Abstract

En face adaptive optics scanning laser ophthalmoscope (AOSLO) images of the anterior lamina cribrosa surface (ALCS) represent a 2D projected view of a 3D laminar surface. Using spectral domain optical coherence tomography images acquired in living monkey eyes, a thin plate spline was used to model the ALCS in 3D. The 2D AOSLO images were registered and projected onto the 3D surface that was then tessellated into a triangular mesh to characterize differences in pore geometry between 2D and 3D images. Following 3D transformation of the anterior laminar surface in 11 normal eyes, mean pore area increased by 5.1 ± 2.0% with a minimal change in pore elongation (mean change = 0.0 ± 0.2%). These small changes were due to the relatively flat laminar surfaces inherent in normal eyes (mean radius of curvature = 3.0 ± 0.5 mm). The mean increase in pore area was larger following 3D transformation in 4 glaucomatous eyes (16.2 ± 6.0%) due to their more steeply curved laminar surfaces (mean radius of curvature = 1.3 ± 0.1 mm), while the change in pore elongation was comparable to that in normal eyes (−0.2 ± 2.0%). This 3D transformation and tessellation method can be used to better characterize and track 3D changes in laminar pore and surface geometries in glaucoma.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Resnikoff, D. Pascolini, D. Etya’ale, I. Kocur, R. Pararajasegaram, G. P. Pokharel, and S. P. Mariotti, “Global data on visual impairment in the year 2002,” Bull. World Health Organ.82(11), 844–851 (2004).
    [PubMed]
  2. H. A. Quigley, “Number of people with glaucoma worldwide,” Br. J. Ophthalmol.80(5), 389–393 (1996).
    [CrossRef] [PubMed]
  3. World Health Organization (WHO), “Global initiative for the elimination of avoidable blindness: action plan 2006-2011” (WHO, 2007).
  4. H. A. Quigley, E. M. Addicks, W. R. Green, and A. E. Maumenee, “Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage,” Arch. Ophthalmol.99(4), 635–649 (1981).
    [CrossRef] [PubMed]
  5. D. S. Minckler, “Histology of optic nerve damage in ocular hypertension and early glaucoma,” Surv. Ophthalmol.33(Suppl), 401–402 (1989).
    [CrossRef] [PubMed]
  6. D. R. Anderson and A. Hendrickson, “Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve,” Invest. Ophthalmol.13(10), 771–783 (1974).
    [PubMed]
  7. H. A. Quigley and D. R. Anderson, “The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve,” Invest. Ophthalmol.15(8), 606–616 (1976).
    [PubMed]
  8. N. G. Strouthidis, B. Fortune, H. Yang, I. A. Sigal, and C. F. Burgoyne, “Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.52(3), 1206–1219 (2011).
    [CrossRef] [PubMed]
  9. J. C. Downs, M. D. Roberts, and C. F. Burgoyne, “Mechanical environment of the optic nerve head in glaucoma,” Optom. Vis. Sci.85(6), E425–E435 (2008).
    [CrossRef] [PubMed]
  10. A. J. Bellezza, C. J. Rintalan, H. W. Thompson, J. C. Downs, R. T. Hart, and C. F. Burgoyne, “Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.44(2), 623–637 (2003).
    [CrossRef] [PubMed]
  11. E. J. Lee, T. W. Kim, R. N. Weinreb, M. H. Suh, M. Kang, K. H. Park, S. H. Kim, and D. M. Kim, “Three-dimensional evaluation of the lamina cribrosa using spectral-domain optical coherence tomography in glaucoma,” Invest. Ophthalmol. Vis. Sci.53(1), 198–204 (2012).
    [CrossRef] [PubMed]
  12. R. Susanna., “The lamina cribrosa and visual field defects in open-angle glaucoma,” Can. J. Ophthalmol.18(3), 124–126 (1983).
    [PubMed]
  13. G. Tezel, K. Trinkaus, and M. B. Wax, “Alterations in the morphology of lamina cribrosa pores in glaucomatous eyes,” Br. J. Ophthalmol.88(2), 251–256 (2004).
    [CrossRef] [PubMed]
  14. W. H. Woon, F. W. Fitzke, A. C. Bird, and J. Marshall, “Confocal imaging of the fundus using a scanning laser ophthalmoscope,” Br. J. Ophthalmol.76(8), 470–474 (1992).
    [CrossRef] [PubMed]
  15. L. Fontana, A. Bhandari, F. W. Fitzke, and R. A. Hitchings, “In vivo morphometry of the lamina cribrosa and its relation to visual field loss in glaucoma,” Curr. Eye Res.17(4), 363–369 (1998).
    [CrossRef] [PubMed]
  16. C. Torti, B. Povazay, B. Hofer, A. Unterhuber, J. Carroll, P. K. Ahnelt, and W. Drexler, “Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina,” Opt. Express17(22), 19382–19400 (2009).
    [CrossRef] [PubMed]
  17. A. S. Vilupuru, N. V. Rangaswamy, L. J. Frishman, E. L. Smith, R. S. Harwerth, and A. Roorda, “Adaptive optics scanning laser ophthalmoscopy for in vivo imaging of lamina cribrosa,” J. Opt. Soc. Am. A24(5), 1417–1425 (2007).
    [CrossRef] [PubMed]
  18. K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci.52(8), 5473–5480 (2011).
    [CrossRef] [PubMed]
  19. T. Akagi, M. Hangai, K. Takayama, A. Nonaka, S. Ooto, and N. Yoshimura, “In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci.53(7), 4111–4119 (2012).
    [CrossRef] [PubMed]
  20. R. S. Harwerth, E. L. Smith, and L. DeSantis, “Experimental glaucoma: perimetric field defects and intraocular pressure,” J. Glaucoma6(6), 390–401 (1997).
    [CrossRef] [PubMed]
  21. L. J. Frishman, F. F. Shen, L. Du, J. G. Robson, R. S. Harwerth, E. L. Smith, L. Carter-Dawson, and M. L. Crawford, “The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.37(1), 125–141 (1996).
    [PubMed]
  22. C. Li, N. Sredar, K. M. Ivers, H. Queener, and J. Porter, “A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system,” Opt. Express18(16), 16671–16684 (2010).
    [CrossRef] [PubMed]
  23. ANSI, “American National Standard for safe use of lasers” (ANSI 136.1–2007) (The Laser Institute of America, 2007).
  24. F. C. Delori, R. H. Webb, D. H. Sliney, and American National Standards Institute, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A24(5), 1250–1265 (2007).
    [CrossRef] [PubMed]
  25. F. L. Bookstein, “Thin-plate splines and the decomposition of deformations,” IEEE Trans. Pattern Anal. Mach. Intell.11(6), 567–585 (1989).
    [CrossRef]
  26. G. Wahba, “How to smooth curves and surfaces with splines and cross-validation,” in Proc. 24th Conf. Design of Experiments (1979), pp. 167–192 .
  27. A. Bartoli, M. Perriollat, and S. Chambon, “Generalized thin-plate spline warps,” Int. J. Comput. Vis.88(1), 85–110 (2010).
    [CrossRef]
  28. D. H. von Seggern, CRC Standard: Curves and Surfaces (CRC-Press, 1993).
  29. A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica (CRC-Press, 1997).
  30. ANSI, “American national standard for ophthalmics—methods for reporting optical aberrations of eyes” (ANSI Z80.28–2004) (Optical Laboratories Association, 2004).
  31. G. Dahlquist and A. Bjorck, Numerical Methods (Prentice Hall, 1974).
  32. W. S. Cleveland and S. J. Devlin, “Locally weighted regression: An approach to regression analysis by local fitting,” J. Am. Stat. Assoc.83(403), 596–610 (1988).
    [CrossRef]
  33. H. Yang, J. C. Downs, C. Girkin, L. Sakata, A. Bellezza, H. Thompson, and C. F. Burgoyne, “3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness,” Invest. Ophthalmol. Vis. Sci.48(10), 4597–4607 (2007).
    [CrossRef] [PubMed]
  34. R. Richa, P. Poignet, and C. Liu, “Three-dimensional motion tracking for beating heart surgery using a thin-plate spline deformable model,” Int. J. Robot. Res.29(2-3), 218–230 (2010).
    [CrossRef]

2012 (2)

E. J. Lee, T. W. Kim, R. N. Weinreb, M. H. Suh, M. Kang, K. H. Park, S. H. Kim, and D. M. Kim, “Three-dimensional evaluation of the lamina cribrosa using spectral-domain optical coherence tomography in glaucoma,” Invest. Ophthalmol. Vis. Sci.53(1), 198–204 (2012).
[CrossRef] [PubMed]

T. Akagi, M. Hangai, K. Takayama, A. Nonaka, S. Ooto, and N. Yoshimura, “In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci.53(7), 4111–4119 (2012).
[CrossRef] [PubMed]

2011 (2)

N. G. Strouthidis, B. Fortune, H. Yang, I. A. Sigal, and C. F. Burgoyne, “Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.52(3), 1206–1219 (2011).
[CrossRef] [PubMed]

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci.52(8), 5473–5480 (2011).
[CrossRef] [PubMed]

2010 (3)

A. Bartoli, M. Perriollat, and S. Chambon, “Generalized thin-plate spline warps,” Int. J. Comput. Vis.88(1), 85–110 (2010).
[CrossRef]

R. Richa, P. Poignet, and C. Liu, “Three-dimensional motion tracking for beating heart surgery using a thin-plate spline deformable model,” Int. J. Robot. Res.29(2-3), 218–230 (2010).
[CrossRef]

C. Li, N. Sredar, K. M. Ivers, H. Queener, and J. Porter, “A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system,” Opt. Express18(16), 16671–16684 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

J. C. Downs, M. D. Roberts, and C. F. Burgoyne, “Mechanical environment of the optic nerve head in glaucoma,” Optom. Vis. Sci.85(6), E425–E435 (2008).
[CrossRef] [PubMed]

2007 (3)

2004 (2)

S. Resnikoff, D. Pascolini, D. Etya’ale, I. Kocur, R. Pararajasegaram, G. P. Pokharel, and S. P. Mariotti, “Global data on visual impairment in the year 2002,” Bull. World Health Organ.82(11), 844–851 (2004).
[PubMed]

G. Tezel, K. Trinkaus, and M. B. Wax, “Alterations in the morphology of lamina cribrosa pores in glaucomatous eyes,” Br. J. Ophthalmol.88(2), 251–256 (2004).
[CrossRef] [PubMed]

2003 (1)

A. J. Bellezza, C. J. Rintalan, H. W. Thompson, J. C. Downs, R. T. Hart, and C. F. Burgoyne, “Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.44(2), 623–637 (2003).
[CrossRef] [PubMed]

1998 (1)

L. Fontana, A. Bhandari, F. W. Fitzke, and R. A. Hitchings, “In vivo morphometry of the lamina cribrosa and its relation to visual field loss in glaucoma,” Curr. Eye Res.17(4), 363–369 (1998).
[CrossRef] [PubMed]

1997 (1)

R. S. Harwerth, E. L. Smith, and L. DeSantis, “Experimental glaucoma: perimetric field defects and intraocular pressure,” J. Glaucoma6(6), 390–401 (1997).
[CrossRef] [PubMed]

1996 (2)

L. J. Frishman, F. F. Shen, L. Du, J. G. Robson, R. S. Harwerth, E. L. Smith, L. Carter-Dawson, and M. L. Crawford, “The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.37(1), 125–141 (1996).
[PubMed]

H. A. Quigley, “Number of people with glaucoma worldwide,” Br. J. Ophthalmol.80(5), 389–393 (1996).
[CrossRef] [PubMed]

1992 (1)

W. H. Woon, F. W. Fitzke, A. C. Bird, and J. Marshall, “Confocal imaging of the fundus using a scanning laser ophthalmoscope,” Br. J. Ophthalmol.76(8), 470–474 (1992).
[CrossRef] [PubMed]

1989 (2)

F. L. Bookstein, “Thin-plate splines and the decomposition of deformations,” IEEE Trans. Pattern Anal. Mach. Intell.11(6), 567–585 (1989).
[CrossRef]

D. S. Minckler, “Histology of optic nerve damage in ocular hypertension and early glaucoma,” Surv. Ophthalmol.33(Suppl), 401–402 (1989).
[CrossRef] [PubMed]

1988 (1)

W. S. Cleveland and S. J. Devlin, “Locally weighted regression: An approach to regression analysis by local fitting,” J. Am. Stat. Assoc.83(403), 596–610 (1988).
[CrossRef]

1983 (1)

R. Susanna., “The lamina cribrosa and visual field defects in open-angle glaucoma,” Can. J. Ophthalmol.18(3), 124–126 (1983).
[PubMed]

1981 (1)

H. A. Quigley, E. M. Addicks, W. R. Green, and A. E. Maumenee, “Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage,” Arch. Ophthalmol.99(4), 635–649 (1981).
[CrossRef] [PubMed]

1976 (1)

H. A. Quigley and D. R. Anderson, “The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve,” Invest. Ophthalmol.15(8), 606–616 (1976).
[PubMed]

1974 (1)

D. R. Anderson and A. Hendrickson, “Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve,” Invest. Ophthalmol.13(10), 771–783 (1974).
[PubMed]

Addicks, E. M.

H. A. Quigley, E. M. Addicks, W. R. Green, and A. E. Maumenee, “Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage,” Arch. Ophthalmol.99(4), 635–649 (1981).
[CrossRef] [PubMed]

Ahnelt, P. K.

Akagi, T.

T. Akagi, M. Hangai, K. Takayama, A. Nonaka, S. Ooto, and N. Yoshimura, “In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci.53(7), 4111–4119 (2012).
[CrossRef] [PubMed]

Anderson, D. R.

H. A. Quigley and D. R. Anderson, “The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve,” Invest. Ophthalmol.15(8), 606–616 (1976).
[PubMed]

D. R. Anderson and A. Hendrickson, “Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve,” Invest. Ophthalmol.13(10), 771–783 (1974).
[PubMed]

Bartoli, A.

A. Bartoli, M. Perriollat, and S. Chambon, “Generalized thin-plate spline warps,” Int. J. Comput. Vis.88(1), 85–110 (2010).
[CrossRef]

Bellezza, A.

H. Yang, J. C. Downs, C. Girkin, L. Sakata, A. Bellezza, H. Thompson, and C. F. Burgoyne, “3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness,” Invest. Ophthalmol. Vis. Sci.48(10), 4597–4607 (2007).
[CrossRef] [PubMed]

Bellezza, A. J.

A. J. Bellezza, C. J. Rintalan, H. W. Thompson, J. C. Downs, R. T. Hart, and C. F. Burgoyne, “Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.44(2), 623–637 (2003).
[CrossRef] [PubMed]

Bhandari, A.

L. Fontana, A. Bhandari, F. W. Fitzke, and R. A. Hitchings, “In vivo morphometry of the lamina cribrosa and its relation to visual field loss in glaucoma,” Curr. Eye Res.17(4), 363–369 (1998).
[CrossRef] [PubMed]

Bird, A. C.

W. H. Woon, F. W. Fitzke, A. C. Bird, and J. Marshall, “Confocal imaging of the fundus using a scanning laser ophthalmoscope,” Br. J. Ophthalmol.76(8), 470–474 (1992).
[CrossRef] [PubMed]

Bookstein, F. L.

F. L. Bookstein, “Thin-plate splines and the decomposition of deformations,” IEEE Trans. Pattern Anal. Mach. Intell.11(6), 567–585 (1989).
[CrossRef]

Burgoyne, C. F.

N. G. Strouthidis, B. Fortune, H. Yang, I. A. Sigal, and C. F. Burgoyne, “Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.52(3), 1206–1219 (2011).
[CrossRef] [PubMed]

J. C. Downs, M. D. Roberts, and C. F. Burgoyne, “Mechanical environment of the optic nerve head in glaucoma,” Optom. Vis. Sci.85(6), E425–E435 (2008).
[CrossRef] [PubMed]

H. Yang, J. C. Downs, C. Girkin, L. Sakata, A. Bellezza, H. Thompson, and C. F. Burgoyne, “3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness,” Invest. Ophthalmol. Vis. Sci.48(10), 4597–4607 (2007).
[CrossRef] [PubMed]

A. J. Bellezza, C. J. Rintalan, H. W. Thompson, J. C. Downs, R. T. Hart, and C. F. Burgoyne, “Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.44(2), 623–637 (2003).
[CrossRef] [PubMed]

Carroll, J.

Carter-Dawson, L.

L. J. Frishman, F. F. Shen, L. Du, J. G. Robson, R. S. Harwerth, E. L. Smith, L. Carter-Dawson, and M. L. Crawford, “The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.37(1), 125–141 (1996).
[PubMed]

Chambon, S.

A. Bartoli, M. Perriollat, and S. Chambon, “Generalized thin-plate spline warps,” Int. J. Comput. Vis.88(1), 85–110 (2010).
[CrossRef]

Cleveland, W. S.

W. S. Cleveland and S. J. Devlin, “Locally weighted regression: An approach to regression analysis by local fitting,” J. Am. Stat. Assoc.83(403), 596–610 (1988).
[CrossRef]

Crawford, M. L.

L. J. Frishman, F. F. Shen, L. Du, J. G. Robson, R. S. Harwerth, E. L. Smith, L. Carter-Dawson, and M. L. Crawford, “The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.37(1), 125–141 (1996).
[PubMed]

Delori, F. C.

DeSantis, L.

R. S. Harwerth, E. L. Smith, and L. DeSantis, “Experimental glaucoma: perimetric field defects and intraocular pressure,” J. Glaucoma6(6), 390–401 (1997).
[CrossRef] [PubMed]

Devlin, S. J.

W. S. Cleveland and S. J. Devlin, “Locally weighted regression: An approach to regression analysis by local fitting,” J. Am. Stat. Assoc.83(403), 596–610 (1988).
[CrossRef]

Downs, J. C.

J. C. Downs, M. D. Roberts, and C. F. Burgoyne, “Mechanical environment of the optic nerve head in glaucoma,” Optom. Vis. Sci.85(6), E425–E435 (2008).
[CrossRef] [PubMed]

H. Yang, J. C. Downs, C. Girkin, L. Sakata, A. Bellezza, H. Thompson, and C. F. Burgoyne, “3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness,” Invest. Ophthalmol. Vis. Sci.48(10), 4597–4607 (2007).
[CrossRef] [PubMed]

A. J. Bellezza, C. J. Rintalan, H. W. Thompson, J. C. Downs, R. T. Hart, and C. F. Burgoyne, “Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.44(2), 623–637 (2003).
[CrossRef] [PubMed]

Drexler, W.

Du, L.

L. J. Frishman, F. F. Shen, L. Du, J. G. Robson, R. S. Harwerth, E. L. Smith, L. Carter-Dawson, and M. L. Crawford, “The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.37(1), 125–141 (1996).
[PubMed]

Etya’ale, D.

S. Resnikoff, D. Pascolini, D. Etya’ale, I. Kocur, R. Pararajasegaram, G. P. Pokharel, and S. P. Mariotti, “Global data on visual impairment in the year 2002,” Bull. World Health Organ.82(11), 844–851 (2004).
[PubMed]

Fitzke, F. W.

L. Fontana, A. Bhandari, F. W. Fitzke, and R. A. Hitchings, “In vivo morphometry of the lamina cribrosa and its relation to visual field loss in glaucoma,” Curr. Eye Res.17(4), 363–369 (1998).
[CrossRef] [PubMed]

W. H. Woon, F. W. Fitzke, A. C. Bird, and J. Marshall, “Confocal imaging of the fundus using a scanning laser ophthalmoscope,” Br. J. Ophthalmol.76(8), 470–474 (1992).
[CrossRef] [PubMed]

Fontana, L.

L. Fontana, A. Bhandari, F. W. Fitzke, and R. A. Hitchings, “In vivo morphometry of the lamina cribrosa and its relation to visual field loss in glaucoma,” Curr. Eye Res.17(4), 363–369 (1998).
[CrossRef] [PubMed]

Fortune, B.

N. G. Strouthidis, B. Fortune, H. Yang, I. A. Sigal, and C. F. Burgoyne, “Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.52(3), 1206–1219 (2011).
[CrossRef] [PubMed]

Frishman, L. J.

A. S. Vilupuru, N. V. Rangaswamy, L. J. Frishman, E. L. Smith, R. S. Harwerth, and A. Roorda, “Adaptive optics scanning laser ophthalmoscopy for in vivo imaging of lamina cribrosa,” J. Opt. Soc. Am. A24(5), 1417–1425 (2007).
[CrossRef] [PubMed]

L. J. Frishman, F. F. Shen, L. Du, J. G. Robson, R. S. Harwerth, E. L. Smith, L. Carter-Dawson, and M. L. Crawford, “The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.37(1), 125–141 (1996).
[PubMed]

Girkin, C.

H. Yang, J. C. Downs, C. Girkin, L. Sakata, A. Bellezza, H. Thompson, and C. F. Burgoyne, “3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness,” Invest. Ophthalmol. Vis. Sci.48(10), 4597–4607 (2007).
[CrossRef] [PubMed]

Green, W. R.

H. A. Quigley, E. M. Addicks, W. R. Green, and A. E. Maumenee, “Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage,” Arch. Ophthalmol.99(4), 635–649 (1981).
[CrossRef] [PubMed]

Hangai, M.

T. Akagi, M. Hangai, K. Takayama, A. Nonaka, S. Ooto, and N. Yoshimura, “In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci.53(7), 4111–4119 (2012).
[CrossRef] [PubMed]

Hart, R. T.

A. J. Bellezza, C. J. Rintalan, H. W. Thompson, J. C. Downs, R. T. Hart, and C. F. Burgoyne, “Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.44(2), 623–637 (2003).
[CrossRef] [PubMed]

Harwerth, R. S.

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci.52(8), 5473–5480 (2011).
[CrossRef] [PubMed]

A. S. Vilupuru, N. V. Rangaswamy, L. J. Frishman, E. L. Smith, R. S. Harwerth, and A. Roorda, “Adaptive optics scanning laser ophthalmoscopy for in vivo imaging of lamina cribrosa,” J. Opt. Soc. Am. A24(5), 1417–1425 (2007).
[CrossRef] [PubMed]

R. S. Harwerth, E. L. Smith, and L. DeSantis, “Experimental glaucoma: perimetric field defects and intraocular pressure,” J. Glaucoma6(6), 390–401 (1997).
[CrossRef] [PubMed]

L. J. Frishman, F. F. Shen, L. Du, J. G. Robson, R. S. Harwerth, E. L. Smith, L. Carter-Dawson, and M. L. Crawford, “The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.37(1), 125–141 (1996).
[PubMed]

Hendrickson, A.

D. R. Anderson and A. Hendrickson, “Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve,” Invest. Ophthalmol.13(10), 771–783 (1974).
[PubMed]

Hitchings, R. A.

L. Fontana, A. Bhandari, F. W. Fitzke, and R. A. Hitchings, “In vivo morphometry of the lamina cribrosa and its relation to visual field loss in glaucoma,” Curr. Eye Res.17(4), 363–369 (1998).
[CrossRef] [PubMed]

Hofer, B.

Ivers, K. M.

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci.52(8), 5473–5480 (2011).
[CrossRef] [PubMed]

C. Li, N. Sredar, K. M. Ivers, H. Queener, and J. Porter, “A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system,” Opt. Express18(16), 16671–16684 (2010).
[CrossRef] [PubMed]

Kang, M.

E. J. Lee, T. W. Kim, R. N. Weinreb, M. H. Suh, M. Kang, K. H. Park, S. H. Kim, and D. M. Kim, “Three-dimensional evaluation of the lamina cribrosa using spectral-domain optical coherence tomography in glaucoma,” Invest. Ophthalmol. Vis. Sci.53(1), 198–204 (2012).
[CrossRef] [PubMed]

Kim, D. M.

E. J. Lee, T. W. Kim, R. N. Weinreb, M. H. Suh, M. Kang, K. H. Park, S. H. Kim, and D. M. Kim, “Three-dimensional evaluation of the lamina cribrosa using spectral-domain optical coherence tomography in glaucoma,” Invest. Ophthalmol. Vis. Sci.53(1), 198–204 (2012).
[CrossRef] [PubMed]

Kim, S. H.

E. J. Lee, T. W. Kim, R. N. Weinreb, M. H. Suh, M. Kang, K. H. Park, S. H. Kim, and D. M. Kim, “Three-dimensional evaluation of the lamina cribrosa using spectral-domain optical coherence tomography in glaucoma,” Invest. Ophthalmol. Vis. Sci.53(1), 198–204 (2012).
[CrossRef] [PubMed]

Kim, T. W.

E. J. Lee, T. W. Kim, R. N. Weinreb, M. H. Suh, M. Kang, K. H. Park, S. H. Kim, and D. M. Kim, “Three-dimensional evaluation of the lamina cribrosa using spectral-domain optical coherence tomography in glaucoma,” Invest. Ophthalmol. Vis. Sci.53(1), 198–204 (2012).
[CrossRef] [PubMed]

Kocur, I.

S. Resnikoff, D. Pascolini, D. Etya’ale, I. Kocur, R. Pararajasegaram, G. P. Pokharel, and S. P. Mariotti, “Global data on visual impairment in the year 2002,” Bull. World Health Organ.82(11), 844–851 (2004).
[PubMed]

Lee, E. J.

E. J. Lee, T. W. Kim, R. N. Weinreb, M. H. Suh, M. Kang, K. H. Park, S. H. Kim, and D. M. Kim, “Three-dimensional evaluation of the lamina cribrosa using spectral-domain optical coherence tomography in glaucoma,” Invest. Ophthalmol. Vis. Sci.53(1), 198–204 (2012).
[CrossRef] [PubMed]

Li, C.

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci.52(8), 5473–5480 (2011).
[CrossRef] [PubMed]

C. Li, N. Sredar, K. M. Ivers, H. Queener, and J. Porter, “A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system,” Opt. Express18(16), 16671–16684 (2010).
[CrossRef] [PubMed]

Liu, C.

R. Richa, P. Poignet, and C. Liu, “Three-dimensional motion tracking for beating heart surgery using a thin-plate spline deformable model,” Int. J. Robot. Res.29(2-3), 218–230 (2010).
[CrossRef]

Luo, X.

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci.52(8), 5473–5480 (2011).
[CrossRef] [PubMed]

Mariotti, S. P.

S. Resnikoff, D. Pascolini, D. Etya’ale, I. Kocur, R. Pararajasegaram, G. P. Pokharel, and S. P. Mariotti, “Global data on visual impairment in the year 2002,” Bull. World Health Organ.82(11), 844–851 (2004).
[PubMed]

Marshall, J.

W. H. Woon, F. W. Fitzke, A. C. Bird, and J. Marshall, “Confocal imaging of the fundus using a scanning laser ophthalmoscope,” Br. J. Ophthalmol.76(8), 470–474 (1992).
[CrossRef] [PubMed]

Maumenee, A. E.

H. A. Quigley, E. M. Addicks, W. R. Green, and A. E. Maumenee, “Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage,” Arch. Ophthalmol.99(4), 635–649 (1981).
[CrossRef] [PubMed]

Minckler, D. S.

D. S. Minckler, “Histology of optic nerve damage in ocular hypertension and early glaucoma,” Surv. Ophthalmol.33(Suppl), 401–402 (1989).
[CrossRef] [PubMed]

Nonaka, A.

T. Akagi, M. Hangai, K. Takayama, A. Nonaka, S. Ooto, and N. Yoshimura, “In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci.53(7), 4111–4119 (2012).
[CrossRef] [PubMed]

Ooto, S.

T. Akagi, M. Hangai, K. Takayama, A. Nonaka, S. Ooto, and N. Yoshimura, “In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci.53(7), 4111–4119 (2012).
[CrossRef] [PubMed]

Pararajasegaram, R.

S. Resnikoff, D. Pascolini, D. Etya’ale, I. Kocur, R. Pararajasegaram, G. P. Pokharel, and S. P. Mariotti, “Global data on visual impairment in the year 2002,” Bull. World Health Organ.82(11), 844–851 (2004).
[PubMed]

Park, K. H.

E. J. Lee, T. W. Kim, R. N. Weinreb, M. H. Suh, M. Kang, K. H. Park, S. H. Kim, and D. M. Kim, “Three-dimensional evaluation of the lamina cribrosa using spectral-domain optical coherence tomography in glaucoma,” Invest. Ophthalmol. Vis. Sci.53(1), 198–204 (2012).
[CrossRef] [PubMed]

Pascolini, D.

S. Resnikoff, D. Pascolini, D. Etya’ale, I. Kocur, R. Pararajasegaram, G. P. Pokharel, and S. P. Mariotti, “Global data on visual impairment in the year 2002,” Bull. World Health Organ.82(11), 844–851 (2004).
[PubMed]

Patel, N.

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci.52(8), 5473–5480 (2011).
[CrossRef] [PubMed]

Perriollat, M.

A. Bartoli, M. Perriollat, and S. Chambon, “Generalized thin-plate spline warps,” Int. J. Comput. Vis.88(1), 85–110 (2010).
[CrossRef]

Poignet, P.

R. Richa, P. Poignet, and C. Liu, “Three-dimensional motion tracking for beating heart surgery using a thin-plate spline deformable model,” Int. J. Robot. Res.29(2-3), 218–230 (2010).
[CrossRef]

Pokharel, G. P.

S. Resnikoff, D. Pascolini, D. Etya’ale, I. Kocur, R. Pararajasegaram, G. P. Pokharel, and S. P. Mariotti, “Global data on visual impairment in the year 2002,” Bull. World Health Organ.82(11), 844–851 (2004).
[PubMed]

Porter, J.

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci.52(8), 5473–5480 (2011).
[CrossRef] [PubMed]

C. Li, N. Sredar, K. M. Ivers, H. Queener, and J. Porter, “A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system,” Opt. Express18(16), 16671–16684 (2010).
[CrossRef] [PubMed]

Povazay, B.

Queener, H.

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci.52(8), 5473–5480 (2011).
[CrossRef] [PubMed]

C. Li, N. Sredar, K. M. Ivers, H. Queener, and J. Porter, “A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system,” Opt. Express18(16), 16671–16684 (2010).
[CrossRef] [PubMed]

Quigley, H. A.

H. A. Quigley, “Number of people with glaucoma worldwide,” Br. J. Ophthalmol.80(5), 389–393 (1996).
[CrossRef] [PubMed]

H. A. Quigley, E. M. Addicks, W. R. Green, and A. E. Maumenee, “Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage,” Arch. Ophthalmol.99(4), 635–649 (1981).
[CrossRef] [PubMed]

H. A. Quigley and D. R. Anderson, “The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve,” Invest. Ophthalmol.15(8), 606–616 (1976).
[PubMed]

Rangaswamy, N. V.

Resnikoff, S.

S. Resnikoff, D. Pascolini, D. Etya’ale, I. Kocur, R. Pararajasegaram, G. P. Pokharel, and S. P. Mariotti, “Global data on visual impairment in the year 2002,” Bull. World Health Organ.82(11), 844–851 (2004).
[PubMed]

Richa, R.

R. Richa, P. Poignet, and C. Liu, “Three-dimensional motion tracking for beating heart surgery using a thin-plate spline deformable model,” Int. J. Robot. Res.29(2-3), 218–230 (2010).
[CrossRef]

Rintalan, C. J.

A. J. Bellezza, C. J. Rintalan, H. W. Thompson, J. C. Downs, R. T. Hart, and C. F. Burgoyne, “Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.44(2), 623–637 (2003).
[CrossRef] [PubMed]

Roberts, M. D.

J. C. Downs, M. D. Roberts, and C. F. Burgoyne, “Mechanical environment of the optic nerve head in glaucoma,” Optom. Vis. Sci.85(6), E425–E435 (2008).
[CrossRef] [PubMed]

Robson, J. G.

L. J. Frishman, F. F. Shen, L. Du, J. G. Robson, R. S. Harwerth, E. L. Smith, L. Carter-Dawson, and M. L. Crawford, “The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.37(1), 125–141 (1996).
[PubMed]

Roorda, A.

Sakata, L.

H. Yang, J. C. Downs, C. Girkin, L. Sakata, A. Bellezza, H. Thompson, and C. F. Burgoyne, “3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness,” Invest. Ophthalmol. Vis. Sci.48(10), 4597–4607 (2007).
[CrossRef] [PubMed]

Shen, F. F.

L. J. Frishman, F. F. Shen, L. Du, J. G. Robson, R. S. Harwerth, E. L. Smith, L. Carter-Dawson, and M. L. Crawford, “The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.37(1), 125–141 (1996).
[PubMed]

Sigal, I. A.

N. G. Strouthidis, B. Fortune, H. Yang, I. A. Sigal, and C. F. Burgoyne, “Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.52(3), 1206–1219 (2011).
[CrossRef] [PubMed]

Sliney, D. H.

Smith, E. L.

A. S. Vilupuru, N. V. Rangaswamy, L. J. Frishman, E. L. Smith, R. S. Harwerth, and A. Roorda, “Adaptive optics scanning laser ophthalmoscopy for in vivo imaging of lamina cribrosa,” J. Opt. Soc. Am. A24(5), 1417–1425 (2007).
[CrossRef] [PubMed]

R. S. Harwerth, E. L. Smith, and L. DeSantis, “Experimental glaucoma: perimetric field defects and intraocular pressure,” J. Glaucoma6(6), 390–401 (1997).
[CrossRef] [PubMed]

L. J. Frishman, F. F. Shen, L. Du, J. G. Robson, R. S. Harwerth, E. L. Smith, L. Carter-Dawson, and M. L. Crawford, “The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.37(1), 125–141 (1996).
[PubMed]

Sredar, N.

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci.52(8), 5473–5480 (2011).
[CrossRef] [PubMed]

C. Li, N. Sredar, K. M. Ivers, H. Queener, and J. Porter, “A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system,” Opt. Express18(16), 16671–16684 (2010).
[CrossRef] [PubMed]

Strouthidis, N. G.

N. G. Strouthidis, B. Fortune, H. Yang, I. A. Sigal, and C. F. Burgoyne, “Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.52(3), 1206–1219 (2011).
[CrossRef] [PubMed]

Suh, M. H.

E. J. Lee, T. W. Kim, R. N. Weinreb, M. H. Suh, M. Kang, K. H. Park, S. H. Kim, and D. M. Kim, “Three-dimensional evaluation of the lamina cribrosa using spectral-domain optical coherence tomography in glaucoma,” Invest. Ophthalmol. Vis. Sci.53(1), 198–204 (2012).
[CrossRef] [PubMed]

Susanna, R.

R. Susanna., “The lamina cribrosa and visual field defects in open-angle glaucoma,” Can. J. Ophthalmol.18(3), 124–126 (1983).
[PubMed]

Takayama, K.

T. Akagi, M. Hangai, K. Takayama, A. Nonaka, S. Ooto, and N. Yoshimura, “In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci.53(7), 4111–4119 (2012).
[CrossRef] [PubMed]

Tezel, G.

G. Tezel, K. Trinkaus, and M. B. Wax, “Alterations in the morphology of lamina cribrosa pores in glaucomatous eyes,” Br. J. Ophthalmol.88(2), 251–256 (2004).
[CrossRef] [PubMed]

Thompson, H.

H. Yang, J. C. Downs, C. Girkin, L. Sakata, A. Bellezza, H. Thompson, and C. F. Burgoyne, “3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness,” Invest. Ophthalmol. Vis. Sci.48(10), 4597–4607 (2007).
[CrossRef] [PubMed]

Thompson, H. W.

A. J. Bellezza, C. J. Rintalan, H. W. Thompson, J. C. Downs, R. T. Hart, and C. F. Burgoyne, “Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.44(2), 623–637 (2003).
[CrossRef] [PubMed]

Torti, C.

Trinkaus, K.

G. Tezel, K. Trinkaus, and M. B. Wax, “Alterations in the morphology of lamina cribrosa pores in glaucomatous eyes,” Br. J. Ophthalmol.88(2), 251–256 (2004).
[CrossRef] [PubMed]

Unterhuber, A.

Vilupuru, A. S.

Wahba, G.

G. Wahba, “How to smooth curves and surfaces with splines and cross-validation,” in Proc. 24th Conf. Design of Experiments (1979), pp. 167–192 .

Wax, M. B.

G. Tezel, K. Trinkaus, and M. B. Wax, “Alterations in the morphology of lamina cribrosa pores in glaucomatous eyes,” Br. J. Ophthalmol.88(2), 251–256 (2004).
[CrossRef] [PubMed]

Webb, R. H.

Weinreb, R. N.

E. J. Lee, T. W. Kim, R. N. Weinreb, M. H. Suh, M. Kang, K. H. Park, S. H. Kim, and D. M. Kim, “Three-dimensional evaluation of the lamina cribrosa using spectral-domain optical coherence tomography in glaucoma,” Invest. Ophthalmol. Vis. Sci.53(1), 198–204 (2012).
[CrossRef] [PubMed]

Woon, W. H.

W. H. Woon, F. W. Fitzke, A. C. Bird, and J. Marshall, “Confocal imaging of the fundus using a scanning laser ophthalmoscope,” Br. J. Ophthalmol.76(8), 470–474 (1992).
[CrossRef] [PubMed]

Yang, H.

N. G. Strouthidis, B. Fortune, H. Yang, I. A. Sigal, and C. F. Burgoyne, “Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.52(3), 1206–1219 (2011).
[CrossRef] [PubMed]

H. Yang, J. C. Downs, C. Girkin, L. Sakata, A. Bellezza, H. Thompson, and C. F. Burgoyne, “3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness,” Invest. Ophthalmol. Vis. Sci.48(10), 4597–4607 (2007).
[CrossRef] [PubMed]

Yoshimura, N.

T. Akagi, M. Hangai, K. Takayama, A. Nonaka, S. Ooto, and N. Yoshimura, “In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci.53(7), 4111–4119 (2012).
[CrossRef] [PubMed]

Arch. Ophthalmol. (1)

H. A. Quigley, E. M. Addicks, W. R. Green, and A. E. Maumenee, “Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage,” Arch. Ophthalmol.99(4), 635–649 (1981).
[CrossRef] [PubMed]

Br. J. Ophthalmol. (3)

H. A. Quigley, “Number of people with glaucoma worldwide,” Br. J. Ophthalmol.80(5), 389–393 (1996).
[CrossRef] [PubMed]

G. Tezel, K. Trinkaus, and M. B. Wax, “Alterations in the morphology of lamina cribrosa pores in glaucomatous eyes,” Br. J. Ophthalmol.88(2), 251–256 (2004).
[CrossRef] [PubMed]

W. H. Woon, F. W. Fitzke, A. C. Bird, and J. Marshall, “Confocal imaging of the fundus using a scanning laser ophthalmoscope,” Br. J. Ophthalmol.76(8), 470–474 (1992).
[CrossRef] [PubMed]

Bull. World Health Organ. (1)

S. Resnikoff, D. Pascolini, D. Etya’ale, I. Kocur, R. Pararajasegaram, G. P. Pokharel, and S. P. Mariotti, “Global data on visual impairment in the year 2002,” Bull. World Health Organ.82(11), 844–851 (2004).
[PubMed]

Can. J. Ophthalmol. (1)

R. Susanna., “The lamina cribrosa and visual field defects in open-angle glaucoma,” Can. J. Ophthalmol.18(3), 124–126 (1983).
[PubMed]

Curr. Eye Res. (1)

L. Fontana, A. Bhandari, F. W. Fitzke, and R. A. Hitchings, “In vivo morphometry of the lamina cribrosa and its relation to visual field loss in glaucoma,” Curr. Eye Res.17(4), 363–369 (1998).
[CrossRef] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

F. L. Bookstein, “Thin-plate splines and the decomposition of deformations,” IEEE Trans. Pattern Anal. Mach. Intell.11(6), 567–585 (1989).
[CrossRef]

Int. J. Comput. Vis. (1)

A. Bartoli, M. Perriollat, and S. Chambon, “Generalized thin-plate spline warps,” Int. J. Comput. Vis.88(1), 85–110 (2010).
[CrossRef]

Int. J. Robot. Res. (1)

R. Richa, P. Poignet, and C. Liu, “Three-dimensional motion tracking for beating heart surgery using a thin-plate spline deformable model,” Int. J. Robot. Res.29(2-3), 218–230 (2010).
[CrossRef]

Invest. Ophthalmol. (2)

D. R. Anderson and A. Hendrickson, “Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve,” Invest. Ophthalmol.13(10), 771–783 (1974).
[PubMed]

H. A. Quigley and D. R. Anderson, “The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve,” Invest. Ophthalmol.15(8), 606–616 (1976).
[PubMed]

Invest. Ophthalmol. Vis. Sci. (7)

N. G. Strouthidis, B. Fortune, H. Yang, I. A. Sigal, and C. F. Burgoyne, “Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.52(3), 1206–1219 (2011).
[CrossRef] [PubMed]

A. J. Bellezza, C. J. Rintalan, H. W. Thompson, J. C. Downs, R. T. Hart, and C. F. Burgoyne, “Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.44(2), 623–637 (2003).
[CrossRef] [PubMed]

E. J. Lee, T. W. Kim, R. N. Weinreb, M. H. Suh, M. Kang, K. H. Park, S. H. Kim, and D. M. Kim, “Three-dimensional evaluation of the lamina cribrosa using spectral-domain optical coherence tomography in glaucoma,” Invest. Ophthalmol. Vis. Sci.53(1), 198–204 (2012).
[CrossRef] [PubMed]

K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci.52(8), 5473–5480 (2011).
[CrossRef] [PubMed]

T. Akagi, M. Hangai, K. Takayama, A. Nonaka, S. Ooto, and N. Yoshimura, “In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci.53(7), 4111–4119 (2012).
[CrossRef] [PubMed]

H. Yang, J. C. Downs, C. Girkin, L. Sakata, A. Bellezza, H. Thompson, and C. F. Burgoyne, “3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness,” Invest. Ophthalmol. Vis. Sci.48(10), 4597–4607 (2007).
[CrossRef] [PubMed]

L. J. Frishman, F. F. Shen, L. Du, J. G. Robson, R. S. Harwerth, E. L. Smith, L. Carter-Dawson, and M. L. Crawford, “The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.37(1), 125–141 (1996).
[PubMed]

J. Am. Stat. Assoc. (1)

W. S. Cleveland and S. J. Devlin, “Locally weighted regression: An approach to regression analysis by local fitting,” J. Am. Stat. Assoc.83(403), 596–610 (1988).
[CrossRef]

J. Glaucoma (1)

R. S. Harwerth, E. L. Smith, and L. DeSantis, “Experimental glaucoma: perimetric field defects and intraocular pressure,” J. Glaucoma6(6), 390–401 (1997).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

Opt. Express (2)

Optom. Vis. Sci. (1)

J. C. Downs, M. D. Roberts, and C. F. Burgoyne, “Mechanical environment of the optic nerve head in glaucoma,” Optom. Vis. Sci.85(6), E425–E435 (2008).
[CrossRef] [PubMed]

Surv. Ophthalmol. (1)

D. S. Minckler, “Histology of optic nerve damage in ocular hypertension and early glaucoma,” Surv. Ophthalmol.33(Suppl), 401–402 (1989).
[CrossRef] [PubMed]

Other (7)

World Health Organization (WHO), “Global initiative for the elimination of avoidable blindness: action plan 2006-2011” (WHO, 2007).

G. Wahba, “How to smooth curves and surfaces with splines and cross-validation,” in Proc. 24th Conf. Design of Experiments (1979), pp. 167–192 .

ANSI, “American National Standard for safe use of lasers” (ANSI 136.1–2007) (The Laser Institute of America, 2007).

D. H. von Seggern, CRC Standard: Curves and Surfaces (CRC-Press, 1993).

A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica (CRC-Press, 1997).

ANSI, “American national standard for ophthalmics—methods for reporting optical aberrations of eyes” (ANSI Z80.28–2004) (Optical Laboratories Association, 2004).

G. Dahlquist and A. Bjorck, Numerical Methods (Prentice Hall, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) En face SLO image showing the locations of SDOCT radial B-scans acquired in a normal eye. Scale bar = 500 μm. (b) Manual delineation of the innermost terminations of the RPE/BM complex (blue points) and ALCS (red points) within the optic nerve head in a single SDOCT radial B-scan [denoted by the green bold line in (a)]. ALCS points that were located underneath a blood vessel shadow were not marked. (c) AOSLO montage of laminar pores (dark holes) on the temporal side of the anterior laminar surface scaled, registered and overlaid on the corresponding SLO image. Scale bar = 150 μm.

Fig. 2
Fig. 2

(a) Model of the laminar surface constructed by fitting a thin plate spline to the marked ALCS point cloud (denoted by black points that reside above and below the fit surface). (b) Mean ALCSD was calculated as the mean normal distance between a plane fit to the BMO point cloud (shaded gray) and the 3D anterior laminar surface (red arrows) for points located within the BMO ellipse (blue ellipse). (c,d) Graphical representation for determining the radius of curvature of a 2-dimensional curve (blue) at a point, P0. (c) An osculating circle (dashed, red circle) with radius, ρ, is drawn through point P0 and two points on the 2-dimensional curve that are infinitesimally close to P0 (i.e., P1 and P2). (d) Magnified view of the region enclosed by the green dashed rectangle in (c). The radius of curvature at point P0 is calculated as the ratio of the arc length between P1 and P2 (green arc, labeled ds) to the change in the angle of a line tangent to the curve (solid orange lines) at points P1 and P2 (i.e., | | = | θ1 - θ2 |).

Fig. 3
Fig. 3

(a) Registered AOSLO montage overlaid on the SLO image and projected onto the thin plate spline representing the ALCS. Laminar pores are marked and filled in white. (b) Magnified image of a marked laminar pore from (a) illustrating the tessellation of its surface into a collection of triangles.

Fig. 4
Fig. 4

(a) Zernike spherical aberration was created as a known surface for fitting validation. Surfaces were created by fitting a (b) thin plate spline and (c) bi-cubic spline to the same regularly sampled subset of points (45% of the total points) from the known surface. The RMS errors calculated from the non-fitted points were 3.2% and 2.6% of the total peak-to-valley height of the known surface (3.35 μm) for the thin plate spline and bi-cubic spline, respectively.

Fig. 5
Fig. 5

(a) Hemisphere of known surface area prior to tessellation. (b) Hemisphere surface after tessellation. The area of the post-tessellated hemisphere was 0.6% smaller than the known surface area.

Fig. 6
Fig. 6

(a-d, i-l) 2D AOSLO montages of the anterior laminar surface registered and overlaid on the SLO images acquired in 8 of 11 normal monkey eyes. Laminar pores are marked and filled in white. Scale bar = 150 μm. (e-h, m-p) Each 2D AOSLO montage was registered and projected onto the thin plate spline fit to the ALCS point cloud to generate a 3D transformed image of anterior laminar pores. The RMS errors of the thin plate splines fit to the manually marked ALCS points are reported underneath each 3D transformed AOSLO image. The mean RMS fit error across all 11 normal eyes was 9.8 ± 1.2 μm.

Fig. 7
Fig. 7

(a,b) 2D AOSLO montages of the anterior laminar surface registered and overlaid on the SLO images acquired in 2 of 4 eyes with unilateral experimental glaucoma. Laminar pores are marked and filled in white. Scale bar = 150 μm. (c,d) 3D transformed AOSLO images. While the anterior laminar surfaces in the glaucoma eyes were more steeply curved, the RMS fit errors for the thin plate splines were similar to those in normal eyes. The increased surface curvatures yielded a greater change in 3D pore area compared to that calculated in normal eyes.

Fig. 8
Fig. 8

(a,b) Thin plate spline models of the anterior lamina cribrosa surface (colored) in 2 monkey eyes (Subjects OHT-63 and OHT-64) relative to the BMO plane (gray rectangles) prior to the induction of experimental glaucoma. Both eyes had mean ALCSD values comparable to normal eyes (191 μm and 175 μm, respectively) with relatively high mean radii of curvature (RoC) of 2.9 mm and 3.4 mm, respectively. (c,d) Thin plate spline models of the anterior lamina cribrosa surface (colored) in the same 2 eyes from (a,b) relative to the BMO plane (gray rectangles) after induction of experimental glaucoma. Mean ALCSD increased (405 μm and 429 μm, respectively) while the mean radii of curvature decreased in each eye (1.3 mm and 1.4 mm, respectively), indicating that the laminar surface posteriorly deformed and became more steeply curved.

Tables (1)

Tables Icon

Table 1 Comparison of Lamina Cribrosa Surface Geometry and Pore Geometry after 3D Transformation in Living Eyes

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f(r)= r 2 log( r 2 )
E(f)= R 2 ( ( 2 f x 2 ) 2 +2 ( 2 f xy ) 2 + ( 2 f y 2 ) 2 )dxdy
E s (f)=p i=1 n f ( x i , y i ) z i +(1p) R 2 ( ( 2 f x 2 ) 2 +2 ( 2 f xy ) 2 + ( 2 f y 2 ) 2 )dxdy
p= 1 mean (diagonal (Coefficient Matrix))
ρ=| ds dθ |
κ= 1 ρ
H= ( κ 1 + κ 2 ) 2

Metrics