Abstract

We describe an optical system which reduces the cost and complexity of fluorescence correlation spectroscopy (FCS), intended to increase the suitability of the technique for clinical use. Integration of the focusing optics and sample chamber into a plastic component produces a design which is simple to align and operate. We validate the system by measurements on fluorescent dye, and compare the results to a commercial instrument. In addition, we demonstrate its application to measurements of concentration and multimerization of the clinically relevant protein von Willebrand factor (vWF) in human plasma.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy: I. Conceptual basis and theory,” Biopolymers13, 1–27 (1974).
    [CrossRef]
  2. W. W. Webb, “Fluorescence correlation spectroscopy: inception, biophysical experimentations, and prospectus,” Appl. Opt.40(24), 3969–3983 (2001).
    [CrossRef]
  3. A. Shahzad, M. Knapp, I. Lang, and G. Khler, “The use of fluorescence correlation spectroscopy (FCS) as an alternative biomarker detection technique: a preliminary study,” J. Cell. Mol. Med.15(12), 2706–2711 (2011).
    [CrossRef] [PubMed]
  4. J. Bieschke, A. Giese, W. Schulz-Schaeffer, I. Zerr, S. Poser, M. Eigen, and H. Kretzschmar, “Ultrasensitive detection of pathological prion protein aggregates by dual-color scanning for intensely fluorescent targets,” Proc. Natl. Acad. Sci. U.S.A.97(10), 5468–5473 (2000).
    [CrossRef] [PubMed]
  5. M. Pitschke, R. Prior, M. Haupt, and D. Riesner, “Detection of single amyloid beta-protein aggregates in the cerebrospinal fluid of Alzheimer’s patients by fluorescence correlation spectroscopy,” Nat. Med.4(7), 832–834 (1998).
    [CrossRef] [PubMed]
  6. R. Torres, J. R. Genzen, and M. J. Levene, “Clinical measurement of von Willebrand factor by fluorescence correlation spectroscopy,” Clin. Chem.58(6), 1010–1018 (2012).
    [CrossRef] [PubMed]
  7. T. Sonehara, T. Anazawa, and K. Uchida, “Improvement of biomolecule quantification precision and use of a single-element aspheric objective lens in fluorescence correlation spectroscopy,” Anal. Chem.78(24), 8395–8405 (2006).
    [CrossRef] [PubMed]
  8. A. Serov, R. Rao, M. Gsch, T. Anhut, D. Martin, R. Brunner, R. Rigler, and T. Lasser, “High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens,” Biosens. Bioelecron.20(3), 431–435 (2004).
    [CrossRef]
  9. H. Aouani, F. Deiss, J. Wenger, P. Ferrand, N. Sojic, and H. Rigneault, “Optical-fiber-microsphere for remote fluorescence correlation spectroscopy,” Opt. Express17(21), 19085–19092 (2009).
    [CrossRef]
  10. J. Wenger, D. Grard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres,” Anal. Chem.80(17), 6800–6804 (2008).
    [CrossRef] [PubMed]
  11. G. T. Hermanson, Bioconjugate Techniques (Academic Press, 2010).
  12. J. Janzen, T. G. Elliott, C. J. Carter, and D. E. Brooks, “Detection of red cell aggregation by low shear rate viscometry in whole blood with elevated plasma viscosity,” Biorheology37(3), 225–237 (2000).
    [PubMed]
  13. U. Golebiewska, J. G. Kay, T. Masters, S. Grinstein, W. Im, R. W. Pastor, S. Scarlata, and S. McLaughlin, “Evidence for a fence that impedes the diffusion of phosphatidylinositol 4,5-bisphosphate out of the forming phagosomes of macrophages,” Mol. Biol. Cell22(18), 3498–3507 (2011).
    [CrossRef] [PubMed]
  14. S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J.83(4), 2300–2317 (2002).
    [CrossRef] [PubMed]
  15. Z. M. Ruggeri, P. M. Mannucci, R. Lombardi, A. B. Federici, and T. S. Zimmerman, “Multimeric composition of factor VIII/von Willebrand factor following administration of DDAVP: implications for pathophysiology and therapy of von Willebrand’s disease subtypes,” Blood59(6), 1272–1278 (1982).
    [PubMed]

2012 (1)

R. Torres, J. R. Genzen, and M. J. Levene, “Clinical measurement of von Willebrand factor by fluorescence correlation spectroscopy,” Clin. Chem.58(6), 1010–1018 (2012).
[CrossRef] [PubMed]

2011 (2)

A. Shahzad, M. Knapp, I. Lang, and G. Khler, “The use of fluorescence correlation spectroscopy (FCS) as an alternative biomarker detection technique: a preliminary study,” J. Cell. Mol. Med.15(12), 2706–2711 (2011).
[CrossRef] [PubMed]

U. Golebiewska, J. G. Kay, T. Masters, S. Grinstein, W. Im, R. W. Pastor, S. Scarlata, and S. McLaughlin, “Evidence for a fence that impedes the diffusion of phosphatidylinositol 4,5-bisphosphate out of the forming phagosomes of macrophages,” Mol. Biol. Cell22(18), 3498–3507 (2011).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

J. Wenger, D. Grard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres,” Anal. Chem.80(17), 6800–6804 (2008).
[CrossRef] [PubMed]

2006 (1)

T. Sonehara, T. Anazawa, and K. Uchida, “Improvement of biomolecule quantification precision and use of a single-element aspheric objective lens in fluorescence correlation spectroscopy,” Anal. Chem.78(24), 8395–8405 (2006).
[CrossRef] [PubMed]

2004 (1)

A. Serov, R. Rao, M. Gsch, T. Anhut, D. Martin, R. Brunner, R. Rigler, and T. Lasser, “High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens,” Biosens. Bioelecron.20(3), 431–435 (2004).
[CrossRef]

2002 (1)

S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J.83(4), 2300–2317 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (2)

J. Janzen, T. G. Elliott, C. J. Carter, and D. E. Brooks, “Detection of red cell aggregation by low shear rate viscometry in whole blood with elevated plasma viscosity,” Biorheology37(3), 225–237 (2000).
[PubMed]

J. Bieschke, A. Giese, W. Schulz-Schaeffer, I. Zerr, S. Poser, M. Eigen, and H. Kretzschmar, “Ultrasensitive detection of pathological prion protein aggregates by dual-color scanning for intensely fluorescent targets,” Proc. Natl. Acad. Sci. U.S.A.97(10), 5468–5473 (2000).
[CrossRef] [PubMed]

1998 (1)

M. Pitschke, R. Prior, M. Haupt, and D. Riesner, “Detection of single amyloid beta-protein aggregates in the cerebrospinal fluid of Alzheimer’s patients by fluorescence correlation spectroscopy,” Nat. Med.4(7), 832–834 (1998).
[CrossRef] [PubMed]

1982 (1)

Z. M. Ruggeri, P. M. Mannucci, R. Lombardi, A. B. Federici, and T. S. Zimmerman, “Multimeric composition of factor VIII/von Willebrand factor following administration of DDAVP: implications for pathophysiology and therapy of von Willebrand’s disease subtypes,” Blood59(6), 1272–1278 (1982).
[PubMed]

1974 (1)

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy: I. Conceptual basis and theory,” Biopolymers13, 1–27 (1974).
[CrossRef]

Anazawa, T.

T. Sonehara, T. Anazawa, and K. Uchida, “Improvement of biomolecule quantification precision and use of a single-element aspheric objective lens in fluorescence correlation spectroscopy,” Anal. Chem.78(24), 8395–8405 (2006).
[CrossRef] [PubMed]

Anhut, T.

A. Serov, R. Rao, M. Gsch, T. Anhut, D. Martin, R. Brunner, R. Rigler, and T. Lasser, “High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens,” Biosens. Bioelecron.20(3), 431–435 (2004).
[CrossRef]

Aouani, H.

H. Aouani, F. Deiss, J. Wenger, P. Ferrand, N. Sojic, and H. Rigneault, “Optical-fiber-microsphere for remote fluorescence correlation spectroscopy,” Opt. Express17(21), 19085–19092 (2009).
[CrossRef]

J. Wenger, D. Grard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres,” Anal. Chem.80(17), 6800–6804 (2008).
[CrossRef] [PubMed]

Bieschke, J.

J. Bieschke, A. Giese, W. Schulz-Schaeffer, I. Zerr, S. Poser, M. Eigen, and H. Kretzschmar, “Ultrasensitive detection of pathological prion protein aggregates by dual-color scanning for intensely fluorescent targets,” Proc. Natl. Acad. Sci. U.S.A.97(10), 5468–5473 (2000).
[CrossRef] [PubMed]

Brooks, D. E.

J. Janzen, T. G. Elliott, C. J. Carter, and D. E. Brooks, “Detection of red cell aggregation by low shear rate viscometry in whole blood with elevated plasma viscosity,” Biorheology37(3), 225–237 (2000).
[PubMed]

Brunner, R.

A. Serov, R. Rao, M. Gsch, T. Anhut, D. Martin, R. Brunner, R. Rigler, and T. Lasser, “High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens,” Biosens. Bioelecron.20(3), 431–435 (2004).
[CrossRef]

Carter, C. J.

J. Janzen, T. G. Elliott, C. J. Carter, and D. E. Brooks, “Detection of red cell aggregation by low shear rate viscometry in whole blood with elevated plasma viscosity,” Biorheology37(3), 225–237 (2000).
[PubMed]

Deiss, F.

Eigen, M.

J. Bieschke, A. Giese, W. Schulz-Schaeffer, I. Zerr, S. Poser, M. Eigen, and H. Kretzschmar, “Ultrasensitive detection of pathological prion protein aggregates by dual-color scanning for intensely fluorescent targets,” Proc. Natl. Acad. Sci. U.S.A.97(10), 5468–5473 (2000).
[CrossRef] [PubMed]

Elliott, T. G.

J. Janzen, T. G. Elliott, C. J. Carter, and D. E. Brooks, “Detection of red cell aggregation by low shear rate viscometry in whole blood with elevated plasma viscosity,” Biorheology37(3), 225–237 (2000).
[PubMed]

Elson, E. L.

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy: I. Conceptual basis and theory,” Biopolymers13, 1–27 (1974).
[CrossRef]

Federici, A. B.

Z. M. Ruggeri, P. M. Mannucci, R. Lombardi, A. B. Federici, and T. S. Zimmerman, “Multimeric composition of factor VIII/von Willebrand factor following administration of DDAVP: implications for pathophysiology and therapy of von Willebrand’s disease subtypes,” Blood59(6), 1272–1278 (1982).
[PubMed]

Ferrand, P.

Genzen, J. R.

R. Torres, J. R. Genzen, and M. J. Levene, “Clinical measurement of von Willebrand factor by fluorescence correlation spectroscopy,” Clin. Chem.58(6), 1010–1018 (2012).
[CrossRef] [PubMed]

Giese, A.

J. Bieschke, A. Giese, W. Schulz-Schaeffer, I. Zerr, S. Poser, M. Eigen, and H. Kretzschmar, “Ultrasensitive detection of pathological prion protein aggregates by dual-color scanning for intensely fluorescent targets,” Proc. Natl. Acad. Sci. U.S.A.97(10), 5468–5473 (2000).
[CrossRef] [PubMed]

Golebiewska, U.

U. Golebiewska, J. G. Kay, T. Masters, S. Grinstein, W. Im, R. W. Pastor, S. Scarlata, and S. McLaughlin, “Evidence for a fence that impedes the diffusion of phosphatidylinositol 4,5-bisphosphate out of the forming phagosomes of macrophages,” Mol. Biol. Cell22(18), 3498–3507 (2011).
[CrossRef] [PubMed]

Grard, D.

J. Wenger, D. Grard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres,” Anal. Chem.80(17), 6800–6804 (2008).
[CrossRef] [PubMed]

Grinstein, S.

U. Golebiewska, J. G. Kay, T. Masters, S. Grinstein, W. Im, R. W. Pastor, S. Scarlata, and S. McLaughlin, “Evidence for a fence that impedes the diffusion of phosphatidylinositol 4,5-bisphosphate out of the forming phagosomes of macrophages,” Mol. Biol. Cell22(18), 3498–3507 (2011).
[CrossRef] [PubMed]

Gsch, M.

A. Serov, R. Rao, M. Gsch, T. Anhut, D. Martin, R. Brunner, R. Rigler, and T. Lasser, “High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens,” Biosens. Bioelecron.20(3), 431–435 (2004).
[CrossRef]

Haupt, M.

M. Pitschke, R. Prior, M. Haupt, and D. Riesner, “Detection of single amyloid beta-protein aggregates in the cerebrospinal fluid of Alzheimer’s patients by fluorescence correlation spectroscopy,” Nat. Med.4(7), 832–834 (1998).
[CrossRef] [PubMed]

Hermanson, G. T.

G. T. Hermanson, Bioconjugate Techniques (Academic Press, 2010).

Hess, S. T.

S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J.83(4), 2300–2317 (2002).
[CrossRef] [PubMed]

Im, W.

U. Golebiewska, J. G. Kay, T. Masters, S. Grinstein, W. Im, R. W. Pastor, S. Scarlata, and S. McLaughlin, “Evidence for a fence that impedes the diffusion of phosphatidylinositol 4,5-bisphosphate out of the forming phagosomes of macrophages,” Mol. Biol. Cell22(18), 3498–3507 (2011).
[CrossRef] [PubMed]

Janzen, J.

J. Janzen, T. G. Elliott, C. J. Carter, and D. E. Brooks, “Detection of red cell aggregation by low shear rate viscometry in whole blood with elevated plasma viscosity,” Biorheology37(3), 225–237 (2000).
[PubMed]

Kay, J. G.

U. Golebiewska, J. G. Kay, T. Masters, S. Grinstein, W. Im, R. W. Pastor, S. Scarlata, and S. McLaughlin, “Evidence for a fence that impedes the diffusion of phosphatidylinositol 4,5-bisphosphate out of the forming phagosomes of macrophages,” Mol. Biol. Cell22(18), 3498–3507 (2011).
[CrossRef] [PubMed]

Khler, G.

A. Shahzad, M. Knapp, I. Lang, and G. Khler, “The use of fluorescence correlation spectroscopy (FCS) as an alternative biomarker detection technique: a preliminary study,” J. Cell. Mol. Med.15(12), 2706–2711 (2011).
[CrossRef] [PubMed]

Knapp, M.

A. Shahzad, M. Knapp, I. Lang, and G. Khler, “The use of fluorescence correlation spectroscopy (FCS) as an alternative biomarker detection technique: a preliminary study,” J. Cell. Mol. Med.15(12), 2706–2711 (2011).
[CrossRef] [PubMed]

Kretzschmar, H.

J. Bieschke, A. Giese, W. Schulz-Schaeffer, I. Zerr, S. Poser, M. Eigen, and H. Kretzschmar, “Ultrasensitive detection of pathological prion protein aggregates by dual-color scanning for intensely fluorescent targets,” Proc. Natl. Acad. Sci. U.S.A.97(10), 5468–5473 (2000).
[CrossRef] [PubMed]

Lang, I.

A. Shahzad, M. Knapp, I. Lang, and G. Khler, “The use of fluorescence correlation spectroscopy (FCS) as an alternative biomarker detection technique: a preliminary study,” J. Cell. Mol. Med.15(12), 2706–2711 (2011).
[CrossRef] [PubMed]

Lasser, T.

A. Serov, R. Rao, M. Gsch, T. Anhut, D. Martin, R. Brunner, R. Rigler, and T. Lasser, “High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens,” Biosens. Bioelecron.20(3), 431–435 (2004).
[CrossRef]

Levene, M. J.

R. Torres, J. R. Genzen, and M. J. Levene, “Clinical measurement of von Willebrand factor by fluorescence correlation spectroscopy,” Clin. Chem.58(6), 1010–1018 (2012).
[CrossRef] [PubMed]

Lombardi, R.

Z. M. Ruggeri, P. M. Mannucci, R. Lombardi, A. B. Federici, and T. S. Zimmerman, “Multimeric composition of factor VIII/von Willebrand factor following administration of DDAVP: implications for pathophysiology and therapy of von Willebrand’s disease subtypes,” Blood59(6), 1272–1278 (1982).
[PubMed]

Magde, D.

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy: I. Conceptual basis and theory,” Biopolymers13, 1–27 (1974).
[CrossRef]

Mannucci, P. M.

Z. M. Ruggeri, P. M. Mannucci, R. Lombardi, A. B. Federici, and T. S. Zimmerman, “Multimeric composition of factor VIII/von Willebrand factor following administration of DDAVP: implications for pathophysiology and therapy of von Willebrand’s disease subtypes,” Blood59(6), 1272–1278 (1982).
[PubMed]

Martin, D.

A. Serov, R. Rao, M. Gsch, T. Anhut, D. Martin, R. Brunner, R. Rigler, and T. Lasser, “High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens,” Biosens. Bioelecron.20(3), 431–435 (2004).
[CrossRef]

Masters, T.

U. Golebiewska, J. G. Kay, T. Masters, S. Grinstein, W. Im, R. W. Pastor, S. Scarlata, and S. McLaughlin, “Evidence for a fence that impedes the diffusion of phosphatidylinositol 4,5-bisphosphate out of the forming phagosomes of macrophages,” Mol. Biol. Cell22(18), 3498–3507 (2011).
[CrossRef] [PubMed]

McLaughlin, S.

U. Golebiewska, J. G. Kay, T. Masters, S. Grinstein, W. Im, R. W. Pastor, S. Scarlata, and S. McLaughlin, “Evidence for a fence that impedes the diffusion of phosphatidylinositol 4,5-bisphosphate out of the forming phagosomes of macrophages,” Mol. Biol. Cell22(18), 3498–3507 (2011).
[CrossRef] [PubMed]

Pastor, R. W.

U. Golebiewska, J. G. Kay, T. Masters, S. Grinstein, W. Im, R. W. Pastor, S. Scarlata, and S. McLaughlin, “Evidence for a fence that impedes the diffusion of phosphatidylinositol 4,5-bisphosphate out of the forming phagosomes of macrophages,” Mol. Biol. Cell22(18), 3498–3507 (2011).
[CrossRef] [PubMed]

Pitschke, M.

M. Pitschke, R. Prior, M. Haupt, and D. Riesner, “Detection of single amyloid beta-protein aggregates in the cerebrospinal fluid of Alzheimer’s patients by fluorescence correlation spectroscopy,” Nat. Med.4(7), 832–834 (1998).
[CrossRef] [PubMed]

Poser, S.

J. Bieschke, A. Giese, W. Schulz-Schaeffer, I. Zerr, S. Poser, M. Eigen, and H. Kretzschmar, “Ultrasensitive detection of pathological prion protein aggregates by dual-color scanning for intensely fluorescent targets,” Proc. Natl. Acad. Sci. U.S.A.97(10), 5468–5473 (2000).
[CrossRef] [PubMed]

Prior, R.

M. Pitschke, R. Prior, M. Haupt, and D. Riesner, “Detection of single amyloid beta-protein aggregates in the cerebrospinal fluid of Alzheimer’s patients by fluorescence correlation spectroscopy,” Nat. Med.4(7), 832–834 (1998).
[CrossRef] [PubMed]

Rao, R.

A. Serov, R. Rao, M. Gsch, T. Anhut, D. Martin, R. Brunner, R. Rigler, and T. Lasser, “High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens,” Biosens. Bioelecron.20(3), 431–435 (2004).
[CrossRef]

Riesner, D.

M. Pitschke, R. Prior, M. Haupt, and D. Riesner, “Detection of single amyloid beta-protein aggregates in the cerebrospinal fluid of Alzheimer’s patients by fluorescence correlation spectroscopy,” Nat. Med.4(7), 832–834 (1998).
[CrossRef] [PubMed]

Rigler, R.

A. Serov, R. Rao, M. Gsch, T. Anhut, D. Martin, R. Brunner, R. Rigler, and T. Lasser, “High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens,” Biosens. Bioelecron.20(3), 431–435 (2004).
[CrossRef]

Rigneault, H.

H. Aouani, F. Deiss, J. Wenger, P. Ferrand, N. Sojic, and H. Rigneault, “Optical-fiber-microsphere for remote fluorescence correlation spectroscopy,” Opt. Express17(21), 19085–19092 (2009).
[CrossRef]

J. Wenger, D. Grard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres,” Anal. Chem.80(17), 6800–6804 (2008).
[CrossRef] [PubMed]

Ruggeri, Z. M.

Z. M. Ruggeri, P. M. Mannucci, R. Lombardi, A. B. Federici, and T. S. Zimmerman, “Multimeric composition of factor VIII/von Willebrand factor following administration of DDAVP: implications for pathophysiology and therapy of von Willebrand’s disease subtypes,” Blood59(6), 1272–1278 (1982).
[PubMed]

Scarlata, S.

U. Golebiewska, J. G. Kay, T. Masters, S. Grinstein, W. Im, R. W. Pastor, S. Scarlata, and S. McLaughlin, “Evidence for a fence that impedes the diffusion of phosphatidylinositol 4,5-bisphosphate out of the forming phagosomes of macrophages,” Mol. Biol. Cell22(18), 3498–3507 (2011).
[CrossRef] [PubMed]

Schulz-Schaeffer, W.

J. Bieschke, A. Giese, W. Schulz-Schaeffer, I. Zerr, S. Poser, M. Eigen, and H. Kretzschmar, “Ultrasensitive detection of pathological prion protein aggregates by dual-color scanning for intensely fluorescent targets,” Proc. Natl. Acad. Sci. U.S.A.97(10), 5468–5473 (2000).
[CrossRef] [PubMed]

Serov, A.

A. Serov, R. Rao, M. Gsch, T. Anhut, D. Martin, R. Brunner, R. Rigler, and T. Lasser, “High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens,” Biosens. Bioelecron.20(3), 431–435 (2004).
[CrossRef]

Shahzad, A.

A. Shahzad, M. Knapp, I. Lang, and G. Khler, “The use of fluorescence correlation spectroscopy (FCS) as an alternative biomarker detection technique: a preliminary study,” J. Cell. Mol. Med.15(12), 2706–2711 (2011).
[CrossRef] [PubMed]

Sojic, N.

Sonehara, T.

T. Sonehara, T. Anazawa, and K. Uchida, “Improvement of biomolecule quantification precision and use of a single-element aspheric objective lens in fluorescence correlation spectroscopy,” Anal. Chem.78(24), 8395–8405 (2006).
[CrossRef] [PubMed]

Torres, R.

R. Torres, J. R. Genzen, and M. J. Levene, “Clinical measurement of von Willebrand factor by fluorescence correlation spectroscopy,” Clin. Chem.58(6), 1010–1018 (2012).
[CrossRef] [PubMed]

Uchida, K.

T. Sonehara, T. Anazawa, and K. Uchida, “Improvement of biomolecule quantification precision and use of a single-element aspheric objective lens in fluorescence correlation spectroscopy,” Anal. Chem.78(24), 8395–8405 (2006).
[CrossRef] [PubMed]

Webb, W. W.

S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J.83(4), 2300–2317 (2002).
[CrossRef] [PubMed]

W. W. Webb, “Fluorescence correlation spectroscopy: inception, biophysical experimentations, and prospectus,” Appl. Opt.40(24), 3969–3983 (2001).
[CrossRef]

Wenger, J.

H. Aouani, F. Deiss, J. Wenger, P. Ferrand, N. Sojic, and H. Rigneault, “Optical-fiber-microsphere for remote fluorescence correlation spectroscopy,” Opt. Express17(21), 19085–19092 (2009).
[CrossRef]

J. Wenger, D. Grard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres,” Anal. Chem.80(17), 6800–6804 (2008).
[CrossRef] [PubMed]

Zerr, I.

J. Bieschke, A. Giese, W. Schulz-Schaeffer, I. Zerr, S. Poser, M. Eigen, and H. Kretzschmar, “Ultrasensitive detection of pathological prion protein aggregates by dual-color scanning for intensely fluorescent targets,” Proc. Natl. Acad. Sci. U.S.A.97(10), 5468–5473 (2000).
[CrossRef] [PubMed]

Zimmerman, T. S.

Z. M. Ruggeri, P. M. Mannucci, R. Lombardi, A. B. Federici, and T. S. Zimmerman, “Multimeric composition of factor VIII/von Willebrand factor following administration of DDAVP: implications for pathophysiology and therapy of von Willebrand’s disease subtypes,” Blood59(6), 1272–1278 (1982).
[PubMed]

Anal. Chem. (2)

T. Sonehara, T. Anazawa, and K. Uchida, “Improvement of biomolecule quantification precision and use of a single-element aspheric objective lens in fluorescence correlation spectroscopy,” Anal. Chem.78(24), 8395–8405 (2006).
[CrossRef] [PubMed]

J. Wenger, D. Grard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres,” Anal. Chem.80(17), 6800–6804 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biophys. J. (1)

S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J.83(4), 2300–2317 (2002).
[CrossRef] [PubMed]

Biopolymers (1)

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy: I. Conceptual basis and theory,” Biopolymers13, 1–27 (1974).
[CrossRef]

Biorheology (1)

J. Janzen, T. G. Elliott, C. J. Carter, and D. E. Brooks, “Detection of red cell aggregation by low shear rate viscometry in whole blood with elevated plasma viscosity,” Biorheology37(3), 225–237 (2000).
[PubMed]

Biosens. Bioelecron. (1)

A. Serov, R. Rao, M. Gsch, T. Anhut, D. Martin, R. Brunner, R. Rigler, and T. Lasser, “High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens,” Biosens. Bioelecron.20(3), 431–435 (2004).
[CrossRef]

Blood (1)

Z. M. Ruggeri, P. M. Mannucci, R. Lombardi, A. B. Federici, and T. S. Zimmerman, “Multimeric composition of factor VIII/von Willebrand factor following administration of DDAVP: implications for pathophysiology and therapy of von Willebrand’s disease subtypes,” Blood59(6), 1272–1278 (1982).
[PubMed]

Clin. Chem. (1)

R. Torres, J. R. Genzen, and M. J. Levene, “Clinical measurement of von Willebrand factor by fluorescence correlation spectroscopy,” Clin. Chem.58(6), 1010–1018 (2012).
[CrossRef] [PubMed]

J. Cell. Mol. Med. (1)

A. Shahzad, M. Knapp, I. Lang, and G. Khler, “The use of fluorescence correlation spectroscopy (FCS) as an alternative biomarker detection technique: a preliminary study,” J. Cell. Mol. Med.15(12), 2706–2711 (2011).
[CrossRef] [PubMed]

Mol. Biol. Cell (1)

U. Golebiewska, J. G. Kay, T. Masters, S. Grinstein, W. Im, R. W. Pastor, S. Scarlata, and S. McLaughlin, “Evidence for a fence that impedes the diffusion of phosphatidylinositol 4,5-bisphosphate out of the forming phagosomes of macrophages,” Mol. Biol. Cell22(18), 3498–3507 (2011).
[CrossRef] [PubMed]

Nat. Med. (1)

M. Pitschke, R. Prior, M. Haupt, and D. Riesner, “Detection of single amyloid beta-protein aggregates in the cerebrospinal fluid of Alzheimer’s patients by fluorescence correlation spectroscopy,” Nat. Med.4(7), 832–834 (1998).
[CrossRef] [PubMed]

Opt. Express (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

J. Bieschke, A. Giese, W. Schulz-Schaeffer, I. Zerr, S. Poser, M. Eigen, and H. Kretzschmar, “Ultrasensitive detection of pathological prion protein aggregates by dual-color scanning for intensely fluorescent targets,” Proc. Natl. Acad. Sci. U.S.A.97(10), 5468–5473 (2000).
[CrossRef] [PubMed]

Other (1)

G. T. Hermanson, Bioconjugate Techniques (Academic Press, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Layout of the optical system. The exciting laser is weakly focused onto the large (50 μm) pinhole for easy alignment. Emitted fluorescence is collected back through the same pinhole, making the system self-aligning, and directed by a light guide onto a PMT detector. (b) The objective lens with integrated sample chamber consists of a 2 element aspheric/diffractive hybrid for chromatic aberration correction with a 0.6 NA. SPH: spherical refractive surface; ASPH: aspherical refractive surface; DIFF: diffractive surface.

Fig. 2
Fig. 2

Normalized autocorrelation curves obtained for TAMRA in aqueous solution by the IFCSD (blue) show comparable performance to those obtained using the higher-NA Confocor system (orange). The IFCSD shows a longer diffusion time due to its larger observation volume, as expected. Dashed lines indicate fits of the free diffusion model Eq. (1) to each curve. The lower plot shows the fit residuals, scaled by the measured standard deviation at each delay time.

Fig. 3
Fig. 3

Dots indicate the observation volume occupancy measured by the IFCSD versus that measured by the Confocor for a series of TAMRA samples prepared at various concentrations. The solid line is a zero-intercept linear fit (r2=0.9998).

Fig. 4
Fig. 4

Identification of vWF deficient patients based on two-component fitting of FCS measurements. Samples were classified on the basis of clinically generated values. The fraction bound reported by the IFCSD correlates with the antigen level determined clinically and differences in diffusion time are as expected.

Fig. 5
Fig. 5

Analysis of patient response to DDAVP. Two-component fitting gives a measure of antigen level as well as average multimer size. Each symbol shape corresponds to a different patient, while the colors indicate the time the sample was taken (green: prior to DDAVP administration; orange: 1 hour post administration; blue: four hours post administration). Arrows illustrate the time course of selected patients. Dark gray arrows highlight one patient with an anomalous response. One set of samples, with an elevated initial bound fraction, is shown uncolored for visual clarity.

Tables (1)

Tables Icon

Table 1 Results of the Calibration Measurement with Fluorescent Dye

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

g ( τ ; τ d ) = 1 N ( F B ) 2 F 2 1 ( 1 + τ τ d ) 1 + τ K 2 τ d
g total ( τ ) = ( 1 f b ) g ( τ ; τ free ) + f b g ( τ ; τ bound )
τ d = w x y 2 4 D
V eff = π 3 / 2 w x y 2 w z = π 3 / 2 K w x y 3

Metrics