy skin using near infrared spectroscopy and skin impedance,” Med. Biol. Eng. Comput.46(10), 985–995 (2008).
    [CrossRef] [PubMed]
  18. H. Lui, J. Zhao, D. McLean, and H. Zeng, “Real-time Raman spectroscopy for in vivo skin cancer diagnosis,” Cancer Res.72(10), 2491–2500 (2012).
    [CrossRef] [PubMed]
  19. T. R. Hata, T. A. Scholz, I. V. Ermakov, R. W. McClane, F. Khachik, W. Gellermann, and L. K. Pershing, “Non-invasive Raman spectroscopic detection of carotenoids in human skin,” J. Invest. Dermatol.115(3), 441–448 (2000).
    [CrossRef] [PubMed]
  20. A. Doronin and I. Meglinski, “Online object-oriented Monte Carlo computational tool for the needs of biomedical optics,” Biomed. Opt. Express2(9), 2461–2469 (2011).
    [CrossRef] [PubMed]
  21. E. Alerstam, W. C. Lo, T. D. Han, J. Rose, S. Andersson-Engels, and L. Lilge, “Next-generation acceleration and code optimization for light transport in turbid media using GPUs,” Biomed. Opt. Express1(2), 658–675 (2010).
    [CrossRef] [PubMed]
  22. G. I. Petrov, A. Doronin, H. T. Whelan, I. Meglinski, and V. V. Yakovlev, “Human tissue color as viewed in high dynamic range optical spectral transmission measurements,” Biomed. Opt. Express3(9), 2154–2161 (2012).
    [CrossRef] [PubMed]
  23. A. Doronin, I. Fine, and I. Meglinski, “Assessment of the calibration curve for transmittance pulse-oximetry,” Laser Phys.21(11), 1972–1977 (2011).
    [CrossRef]
  24. I. V. Meglinski and S. J. Matcher, “Computer simulation of the skin reflectance spectra,” Comput. Methods Programs Biomed.70(2), 179–186 (2003).
    [CrossRef] [PubMed]
  25. E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Optical clearing of cranial bone,” Adv. Opt. Technol.2008, 267867 (2008).
    [CrossRef]
  26. I. V. Meglinsky and S. J. Matcher, “Modeling the sampling volume for skin blood oxygenation measurements,” Med. Biol. Eng. Comput.39(1), 44–50 (2001).
    [CrossRef] [PubMed]
  27. A. Smola and B. Schölkopf, “A tutorial on Support Vector regression,” Stat. Comput.14(3), 199–222 (2004).
    [CrossRef]
  28. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
    [CrossRef]
  29. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
    [CrossRef] [PubMed]
  30. R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol.77(1), 13–19 (1981).
    [CrossRef] [PubMed]

2012 (4)

J. Xia and R. A. Siochi, “A real-time respiratory motion monitoring system using KINECT: proof of concept,” Med. Phys.39(5), 2682–2685 (2012).
[CrossRef] [PubMed]

J. Schaerer, A. Fassi, M. Riboldi, P. Cerveri, G. Baroni, and D. Sarrut, “Multi-dimensional respiratory motion tracking from markerless optical surface imaging based on deformable mesh registration,” Phys. Med. Biol.57(2), 357–373 (2012).
[CrossRef] [PubMed]

H. Lui, J. Zhao, D. McLean, and H. Zeng, “Real-time Raman spectroscopy for in vivo skin cancer diagnosis,” Cancer Res.72(10), 2491–2500 (2012).
[CrossRef] [PubMed]

G. I. Petrov, A. Doronin, H. T. Whelan, I. Meglinski, and V. V. Yakovlev, “Human tissue color as viewed in high dynamic range optical spectral transmission measurements,” Biomed. Opt. Express3(9), 2154–2161 (2012).
[CrossRef] [PubMed]

2011 (3)

A. Doronin and I. Meglinski, “Online object-oriented Monte Carlo computational tool for the needs of biomedical optics,” Biomed. Opt. Express2(9), 2461–2469 (2011).
[CrossRef] [PubMed]

A. Doronin, I. Fine, and I. Meglinski, “Assessment of the calibration curve for transmittance pulse-oximetry,” Laser Phys.21(11), 1972–1977 (2011).
[CrossRef]

E. Tryggestad, M. Christian, E. Ford, C. Kut, Y. Le, G. Sanguineti, D. Y. Song, and L. Kleinberg, “Inter- and intrafraction patient positioning uncertainties for intracranial radiotherapy: a study of four frameless, thermoplastic mask-based immobilization strategies using daily cone-beam CT,” Int. J. Radiat. Oncol., Biol., Phys.80(1), 281–290 (2011).
[CrossRef] [PubMed]

2010 (2)

G. Minniti, M. Valeriani, E. Clarke, M. D’Arienzo, M. Ciotti, R. Montagnoli, F. Saporetti, and R. M. Enrici, “Fractionated stereotactic radiotherapy for skull base tumors: analysis of treatment accuracy using a stereotactic mask fixation system,” Radiat. Oncol.5(1), 1 (2010).
[CrossRef] [PubMed]

E. Alerstam, W. C. Lo, T. D. Han, J. Rose, S. Andersson-Engels, and L. Lilge, “Next-generation acceleration and code optimization for light transport in turbid media using GPUs,” Biomed. Opt. Express1(2), 658–675 (2010).
[CrossRef] [PubMed]

2008 (2)

E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Optical clearing of cranial bone,” Adv. Opt. Technol.2008, 267867 (2008).
[CrossRef]

I. Bodén, D. Nilsson, P. Naredi, and B. Lindholm-Sethson, “Characterization of healthy skin using near infrared spectroscopy and skin impedance,” Med. Biol. Eng. Comput.46(10), 985–995 (2008).
[CrossRef] [PubMed]

2007 (1)

T. H. Wagner, S. L. Meeks, F. J. Bova, W. A. Friedman, T. R. Willoughby, P. A. Kupelian, and W. Tome, “Optical tracking technology in stereotactic radiation therapy,” Med. Dosim.32(2), 111–120 (2007).
[CrossRef] [PubMed]

2006 (2)

L. Kilpatrick-Liverman, P. Kazmi, E. Wolff, and T. G. Polefka, “The use of near-infrared spectroscopy in skin care applications,” Skin Res. Technol.12(3), 162–169 (2006).
[CrossRef] [PubMed]

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006).
[CrossRef] [PubMed]

2005 (3)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

J. L. Robar, B. G. Clark, J. W. Schella, and C. S. Kim, “Analysis of patient repositioning accuracy in precision radiation therapy using automated image fusion,” J. Appl. Clin. Med. Phys.6(1), 71–83 (2005).
[CrossRef] [PubMed]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

2004 (2)

A. Smola and B. Schölkopf, “A tutorial on Support Vector regression,” Stat. Comput.14(3), 199–222 (2004).
[CrossRef]

M. Fuss, B. J. Salter, D. Cheek, A. Sadeghi, J. M. Hevezi, and T. S. Herman, “Repositioning accuracy of a commercially available thermoplastic mask system,” Radiother. Oncol.71(3), 339–345 (2004).
[CrossRef] [PubMed]

2003 (1)

I. V. Meglinski and S. J. Matcher, “Computer simulation of the skin reflectance spectra,” Comput. Methods Programs Biomed.70(2), 179–186 (2003).
[CrossRef] [PubMed]

2001 (1)

I. V. Meglinsky and S. J. Matcher, “Modeling the sampling volume for skin blood oxygenation measurements,” Med. Biol. Eng. Comput.39(1), 44–50 (2001).
[CrossRef] [PubMed]

2000 (1)

T. R. Hata, T. A. Scholz, I. V. Ermakov, R. W. McClane, F. Khachik, W. Gellermann, and L. K. Pershing, “Non-invasive Raman spectroscopic detection of carotenoids in human skin,” J. Invest. Dermatol.115(3), 441–448 (2000).
[CrossRef] [PubMed]

1998 (2)

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

J. M. Buatti, F. J. Bova, W. A. Friedman, S. L. Meeks, R. B. Marcus, J. P. Mickle, T. L. Ellis, and W. M. Mendenhall, “Preliminary experience with frameless stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys.42(3), 591–599 (1998).
[CrossRef] [PubMed]

1996 (1)

J. A. Wahr, K. K. Tremper, S. Samra, and D. T. Delpy, “Near-infrared spectroscopy: theory and applications,” J. Cardiothorac. Vasc. Anesth.10(3), 406–418 (1996).
[CrossRef] [PubMed]

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
[CrossRef] [PubMed]

1994 (2)

D. M. Mancini, L. Bolinger, H. Li, K. Kendrick, B. Chance, and J. R. Wilson, “Validation of near-infrared spectroscopy in humans,” J. Appl. Physiol.77(6), 2740–2747 (1994).
[PubMed]

H. M. Kooy, S. F. Dunbar, N. J. Tarbell, E. Mannarino, N. Ferarro, S. Shusterman, M. Bellerive, L. Finn, C. V. McDonough, and J. S. Loeffler, “Adaptation and verification of the relocatable Gill–Thomas–Cosman frame in stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys.30(3), 685–691 (1994).
[CrossRef] [PubMed]

1992 (1)

P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,” IEEE Trans. Pattern Anal. Mach. Intell.14(2), 239–256 (1992).
[CrossRef]

1981 (1)

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol.77(1), 13–19 (1981).
[CrossRef] [PubMed]

Alerstam, E.

Anderson, R. R.

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol.77(1), 13–19 (1981).
[CrossRef] [PubMed]

Andersson-Engels, S.

Baroni, G.

J. Schaerer, A. Fassi, M. Riboldi, P. Cerveri, G. Baroni, and D. Sarrut, “Multi-dimensional respiratory motion tracking from markerless optical surface imaging based on deformable mesh registration,” Phys. Med. Biol.57(2), 357–373 (2012).
[CrossRef] [PubMed]

Bashkatov, A. N.

E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Optical clearing of cranial bone,” Adv. Opt. Technol.2008, 267867 (2008).
[CrossRef]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

Bellerive, M.

H. M. Kooy, S. F. Dunbar, N. J. Tarbell, E. Mannarino, N. Ferarro, S. Shusterman, M. Bellerive, L. Finn, C. V. McDonough, and J. S. Loeffler, “Adaptation and verification of the relocatable Gill–Thomas–Cosman frame in stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys.30(3), 685–691 (1994).
[CrossRef] [PubMed]

Besl, P. J.

P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,” IEEE Trans. Pattern Anal. Mach. Intell.14(2), 239–256 (1992).
[CrossRef]

Bodén, I.

I. Bodén, D. Nilsson, P. Naredi, and B. Lindholm-Sethson, “Characterization of healthy skin using near infrared spectroscopy and skin impedance,” Med. Biol. Eng. Comput.46(10), 985–995 (2008).
[CrossRef] [PubMed]

Bolinger, L.

D. M. Mancini, L. Bolinger, H. Li, K. Kendrick, B. Chance, and J. R. Wilson, “Validation of near-infrared spectroscopy in humans,” J. Appl. Physiol.77(6), 2740–2747 (1994).
[PubMed]

Bova, F. J.

T. H. Wagner, S. L. Meeks, F. J. Bova, W. A. Friedman, T. R. Willoughby, P. A. Kupelian, and W. Tome, “Optical tracking technology in stereotactic radiation therapy,” Med. Dosim.32(2), 111–120 (2007).
[CrossRef] [PubMed]

J. M. Buatti, F. J. Bova, W. A. Friedman, S. L. Meeks, R. B. Marcus, J. P. Mickle, T. L. Ellis, and W. M. Mendenhall, “Preliminary experience with frameless stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys.42(3), 591–599 (1998).
[CrossRef] [PubMed]

Buatti, J. M.

J. M. Buatti, F. J. Bova, W. A. Friedman, S. L. Meeks, R. B. Marcus, J. P. Mickle, T. L. Ellis, and W. M. Mendenhall, “Preliminary experience with frameless stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys.42(3), 591–599 (1998).
[CrossRef] [PubMed]

Cerveri, P.

J. Schaerer, A. Fassi, M. Riboldi, P. Cerveri, G. Baroni, and D. Sarrut, “Multi-dimensional respiratory motion tracking from markerless optical surface imaging based on deformable mesh registration,” Phys. Med. Biol.57(2), 357–373 (2012).
[CrossRef] [PubMed]

Chance, B.

D. M. Mancini, L. Bolinger, H. Li, K. Kendrick, B. Chance, and J. R. Wilson, “Validation of near-infrared spectroscopy in humans,” J. Appl. Physiol.77(6), 2740–2747 (1994).
[PubMed]

Cheek, D.

M. Fuss, B. J. Salter, D. Cheek, A. Sadeghi, J. M. Hevezi, and T. S. Herman, “Repositioning accuracy of a commercially available thermoplastic mask system,” Radiother. Oncol.71(3), 339–345 (2004).
[CrossRef] [PubMed]

Christian, M.

E. Tryggestad, M. Christian, E. Ford, C. Kut, Y. Le, G. Sanguineti, D. Y. Song, and L. Kleinberg, “Inter- and intrafraction patient positioning uncertainties for intracranial radiotherapy: a study of four frameless, thermoplastic mask-based immobilization strategies using daily cone-beam CT,” Int. J. Radiat. Oncol., Biol., Phys.80(1), 281–290 (2011).
[CrossRef] [PubMed]

Ciotti, M.

G. Minniti, M. Valeriani, E. Clarke, M. D’Arienzo, M. Ciotti, R. Montagnoli, F. Saporetti, and R. M. Enrici, “Fractionated stereotactic radiotherapy for skull base tumors: analysis of treatment accuracy using a stereotactic mask fixation system,” Radiat. Oncol.5(1), 1 (2010).
[CrossRef] [PubMed]

Clark, B. G.

J. L. Robar, B. G. Clark, J. W. Schella, and C. S. Kim, “Analysis of patient repositioning accuracy in precision radiation therapy using automated image fusion,” J. Appl. Clin. Med. Phys.6(1), 71–83 (2005).
[CrossRef] [PubMed]

Clarke, E.

G. Minniti, M. Valeriani, E. Clarke, M. D’Arienzo, M. Ciotti, R. Montagnoli, F. Saporetti, and R. M. Enrici, “Fractionated stereotactic radiotherapy for skull base tumors: analysis of treatment accuracy using a stereotactic mask fixation system,” Radiat. Oncol.5(1), 1 (2010).
[CrossRef] [PubMed]

Cope, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

D’Arienzo, M.

G. Minniti, M. Valeriani, E. Clarke, M. D’Arienzo, M. Ciotti, R. Montagnoli, F. Saporetti, and R. M. Enrici, “Fractionated stereotactic radiotherapy for skull base tumors: analysis of treatment accuracy using a stereotactic mask fixation system,” Radiat. Oncol.5(1), 1 (2010).
[CrossRef] [PubMed]

Delpy, D. T.

J. A. Wahr, K. K. Tremper, S. Samra, and D. T. Delpy, “Near-infrared spectroscopy: theory and applications,” J. Cardiothorac. Vasc. Anesth.10(3), 406–418 (1996).
[CrossRef] [PubMed]

Doronin, A.

Dunbar, S. F.

H. M. Kooy, S. F. Dunbar, N. J. Tarbell, E. Mannarino, N. Ferarro, S. Shusterman, M. Bellerive, L. Finn, C. V. McDonough, and J. S. Loeffler, “Adaptation and verification of the relocatable Gill–Thomas–Cosman frame in stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys.30(3), 685–691 (1994).
[CrossRef] [PubMed]

Ellis, T. L.

J. M. Buatti, F. J. Bova, W. A. Friedman, S. L. Meeks, R. B. Marcus, J. P. Mickle, T. L. Ellis, and W. M. Mendenhall, “Preliminary experience with frameless stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys.42(3), 591–599 (1998).
[CrossRef] [PubMed]

Enrici, R. M.

G. Minniti, M. Valeriani, E. Clarke, M. D’Arienzo, M. Ciotti, R. Montagnoli, F. Saporetti, and R. M. Enrici, “Fractionated stereotactic radiotherapy for skull base tumors: analysis of treatment accuracy using a stereotactic mask fixation system,” Radiat. Oncol.5(1), 1 (2010).
[CrossRef] [PubMed]

Ermakov, I. V.

T. R. Hata, T. A. Scholz, I. V. Ermakov, R. W. McClane, F. Khachik, W. Gellermann, and L. K. Pershing, “Non-invasive Raman spectroscopic detection of carotenoids in human skin,” J. Invest. Dermatol.115(3), 441–448 (2000).
[CrossRef] [PubMed]

Essenpreis, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

Fassi, A.

J. Schaerer, A. Fassi, M. Riboldi, P. Cerveri, G. Baroni, and D. Sarrut, “Multi-dimensional respiratory motion tracking from markerless optical surface imaging based on deformable mesh registration,” Phys. Med. Biol.57(2), 357–373 (2012).
[CrossRef] [PubMed]

Ferarro, N.

H. M. Kooy, S. F. Dunbar, N. J. Tarbell, E. Mannarino, N. Ferarro, S. Shusterman, M. Bellerive, L. Finn, C. V. McDonough, and J. S. Loeffler, “Adaptation and verification of the relocatable Gill–Thomas–Cosman frame in stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys.30(3), 685–691 (1994).
[CrossRef] [PubMed]

Fine, I.

A. Doronin, I. Fine, and I. Meglinski, “Assessment of the calibration curve for transmittance pulse-oximetry,” Laser Phys.21(11), 1972–1977 (2011).
[CrossRef]

Finn, L.

H. M. Kooy, S. F. Dunbar, N. J. Tarbell, E. Mannarino, N. Ferarro, S. Shusterman, M. Bellerive, L. Finn, C. V. McDonough, and J. S. Loeffler, “Adaptation and verification of the relocatable Gill–Thomas–Cosman frame in stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys.30(3), 685–691 (1994).
[CrossRef] [PubMed]

Ford, E.

E. Tryggestad, M. Christian, E. Ford, C. Kut, Y. Le, G. Sanguineti, D. Y. Song, and L. Kleinberg, “Inter- and intrafraction patient positioning uncertainties for intracranial radiotherapy: a study of four frameless, thermoplastic mask-based immobilization strategies using daily cone-beam CT,” Int. J. Radiat. Oncol., Biol., Phys.80(1), 281–290 (2011).
[CrossRef] [PubMed]

Friedman, W. A.

T. H. Wagner, S. L. Meeks, F. J. Bova, W. A. Friedman, T. R. Willoughby, P. A. Kupelian, and W. Tome, “Optical tracking technology in stereotactic radiation therapy,” Med. Dosim.32(2), 111–120 (2007).
[CrossRef] [PubMed]

J. M. Buatti, F. J. Bova, W. A. Friedman, S. L. Meeks, R. B. Marcus, J. P. Mickle, T. L. Ellis, and W. M. Mendenhall, “Preliminary experience with frameless stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys.42(3), 591–599 (1998).
[CrossRef] [PubMed]

Fuss, M.

M. Fuss, B. J. Salter, D. Cheek, A. Sadeghi, J. M. Hevezi, and T. S. Herman, “Repositioning accuracy of a commercially available thermoplastic mask system,” Radiother. Oncol.71(3), 339–345 (2004).
[CrossRef] [PubMed]

Gellermann, W.

T. R. Hata, T. A. Scholz, I. V. Ermakov, R. W. McClane, F. Khachik, W. Gellermann, and L. K. Pershing, “Non-invasive Raman spectroscopic detection of carotenoids in human skin,” J. Invest. Dermatol.115(3), 441–448 (2000).
[CrossRef] [PubMed]

Genina, E. A.

E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Optical clearing of cranial bone,” Adv. Opt. Technol.2008, 267867 (2008).
[CrossRef]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

Han, T. D.

Hata, T. R.

T. R. Hata, T. A. Scholz, I. V. Ermakov, R. W. McClane, F. Khachik, W. Gellermann, and L. K. Pershing, “Non-invasive Raman spectroscopic detection of carotenoids in human skin,” J. Invest. Dermatol.115(3), 441–448 (2000).
[CrossRef] [PubMed]

Herman, T. S.

M. Fuss, B. J. Salter, D. Cheek, A. Sadeghi, J. M. Hevezi, and T. S. Herman, “Repositioning accuracy of a commercially available thermoplastic mask system,” Radiother. Oncol.71(3), 339–345 (2004).
[CrossRef] [PubMed]

Hevezi, J. M.

M. Fuss, B. J. Salter, D. Cheek, A. Sadeghi, J. M. Hevezi, and T. S. Herman, “Repositioning accuracy of a commercially available thermoplastic mask system,” Radiother. Oncol.71(3), 339–345 (2004).
[CrossRef] [PubMed]

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
[CrossRef] [PubMed]

Jiang, B.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006).
[CrossRef] [PubMed]

Kazmi, P.

L. Kilpatrick-Liverman, P. Kazmi, E. Wolff, and T. G. Polefka, “The use of near-infrared spectroscopy in skin care applications,” Skin Res. Technol.12(3), 162–169 (2006).
[CrossRef] [PubMed]

Kendrick, K.

D. M. Mancini, L. Bolinger, H. Li, K. Kendrick, B. Chance, and J. R. Wilson, “Validation of near-infrared spectroscopy in humans,” J. Appl. Physiol.77(6), 2740–2747 (1994).
[PubMed]

Khachik, F.

T. R. Hata, T. A. Scholz, I. V. Ermakov, R. W. McClane, F. Khachik, W. Gellermann, and L. K. Pershing, “Non-invasive Raman spectroscopic detection of carotenoids in human skin,” J. Invest. Dermatol.115(3), 441–448 (2000).
[CrossRef] [PubMed]

Kilpatrick-Liverman, L.

L. Kilpatrick-Liverman, P. Kazmi, E. Wolff, and T. G. Polefka, “The use of near-infrared spectroscopy in skin care applications,” Skin Res. Technol.12(3), 162–169 (2006).
[CrossRef] [PubMed]

Kim, C. S.

J. L. Robar, B. G. Clark, J. W. Schella, and C. S. Kim, “Analysis of patient repositioning accuracy in precision radiation therapy using automated image fusion,” J. Appl. Clin. Med. Phys.6(1), 71–83 (2005).
[CrossRef] [PubMed]

Kleinberg, L.

E. Tryggestad, M. Christian, E. Ford, C. Kut, Y. Le, G. Sanguineti, D. Y. Song, and L. Kleinberg, “Inter- and intrafraction patient positioning uncertainties for intracranial radiotherapy: a study of four frameless, thermoplastic mask-based immobilization strategies using daily cone-beam CT,” Int. J. Radiat. Oncol., Biol., Phys.80(1), 281–290 (2011).
[CrossRef] [PubMed]

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

Kohl, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

Kooy, H. M.

H. M. Kooy, S. F. Dunbar, N. J. Tarbell, E. Mannarino, N. Ferarro, S. Shusterman, M. Bellerive, L. Finn, C. V. McDonough, and J. S. Loeffler, “Adaptation and verification of the relocatable Gill–Thomas–Cosman frame in stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys.30(3), 685–691 (1994).
[CrossRef] [PubMed]

Kupelian, P. A.

T. H. Wagner, S. L. Meeks, F. J. Bova, W. A. Friedman, T. R. Willoughby, P. A. Kupelian, and W. Tome, “Optical tracking technology in stereotactic radiation therapy,” Med. Dosim.32(2), 111–120 (2007).
[CrossRef] [PubMed]

Kut, C.

E. Tryggestad, M. Christian, E. Ford, C. Kut, Y. Le, G. Sanguineti, D. Y. Song, and L. Kleinberg, “Inter- and intrafraction patient positioning uncertainties for intracranial radiotherapy: a study of four frameless, thermoplastic mask-based immobilization strategies using daily cone-beam CT,” Int. J. Radiat. Oncol., Biol., Phys.80(1), 281–290 (2011).
[CrossRef] [PubMed]

Le, Y.

E. Tryggestad, M. Christian, E. Ford, C. Kut, Y. Le, G. Sanguineti, D. Y. Song, and L. Kleinberg, “Inter- and intrafraction patient positioning uncertainties for intracranial radiotherapy: a study of four frameless, thermoplastic mask-based immobilization strategies using daily cone-beam CT,” Int. J. Radiat. Oncol., Biol., Phys.80(1), 281–290 (2011).
[CrossRef] [PubMed]

Li, H.

D. M. Mancini, L. Bolinger, H. Li, K. Kendrick, B. Chance, and J. R. Wilson, “Validation of near-infrared spectroscopy in humans,” J. Appl. Physiol.77(6), 2740–2747 (1994).
[PubMed]

Lilge, L.

Lindholm-Sethson, B.

I. Bodén, D. Nilsson, P. Naredi, and B. Lindholm-Sethson, “Characterization of healthy skin using near infrared spectroscopy and skin impedance,” Med. Biol. Eng. Comput.46(10), 985–995 (2008).
[CrossRef] [PubMed]

Lo, W. C.

Loeffler, J. S.

H. M. Kooy, S. F. Dunbar, N. J. Tarbell, E. Mannarino, N. Ferarro, S. Shusterman, M. Bellerive, L. Finn, C. V. McDonough, and J. S. Loeffler, “Adaptation and verification of the relocatable Gill–Thomas–Cosman frame in stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys.30(3), 685–691 (1994).
[CrossRef] [PubMed]

Lui, H.

H. Lui, J. Zhao, D. McLean, and H. Zeng, “Real-time Raman spectroscopy for in vivo skin cancer diagnosis,” Cancer Res.72(10), 2491–2500 (2012).
[CrossRef] [PubMed]

Mancini, D. M.

D. M. Mancini, L. Bolinger, H. Li, K. Kendrick, B. Chance, and J. R. Wilson, “Validation of near-infrared spectroscopy in humans,” J. Appl. Physiol.77(6), 2740–2747 (1994).
[PubMed]

Mannarino, E.

H. M. Kooy, S. F. Dunbar, N. J. Tarbell, E. Mannarino, N. Ferarro, S. Shusterman, M. Bellerive, L. Finn, C. V. McDonough, and J. S. Loeffler, “Adaptation and verification of the relocatable Gill–Thomas–Cosman frame in stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys.30(3), 685–691 (1994).
[CrossRef] [PubMed]

Marcus, R. B.

J. M. Buatti, F. J. Bova, W. A. Friedman, S. L. Meeks, R. B. Marcus, J. P. Mickle, T. L. Ellis, and W. M. Mendenhall, “Preliminary experience with frameless stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys.42(3), 591–599 (1998).
[CrossRef] [PubMed]

Matcher, S. J.

I. V. Meglinski and S. J. Matcher, “Computer simulation of the skin reflectance spectra,” Comput. Methods Programs Biomed.70(2), 179–186 (2003).
[CrossRef] [PubMed]

I. V. Meglinsky and S. J. Matcher, “Modeling the sampling volume for skin blood oxygenation measurements,” Med. Biol. Eng. Comput.39(1), 44–50 (2001).
[CrossRef] [PubMed]

McClane, R. W.

T. R. Hata, T. A. Scholz, I. V. Ermakov, R. W. McClane, F. Khachik, W. Gellermann, and L. K. Pershing, “Non-invasive Raman spectroscopic detection of carotenoids in human skin,” J. Invest. Dermatol.115(3), 441–448 (2000).
[CrossRef] [PubMed]

McDonough, C. V.

H. M. Kooy, S. F. Dunbar, N. J. Tarbell, E. Mannarino, N. Ferarro, S. Shusterman, M. Bellerive, L. Finn, C. V. McDonough, and J. S. Loeffler, “Adaptation and verification of the relocatable Gill–Thomas–Cosman frame in stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys.30(3), 685–691 (1994).
[CrossRef] [PubMed]

McKay, N. D.

P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,” IEEE Trans. Pattern Anal. Mach. Intell.14(2), 239–256 (1992).
[CrossRef]

McLean, D.

H. Lui, J. Zhao, D. McLean, and H. Zeng, “Real-time Raman spectroscopy for in vivo skin cancer diagnosis,” Cancer Res.72(10), 2491–2500 (2012).
[CrossRef] [PubMed]

Meeks, S. L.

T. H. Wagner, S. L. Meeks, F. J. Bova, W. A. Friedman, T. R. Willoughby, P. A. Kupelian, and W. Tome, “Optical tracking technology in stereotactic radiation therapy,” Med. Dosim.32(2), 111–120 (2007).
[CrossRef] [PubMed]

J. M. Buatti, F. J. Bova, W. A. Friedman, S. L. Meeks, R. B. Marcus, J. P. Mickle, T. L. Ellis, and W. M. Mendenhall, “Preliminary experience with frameless stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys.42(3), 591–599 (1998).
[CrossRef] [PubMed]

Meglinski, I.

Meglinski, I. V.

I. V. Meglinski and S. J. Matcher, “Computer simulation of the skin reflectance spectra,” Comput. Methods Programs Biomed.70(2), 179–186 (2003).
[CrossRef] [PubMed]

Meglinsky, I. V.

I. V. Meglinsky and S. J. Matcher, “Modeling the sampling volume for skin blood oxygenation measurements,” Med. Biol. Eng. Comput.39(1), 44–50 (2001).
[CrossRef] [PubMed]

Mendenhall, W. M.

J. M. Buatti, F. J. Bova, W. A. Friedman, S. L. Meeks, R. B. Marcus, J. P. Mickle, T. L. Ellis, and W. M. Mendenhall, “Preliminary experience with frameless stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys.42(3), 591–599 (1998).
[CrossRef] [PubMed]

Mickle, J. P.

J. M. Buatti, F. J. Bova, W. A. Friedman, S. L. Meeks, R. B. Marcus, J. P. Mickle, T. L. Ellis, and W. M. Mendenhall, “Preliminary experience with frameless stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys.42(3), 591–599 (1998).
[CrossRef] [PubMed]

Minniti, G.

G. Minniti, M. Valeriani, E. Clarke, M. D’Arienzo, M. Ciotti, R. Montagnoli, F. Saporetti, and R. M. Enrici, “Fractionated stereotactic radiotherapy for skull base tumors: analysis of treatment accuracy using a stereotactic mask fixation system,” Radiat. Oncol.5(1), 1 (2010).
[CrossRef] [PubMed]

Montagnoli, R.

G. Minniti, M. Valeriani, E. Clarke, M. D’Arienzo, M. Ciotti, R. Montagnoli, F. Saporetti, and R. M. Enrici, “Fractionated stereotactic radiotherapy for skull base tumors: analysis of treatment accuracy using a stereotactic mask fixation system,” Radiat. Oncol.5(1), 1 (2010).
[CrossRef] [PubMed]

Naredi, P.

I. Bodén, D. Nilsson, P. Naredi, and B. Lindholm-Sethson, “Characterization of healthy skin using near infrared spectroscopy and skin impedance,” Med. Biol. Eng. Comput.46(10), 985–995 (2008).
[CrossRef] [PubMed]

Nilsson, D.

I. Bodén, D. Nilsson, P. Naredi, and B. Lindholm-Sethson, “Characterization of healthy skin using near infrared spectroscopy and skin impedance,” Med. Biol. Eng. Comput.46(10), 985–995 (2008).
[CrossRef] [PubMed]

Novak, J.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006).
[CrossRef] [PubMed]

Parrish, J. A.

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol.77(1), 13–19 (1981).
[CrossRef] [PubMed]

Pershing, L. K.

T. R. Hata, T. A. Scholz, I. V. Ermakov, R. W. McClane, F. Khachik, W. Gellermann, and L. K. Pershing, “Non-invasive Raman spectroscopic detection of carotenoids in human skin,” J. Invest. Dermatol.115(3), 441–448 (2000).
[CrossRef] [PubMed]

Petrov, G. I.

Polefka, T. G.

L. Kilpatrick-Liverman, P. Kazmi, E. Wolff, and T. G. Polefka, “The use of near-infrared spectroscopy in skin care applications,” Skin Res. Technol.12(3), 162–169 (2006).
[CrossRef] [PubMed]

Riboldi, M.

J. Schaerer, A. Fassi, M. Riboldi, P. Cerveri, G. Baroni, and D. Sarrut, “Multi-dimensional respiratory motion tracking from markerless optical surface imaging based on deformable mesh registration,” Phys. Med. Biol.57(2), 357–373 (2012).
[CrossRef] [PubMed]

Robar, J. L.

J. L. Robar, B. G. Clark, J. W. Schella, and C. S. Kim, “Analysis of patient repositioning accuracy in precision radiation therapy using automated image fusion,” J. Appl. Clin. Med. Phys.6(1), 71–83 (2005).
[CrossRef] [PubMed]

Rose, J.

Sadeghi, A.

M. Fuss, B. J. Salter, D. Cheek, A. Sadeghi, J. M. Hevezi, and T. S. Herman, “Repositioning accuracy of a commercially available thermoplastic mask system,” Radiother. Oncol.71(3), 339–345 (2004).
[CrossRef] [PubMed]

Salomatina, E.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006).
[CrossRef] [PubMed]

Salter, B. J.

M. Fuss, B. J. Salter, D. Cheek, A. Sadeghi, J. M. Hevezi, and T. S. Herman, “Repositioning accuracy of a commercially available thermoplastic mask system,” Radiother. Oncol.71(3), 339–345 (2004).
[CrossRef] [PubMed]

Samra, S.

J. A. Wahr, K. K. Tremper, S. Samra, and D. T. Delpy, “Near-infrared spectroscopy: theory and applications,” J. Cardiothorac. Vasc. Anesth.10(3), 406–418 (1996).
[CrossRef] [PubMed]

Sanguineti, G.

E. Tryggestad, M. Christian, E. Ford, C. Kut, Y. Le, G. Sanguineti, D. Y. Song, and L. Kleinberg, “Inter- and intrafraction patient positioning uncertainties for intracranial radiotherapy: a study of four frameless, thermoplastic mask-based immobilization strategies using daily cone-beam CT,” Int. J. Radiat. Oncol., Biol., Phys.80(1), 281–290 (2011).
[CrossRef] [PubMed]

Saporetti, F.

G. Minniti, M. Valeriani, E. Clarke, M. D’Arienzo, M. Ciotti, R. Montagnoli, F. Saporetti, and R. M. Enrici, “Fractionated stereotactic radiotherapy for skull base tumors: analysis of treatment accuracy using a stereotactic mask fixation system,” Radiat. Oncol.5(1), 1 (2010).
[CrossRef] [PubMed]

Sarrut, D.

J. Schaerer, A. Fassi, M. Riboldi, P. Cerveri, G. Baroni, and D. Sarrut, “Multi-dimensional respiratory motion tracking from markerless optical surface imaging based on deformable mesh registration,” Phys. Med. Biol.57(2), 357–373 (2012).
[CrossRef] [PubMed]

Schaerer, J.

J. Schaerer, A. Fassi, M. Riboldi, P. Cerveri, G. Baroni, and D. Sarrut, “Multi-dimensional respiratory motion tracking from markerless optical surface imaging based on deformable mesh registration,” Phys. Med. Biol.57(2), 357–373 (2012).
[CrossRef] [PubMed]

Schella, J. W.

J. L. Robar, B. G. Clark, J. W. Schella, and C. S. Kim, “Analysis of patient repositioning accuracy in precision radiation therapy using automated image fusion,” J. Appl. Clin. Med. Phys.6(1), 71–83 (2005).
[CrossRef] [PubMed]

Schölkopf, B.

A. Smola and B. Schölkopf, “A tutorial on Support Vector regression,” Stat. Comput.14(3), 199–222 (2004).
[CrossRef]

Scholz, T. A.

T. R. Hata, T. A. Scholz, I. V. Ermakov, R. W. McClane, F. Khachik, W. Gellermann, and L. K. Pershing, “Non-invasive Raman spectroscopic detection of carotenoids in human skin,” J. Invest. Dermatol.115(3), 441–448 (2000).
[CrossRef] [PubMed]

Shusterman, S.

H. M. Kooy, S. F. Dunbar, N. J. Tarbell, E. Mannarino, N. Ferarro, S. Shusterman, M. Bellerive, L. Finn, C. V. McDonough, and J. S. Loeffler, “Adaptation and verification of the relocatable Gill–Thomas–Cosman frame in stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys.30(3), 685–691 (1994).
[CrossRef] [PubMed]

Simpson, C. R.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

Siochi, R. A.

J. Xia and R. A. Siochi, “A real-time respiratory motion monitoring system using KINECT: proof of concept,” Med. Phys.39(5), 2682–2685 (2012).
[CrossRef] [PubMed]

Smola, A.

A. Smola and B. Schölkopf, “A tutorial on Support Vector regression,” Stat. Comput.14(3), 199–222 (2004).
[CrossRef]

Song, D. Y.

E. Tryggestad, M. Christian, E. Ford, C. Kut, Y. Le, G. Sanguineti, D. Y. Song, and L. Kleinberg, “Inter- and intrafraction patient positioning uncertainties for intracranial radiotherapy: a study of four frameless, thermoplastic mask-based immobilization strategies using daily cone-beam CT,” Int. J. Radiat. Oncol., Biol., Phys.80(1), 281–290 (2011).
[CrossRef] [PubMed]

Tarbell, N. J.

H. M. Kooy, S. F. Dunbar, N. J. Tarbell, E. Mannarino, N. Ferarro, S. Shusterman, M. Bellerive, L. Finn, C. V. McDonough, and J. S. Loeffler, “Adaptation and verification of the relocatable Gill–Thomas–Cosman frame in stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys.30(3), 685–691 (1994).
[CrossRef] [PubMed]

Tome, W.

T. H. Wagner, S. L. Meeks, F. J. Bova, W. A. Friedman, T. R. Willoughby, P. A. Kupelian, and W. Tome, “Optical tracking technology in stereotactic radiation therapy,” Med. Dosim.32(2), 111–120 (2007).
[CrossRef] [PubMed]

Tremper, K. K.

J. A. Wahr, K. K. Tremper, S. Samra, and D. T. Delpy, “Near-infrared spectroscopy: theory and applications,” J. Cardiothorac. Vasc. Anesth.10(3), 406–418 (1996).
[CrossRef] [PubMed]

Tryggestad, E.

E. Tryggestad, M. Christian, E. Ford, C. Kut, Y. Le, G. Sanguineti, D. Y. Song, and L. Kleinberg, “Inter- and intrafraction patient positioning uncertainties for intracranial radiotherapy: a study of four frameless, thermoplastic mask-based immobilization strategies using daily cone-beam CT,” Int. J. Radiat. Oncol., Biol., Phys.80(1), 281–290 (2011).
[CrossRef] [PubMed]

Tuchin, V. V.

E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Optical clearing of cranial bone,” Adv. Opt. Technol.2008, 267867 (2008).
[CrossRef]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

Valeriani, M.

G. Minniti, M. Valeriani, E. Clarke, M. D’Arienzo, M. Ciotti, R. Montagnoli, F. Saporetti, and R. M. Enrici, “Fractionated stereotactic radiotherapy for skull base tumors: analysis of treatment accuracy using a stereotactic mask fixation system,” Radiat. Oncol.5(1), 1 (2010).
[CrossRef] [PubMed]

Wagner, T. H.

T. H. Wagner, S. L. Meeks, F. J. Bova, W. A. Friedman, T. R. Willoughby, P. A. Kupelian, and W. Tome, “Optical tracking technology in stereotactic radiation therapy,” Med. Dosim.32(2), 111–120 (2007).
[CrossRef] [PubMed]

Wahr, J. A.

J. A. Wahr, K. K. Tremper, S. Samra, and D. T. Delpy, “Near-infrared spectroscopy: theory and applications,” J. Cardiothorac. Vasc. Anesth.10(3), 406–418 (1996).
[CrossRef] [PubMed]

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
[CrossRef] [PubMed]

Whelan, H. T.

Willoughby, T. R.

T. H. Wagner, S. L. Meeks, F. J. Bova, W. A. Friedman, T. R. Willoughby, P. A. Kupelian, and W. Tome, “Optical tracking technology in stereotactic radiation therapy,” Med. Dosim.32(2), 111–120 (2007).
[CrossRef] [PubMed]

Wilson, J. R.

D. M. Mancini, L. Bolinger, H. Li, K. Kendrick, B. Chance, and J. R. Wilson, “Validation of near-infrared spectroscopy in humans,” J. Appl. Physiol.77(6), 2740–2747 (1994).
[PubMed]

Wolff, E.

L. Kilpatrick-Liverman, P. Kazmi, E. Wolff, and T. G. Polefka, “The use of near-infrared spectroscopy in skin care applications,” Skin Res. Technol.12(3), 162–169 (2006).
[CrossRef] [PubMed]

Xia, J.

J. Xia and R. A. Siochi, “A real-time respiratory motion monitoring system using KINECT: proof of concept,” Med. Phys.39(5), 2682–2685 (2012).
[CrossRef] [PubMed]

Yakovlev, V. V.

Yaroslavsky, A. N.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006).
[CrossRef] [PubMed]

Zeng, H.

H. Lui, J. Zhao, D. McLean, and H. Zeng, “Real-time Raman spectroscopy for in vivo skin cancer diagnosis,” Cancer Res.72(10), 2491–2500 (2012).
[CrossRef] [PubMed]

Zhao, J.

H. Lui, J. Zhao, D. McLean, and H. Zeng, “Real-time Raman spectroscopy for in vivo skin cancer diagnosis,” Cancer Res.72(10), 2491–2500 (2012).
[CrossRef] [PubMed]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
[CrossRef] [PubMed]

Adv. Opt. Technol. (1)

E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Optical clearing of cranial bone,” Adv. Opt. Technol.2008, 267867 (2008).
[CrossRef]

Biomed. Opt. Express (3)

Cancer Res. (1)

H. Lui, J. Zhao, D. McLean, and H. Zeng, “Real-time Raman spectroscopy for in vivo skin cancer diagnosis,” Cancer Res.72(10), 2491–2500 (2012).
[CrossRef] [PubMed]

Comput. Methods Programs Biomed. (2)

L. Wang, S. L. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
[CrossRef] [PubMed]

I. V. Meglinski and S. J. Matcher, “Computer simulation of the skin reflectance spectra,” Comput. Methods Programs Biomed.70(2), 179–186 (2003).
[CrossRef] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,” IEEE Trans. Pattern Anal. Mach. Intell.14(2), 239–256 (1992).
[CrossRef]

Int. J. Radiat. Oncol., Biol., Phys. (3)

E. Tryggestad, M. Christian, E. Ford, C. Kut, Y. Le, G. Sanguineti, D. Y. Song, and L. Kleinberg, “Inter- and intrafraction patient positioning uncertainties for intracranial radiotherapy: a study of four frameless, thermoplastic mask-based immobilization strategies using daily cone-beam CT,” Int. J. Radiat. Oncol., Biol., Phys.80(1), 281–290 (2011).
[CrossRef] [PubMed]

J. M. Buatti, F. J. Bova, W. A. Friedman, S. L. Meeks, R. B. Marcus, J. P. Mickle, T. L. Ellis, and W. M. Mendenhall, “Preliminary experience with frameless stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys.42(3), 591–599 (1998).
[CrossRef] [PubMed]

H. M. Kooy, S. F. Dunbar, N. J. Tarbell, E. Mannarino, N. Ferarro, S. Shusterman, M. Bellerive, L. Finn, C. V. McDonough, and J. S. Loeffler, “Adaptation and verification of the relocatable Gill–Thomas–Cosman frame in stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys.30(3), 685–691 (1994).
[CrossRef] [PubMed]

J. Appl. Clin. Med. Phys. (1)

J. L. Robar, B. G. Clark, J. W. Schella, and C. S. Kim, “Analysis of patient repositioning accuracy in precision radiation therapy using automated image fusion,” J. Appl. Clin. Med. Phys.6(1), 71–83 (2005).
[CrossRef] [PubMed]

J. Appl. Physiol. (1)

D. M. Mancini, L. Bolinger, H. Li, K. Kendrick, B. Chance, and J. R. Wilson, “Validation of near-infrared spectroscopy in humans,” J. Appl. Physiol.77(6), 2740–2747 (1994).
[PubMed]

J. Biomed. Opt. (1)

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006).
[CrossRef] [PubMed]

J. Cardiothorac. Vasc. Anesth. (1)

J. A. Wahr, K. K. Tremper, S. Samra, and D. T. Delpy, “Near-infrared spectroscopy: theory and applications,” J. Cardiothorac. Vasc. Anesth.10(3), 406–418 (1996).
[CrossRef] [PubMed]

J. Invest. Dermatol. (2)

T. R. Hata, T. A. Scholz, I. V. Ermakov, R. W. McClane, F. Khachik, W. Gellermann, and L. K. Pershing, “Non-invasive Raman spectroscopic detection of carotenoids in human skin,” J. Invest. Dermatol.115(3), 441–448 (2000).
[CrossRef] [PubMed]

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol.77(1), 13–19 (1981).
[CrossRef] [PubMed]

J. Phys. D Appl. Phys. (2)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

Laser Phys. (1)

A. Doronin, I. Fine, and I. Meglinski, “Assessment of the calibration curve for transmittance pulse-oximetry,” Laser Phys.21(11), 1972–1977 (2011).
[CrossRef]

Med. Biol. Eng. Comput. (2)

I. Bodén, D. Nilsson, P. Naredi, and B. Lindholm-Sethson, “Characterization of healthy skin using near infrared spectroscopy and skin impedance,” Med. Biol. Eng. Comput.46(10), 985–995 (2008).
[CrossRef] [PubMed]

I. V. Meglinsky and S. J. Matcher, “Modeling the sampling volume for skin blood oxygenation measurements,” Med. Biol. Eng. Comput.39(1), 44–50 (2001).
[CrossRef] [PubMed]

Med. Dosim. (1)

T. H. Wagner, S. L. Meeks, F. J. Bova, W. A. Friedman, T. R. Willoughby, P. A. Kupelian, and W. Tome, “Optical tracking technology in stereotactic radiation therapy,” Med. Dosim.32(2), 111–120 (2007).
[CrossRef] [PubMed]

Med. Phys. (1)

J. Xia and R. A. Siochi, “A real-time respiratory motion monitoring system using KINECT: proof of concept,” Med. Phys.39(5), 2682–2685 (2012).
[CrossRef] [PubMed]

Phys. Med. Biol. (2)

J. Schaerer, A. Fassi, M. Riboldi, P. Cerveri, G. Baroni, and D. Sarrut, “Multi-dimensional respiratory motion tracking from markerless optical surface imaging based on deformable mesh registration,” Phys. Med. Biol.57(2), 357–373 (2012).
[CrossRef] [PubMed]

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

Radiat. Oncol. (1)

G. Minniti, M. Valeriani, E. Clarke, M. D’Arienzo, M. Ciotti, R. Montagnoli, F. Saporetti, and R. M. Enrici, “Fractionated stereotactic radiotherapy for skull base tumors: analysis of treatment accuracy using a stereotactic mask fixation system,” Radiat. Oncol.5(1), 1 (2010).
[CrossRef] [PubMed]

Radiother. Oncol. (1)

M. Fuss, B. J. Salter, D. Cheek, A. Sadeghi, J. M. Hevezi, and T. S. Herman, “Repositioning accuracy of a commercially available thermoplastic mask system,” Radiother. Oncol.71(3), 339–345 (2004).
[CrossRef] [PubMed]

Skin Res. Technol. (1)

L. Kilpatrick-Liverman, P. Kazmi, E. Wolff, and T. G. Polefka, “The use of near-infrared spectroscopy in skin care applications,” Skin Res. Technol.12(3), 162–169 (2006).
[CrossRef] [PubMed]

Stat. Comput. (1)

A. Smola and B. Schölkopf, “A tutorial on Support Vector regression,” Stat. Comput.14(3), 199–222 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Comparison of a common spectroscopy and laser scanner setup. (a) Reflectance spectroscopy: one light-emitting and one sensing probe are placed directly on the skin surface. The light source emits multiple wavelengths and the spectrograph analyses the intensity spectrum of all the incoming light. (b) Laser scanner consisting of a laser light source and a high-resolution camera. Both are located at a minimum of 30 cm above the skin. The camera records the spatial pattern of the total diffuse reflection.

Fig. 2
Fig. 2

Soft tissue model and program flowchart of the MCML simulation software. (a) According to a Gaussian beam profile, photons are applied in a certain angle to an eight-layer skin model. Reflection (blue grid) and absorption (red grid) are recorded for simulation output. (b) Flowchart for simulating the interactions of a single photon. All blue elements correspond to own extensions to the standard MCML software developed by [21].

Fig. 3
Fig. 3

Image changes during the preprocessing steps. The image resulted from simulated laser beam of 45° incidence angle. The spot is shown from above (upper plots) and by the cross-sections along its main half-axes (bottom plots). (a) After PCA the output image contains a centered spot. The half-axes are aligned to the coordinate axes x (green) and y (red). (b) Spot parameters are obtained from a fitting a Gaussian to the cross-sections. After rescaling and interpolation a circular shape is regained. (c) The amplitude of the profile is scaled to one (optional). This is to compensate for different laser to object and camera distances that may influence the spot size in practice. (d) After a possible nonlinear rescaling using LUTs (not shown), features are extracted. Each feature is the accumulated intensity value from a concentric ROI (white circles or blue shaded regions, respectively).

Fig. 4
Fig. 4

Sketch of the entire system comprising preprocessing, feature extraction and regression elements denoted by different boxes.

Fig. 5
Fig. 5

Proportions of light reflected from individual skin layers for different wavelengths (400 nm–980 nm). A photon is assigned to a proportion if this proportion corresponded to the deepest tissue layer the photon had at least one interaction with. Only photons leaving the skin are recorded and their number displayed relative to the total number of reflected photons.

Fig. 6
Fig. 6

Diffuse reflection RD observed at the soft tissue surface. By labeling each photon the total diffuse reflection at each location (x, y) is decomposed into its components originating from all different tissue layers. The color-coded intensities are given relative to the total diffuse reflection at each location.

Fig. 7
Fig. 7

Reflected light from each layer relative to the total reflection R at each location plotted across the spot radius r. Due to the symmetry for an incident angle of 90°, the photon energy has been integrated across the azimuthal angle. The relative proportion of light from bone and fat increases with the radius.

Fig. 8
Fig. 8

Feature analysis. (a) Feature space for orthogonal irradiation sampled at 101 different values for the thickness of the subcutaneous fat ( d f [0,0.5]cm ). (b) Concatenated feature spaces resulting for different incident angles after the fitting step. Each tick at the horizontal axis denotes a particular angle, whereas the space between two ticks contains samples for different thickness values df equivalent to the plot in (a). The red line denotes a threshold from which onwards the angle influence substantially increases. Note that lines for bin 1 and bin 2 run very close to each other. (c) Four look-up tables (LUTs) indicating the remaining influence for the given incident angles after the fitting step has been applied.

Tables (1)

Tables Icon

Table 1 Estimation Error for Different Preprocessing Approaches

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

LUT(α)=  i=1 N R D (x,y, d f i ,α=90°) i=1 N R D (x,y, d f i ,α) ,    with:   R D (x,y, d f i ,α): 4 ;  d f i [0,..., 5 mm] .
b i =  (x,y)RO I i R D (x,y, d f ,α) (x,y)RO I i R D (x,y, d fref =0, α ref =45°) .
d f = f(b); with b =  [ b 1 , ... b 7 ] ,f: 7 1 .

Metrics