Abstract

A polarimetric imaging system capable of continuously selecting imaging depth in a turbid media is demonstrated. The proposed system is based on the orthogonal polarization spectral (OPS) technique, and is able to detect microstructure and microvessel. First, we compare the performance of four polarization imaging channels on a biological phantom, and find that there is a linear relation between the degrees of ellipticity and image contrast in co-linear/co-elliptical channels. In addition, the cross-linear channel has the best image contrast. We then prove the performance of depth selectivity of microvessel in a mouse ear.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Treu, O. Lupi, D. A. Bottino, and E. Bouskela, “Sidestream dark field imaging: the evolution of real-time visualization of cutaneous microcirculation and its potential application in dermatology,” Arch. Dermatol. Res.303(2), 69–78 (2011).
    [CrossRef] [PubMed]
  2. O. Lupi, I. Semenovitch, C. Treu, and E. Bouskela, “Orthogonal polarization technique in the assessment of human skin microcirculation,” Int. J. Dermatol.47(5), 425–431 (2008).
    [CrossRef] [PubMed]
  3. W. Grassi and R. De Angelis, “Capillaroscopy: questions and answers,” Clin. Rheumatol.26(12), 2009–2016 (2007).
    [CrossRef] [PubMed]
  4. S. Hern and P. S. Mortimer, “Visualization of dermal blood vessels—capillaroscopy,” Clin. Exp. Dermatol.24(6), 473–478 (1999).
    [CrossRef] [PubMed]
  5. R. G. Nadeau, W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, and K. Messmer, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med.5(10), 1209–1212 (1999).
    [CrossRef] [PubMed]
  6. P. T. Goedhart, M. Khalilzada, R. Bezemer, J. Merza, and C. Ince, “Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation,” Opt. Express15(23), 15101–15114 (2007).
    [CrossRef] [PubMed]
  7. M. Roustit and J. L. Cracowski, “Non-invasive assessment of skin microvascular function in humans: an insight into methods,” Microcirculation19(1), 47–64 (2012).
    [CrossRef] [PubMed]
  8. Q. Xu, J. F. Lei, and L. B. Zeng, “Observation of and research on intravital microcirculation use of orthogonal polarization multi-spectral technique,” Spectrosc. Spectral Anal.30(7), 1886–1889 (2010).
    [PubMed]
  9. J. McMurdy, G. Jay, S. Suner, and G. Crawford, “Photonics-based in vivo total hemoglobin monitoring and clinical relevance,” J. Biophotonics2(5), 277–287 (2009).
    [CrossRef] [PubMed]
  10. Z. Bajory, A. Szabó, G. Deák, R. Varga, and L. Pajor, “Orthogonal polarization spectral imaging: a novel tool for examination of microcirculatory changes in the testis,” J. Androl.33(3), 499–504 (2012).
    [CrossRef] [PubMed]
  11. M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns37(3), 377–386 (2011).
    [CrossRef] [PubMed]
  12. V. Cerný, Z. Turek, and R. Parízková, “Orthogonal polarization spectral imaging,” Physiol. Res.56(2), 141–147 (2007).
    [PubMed]
  13. R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol.127(7), 1000–1005 (1991).
    [CrossRef] [PubMed]
  14. J. O’Doherty, P. McNamara, N. T. Clancy, J. G. Enfield, and M. J. Leahy, “Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration,” J. Biomed. Opt.14(3), 034025 (2009).
    [CrossRef] [PubMed]
  15. A. Bauer, S. Kofler, M. Thiel, S. Eifert, and F. Christ, “Monitoring of the sublingual microcirculation in cardiac surgery using orthogonal polarization spectral imaging: preliminary results,” Anesthesiology107(6), 939–945 (2007).
    [CrossRef] [PubMed]
  16. S. P. Morgan and I. M. Stockford, “Surface-reflection elimination in polarization imaging of superficial tissue,” Opt. Lett.28(2), 114–116 (2003).
    [CrossRef] [PubMed]
  17. F. C. MacKintosh, J. Zhu, D. Pine, and D. Weitz, “Polarization memory of multiple scattered light,” Phys. Rev. B40(13), 9342–9345 (1989).
    [CrossRef]
  18. S. Rehn, A. Planat-Chretien, M. Berger, J. M. Dinten, C. Deumie, and A. Da Silva, “Comparison of polarized light penetration depth in scattering media,” Proc. SPIE8088, 80881I (2011).
    [CrossRef]
  19. A. Da Silva, C. Deumié, and I. Vanzetta, “Elliptically polarized light for depth resolved optical imaging,” Biomed. Opt. Express3(11), 2907–2915 (2012).
    [CrossRef] [PubMed]
  20. A. Da Silva, P. Stahl, S. Rehn, I. Vanzetta, and C. Deumie, “Depth selectivity in biological tissues by polarization analysis of backscattered light,” Proc. SPIE8172, 817205–817207 (2011).
    [CrossRef]
  21. S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med.26(2), 119–129 (2000).
    [CrossRef] [PubMed]
  22. J. W. Wu, S. P. Morgan, and Y. Xiao, “Superficial microcirculation flow measurement using polarized light,” Proc. SPIE7280, 728021, 728021–10 (2008).
    [CrossRef]
  23. H. Z. Zhao, R. H. Webb, and B. Ortel, “A new approach for noninvasive skin blood imaging in microcirculation,” Opt. Laser Technol.34(1), 51–54 (2002).
    [CrossRef]
  24. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, 1978).
  25. V. V. Tuchin, “Light scattering study of tissues,” Usp. Fiziol. Nauk167(5), 517–539 (1997).
    [CrossRef]

2012 (3)

Z. Bajory, A. Szabó, G. Deák, R. Varga, and L. Pajor, “Orthogonal polarization spectral imaging: a novel tool for examination of microcirculatory changes in the testis,” J. Androl.33(3), 499–504 (2012).
[CrossRef] [PubMed]

M. Roustit and J. L. Cracowski, “Non-invasive assessment of skin microvascular function in humans: an insight into methods,” Microcirculation19(1), 47–64 (2012).
[CrossRef] [PubMed]

A. Da Silva, C. Deumié, and I. Vanzetta, “Elliptically polarized light for depth resolved optical imaging,” Biomed. Opt. Express3(11), 2907–2915 (2012).
[CrossRef] [PubMed]

2011 (4)

A. Da Silva, P. Stahl, S. Rehn, I. Vanzetta, and C. Deumie, “Depth selectivity in biological tissues by polarization analysis of backscattered light,” Proc. SPIE8172, 817205–817207 (2011).
[CrossRef]

S. Rehn, A. Planat-Chretien, M. Berger, J. M. Dinten, C. Deumie, and A. Da Silva, “Comparison of polarized light penetration depth in scattering media,” Proc. SPIE8088, 80881I (2011).
[CrossRef]

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns37(3), 377–386 (2011).
[CrossRef] [PubMed]

C. M. Treu, O. Lupi, D. A. Bottino, and E. Bouskela, “Sidestream dark field imaging: the evolution of real-time visualization of cutaneous microcirculation and its potential application in dermatology,” Arch. Dermatol. Res.303(2), 69–78 (2011).
[CrossRef] [PubMed]

2010 (1)

Q. Xu, J. F. Lei, and L. B. Zeng, “Observation of and research on intravital microcirculation use of orthogonal polarization multi-spectral technique,” Spectrosc. Spectral Anal.30(7), 1886–1889 (2010).
[PubMed]

2009 (2)

J. McMurdy, G. Jay, S. Suner, and G. Crawford, “Photonics-based in vivo total hemoglobin monitoring and clinical relevance,” J. Biophotonics2(5), 277–287 (2009).
[CrossRef] [PubMed]

J. O’Doherty, P. McNamara, N. T. Clancy, J. G. Enfield, and M. J. Leahy, “Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration,” J. Biomed. Opt.14(3), 034025 (2009).
[CrossRef] [PubMed]

2008 (2)

O. Lupi, I. Semenovitch, C. Treu, and E. Bouskela, “Orthogonal polarization technique in the assessment of human skin microcirculation,” Int. J. Dermatol.47(5), 425–431 (2008).
[CrossRef] [PubMed]

J. W. Wu, S. P. Morgan, and Y. Xiao, “Superficial microcirculation flow measurement using polarized light,” Proc. SPIE7280, 728021, 728021–10 (2008).
[CrossRef]

2007 (4)

W. Grassi and R. De Angelis, “Capillaroscopy: questions and answers,” Clin. Rheumatol.26(12), 2009–2016 (2007).
[CrossRef] [PubMed]

V. Cerný, Z. Turek, and R. Parízková, “Orthogonal polarization spectral imaging,” Physiol. Res.56(2), 141–147 (2007).
[PubMed]

A. Bauer, S. Kofler, M. Thiel, S. Eifert, and F. Christ, “Monitoring of the sublingual microcirculation in cardiac surgery using orthogonal polarization spectral imaging: preliminary results,” Anesthesiology107(6), 939–945 (2007).
[CrossRef] [PubMed]

P. T. Goedhart, M. Khalilzada, R. Bezemer, J. Merza, and C. Ince, “Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation,” Opt. Express15(23), 15101–15114 (2007).
[CrossRef] [PubMed]

2003 (1)

2002 (1)

H. Z. Zhao, R. H. Webb, and B. Ortel, “A new approach for noninvasive skin blood imaging in microcirculation,” Opt. Laser Technol.34(1), 51–54 (2002).
[CrossRef]

2000 (1)

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med.26(2), 119–129 (2000).
[CrossRef] [PubMed]

1999 (2)

S. Hern and P. S. Mortimer, “Visualization of dermal blood vessels—capillaroscopy,” Clin. Exp. Dermatol.24(6), 473–478 (1999).
[CrossRef] [PubMed]

R. G. Nadeau, W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, and K. Messmer, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med.5(10), 1209–1212 (1999).
[CrossRef] [PubMed]

1997 (1)

V. V. Tuchin, “Light scattering study of tissues,” Usp. Fiziol. Nauk167(5), 517–539 (1997).
[CrossRef]

1991 (1)

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol.127(7), 1000–1005 (1991).
[CrossRef] [PubMed]

1989 (1)

F. C. MacKintosh, J. Zhu, D. Pine, and D. Weitz, “Polarization memory of multiple scattered light,” Phys. Rev. B40(13), 9342–9345 (1989).
[CrossRef]

Anderson, R. R.

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol.127(7), 1000–1005 (1991).
[CrossRef] [PubMed]

Bajory, Z.

Z. Bajory, A. Szabó, G. Deák, R. Varga, and L. Pajor, “Orthogonal polarization spectral imaging: a novel tool for examination of microcirculatory changes in the testis,” J. Androl.33(3), 499–504 (2012).
[CrossRef] [PubMed]

Bauer, A.

A. Bauer, S. Kofler, M. Thiel, S. Eifert, and F. Christ, “Monitoring of the sublingual microcirculation in cardiac surgery using orthogonal polarization spectral imaging: preliminary results,” Anesthesiology107(6), 939–945 (2007).
[CrossRef] [PubMed]

Berger, M.

S. Rehn, A. Planat-Chretien, M. Berger, J. M. Dinten, C. Deumie, and A. Da Silva, “Comparison of polarized light penetration depth in scattering media,” Proc. SPIE8088, 80881I (2011).
[CrossRef]

Bezemer, R.

Bottino, D. A.

C. M. Treu, O. Lupi, D. A. Bottino, and E. Bouskela, “Sidestream dark field imaging: the evolution of real-time visualization of cutaneous microcirculation and its potential application in dermatology,” Arch. Dermatol. Res.303(2), 69–78 (2011).
[CrossRef] [PubMed]

Bouma, G. J.

R. G. Nadeau, W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, and K. Messmer, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med.5(10), 1209–1212 (1999).
[CrossRef] [PubMed]

Bouskela, E.

C. M. Treu, O. Lupi, D. A. Bottino, and E. Bouskela, “Sidestream dark field imaging: the evolution of real-time visualization of cutaneous microcirculation and its potential application in dermatology,” Arch. Dermatol. Res.303(2), 69–78 (2011).
[CrossRef] [PubMed]

O. Lupi, I. Semenovitch, C. Treu, and E. Bouskela, “Orthogonal polarization technique in the assessment of human skin microcirculation,” Int. J. Dermatol.47(5), 425–431 (2008).
[CrossRef] [PubMed]

Cerný, V.

V. Cerný, Z. Turek, and R. Parízková, “Orthogonal polarization spectral imaging,” Physiol. Res.56(2), 141–147 (2007).
[PubMed]

Choi, B.

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns37(3), 377–386 (2011).
[CrossRef] [PubMed]

Christ, F.

A. Bauer, S. Kofler, M. Thiel, S. Eifert, and F. Christ, “Monitoring of the sublingual microcirculation in cardiac surgery using orthogonal polarization spectral imaging: preliminary results,” Anesthesiology107(6), 939–945 (2007).
[CrossRef] [PubMed]

Cinat, M.

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns37(3), 377–386 (2011).
[CrossRef] [PubMed]

Clancy, N. T.

J. O’Doherty, P. McNamara, N. T. Clancy, J. G. Enfield, and M. J. Leahy, “Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration,” J. Biomed. Opt.14(3), 034025 (2009).
[CrossRef] [PubMed]

Cracowski, J. L.

M. Roustit and J. L. Cracowski, “Non-invasive assessment of skin microvascular function in humans: an insight into methods,” Microcirculation19(1), 47–64 (2012).
[CrossRef] [PubMed]

Crawford, G.

J. McMurdy, G. Jay, S. Suner, and G. Crawford, “Photonics-based in vivo total hemoglobin monitoring and clinical relevance,” J. Biophotonics2(5), 277–287 (2009).
[CrossRef] [PubMed]

Da Silva, A.

A. Da Silva, C. Deumié, and I. Vanzetta, “Elliptically polarized light for depth resolved optical imaging,” Biomed. Opt. Express3(11), 2907–2915 (2012).
[CrossRef] [PubMed]

A. Da Silva, P. Stahl, S. Rehn, I. Vanzetta, and C. Deumie, “Depth selectivity in biological tissues by polarization analysis of backscattered light,” Proc. SPIE8172, 817205–817207 (2011).
[CrossRef]

S. Rehn, A. Planat-Chretien, M. Berger, J. M. Dinten, C. Deumie, and A. Da Silva, “Comparison of polarized light penetration depth in scattering media,” Proc. SPIE8088, 80881I (2011).
[CrossRef]

De Angelis, R.

W. Grassi and R. De Angelis, “Capillaroscopy: questions and answers,” Clin. Rheumatol.26(12), 2009–2016 (2007).
[CrossRef] [PubMed]

Deák, G.

Z. Bajory, A. Szabó, G. Deák, R. Varga, and L. Pajor, “Orthogonal polarization spectral imaging: a novel tool for examination of microcirculatory changes in the testis,” J. Androl.33(3), 499–504 (2012).
[CrossRef] [PubMed]

Deumie, C.

S. Rehn, A. Planat-Chretien, M. Berger, J. M. Dinten, C. Deumie, and A. Da Silva, “Comparison of polarized light penetration depth in scattering media,” Proc. SPIE8088, 80881I (2011).
[CrossRef]

A. Da Silva, P. Stahl, S. Rehn, I. Vanzetta, and C. Deumie, “Depth selectivity in biological tissues by polarization analysis of backscattered light,” Proc. SPIE8172, 817205–817207 (2011).
[CrossRef]

Deumié, C.

Dinten, J. M.

S. Rehn, A. Planat-Chretien, M. Berger, J. M. Dinten, C. Deumie, and A. Da Silva, “Comparison of polarized light penetration depth in scattering media,” Proc. SPIE8088, 80881I (2011).
[CrossRef]

Durkin, A. J.

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns37(3), 377–386 (2011).
[CrossRef] [PubMed]

Eifert, S.

A. Bauer, S. Kofler, M. Thiel, S. Eifert, and F. Christ, “Monitoring of the sublingual microcirculation in cardiac surgery using orthogonal polarization spectral imaging: preliminary results,” Anesthesiology107(6), 939–945 (2007).
[CrossRef] [PubMed]

Enfield, J. G.

J. O’Doherty, P. McNamara, N. T. Clancy, J. G. Enfield, and M. J. Leahy, “Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration,” J. Biomed. Opt.14(3), 034025 (2009).
[CrossRef] [PubMed]

Goedhart, P. T.

Grassi, W.

W. Grassi and R. De Angelis, “Capillaroscopy: questions and answers,” Clin. Rheumatol.26(12), 2009–2016 (2007).
[CrossRef] [PubMed]

Groner, W.

R. G. Nadeau, W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, and K. Messmer, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med.5(10), 1209–1212 (1999).
[CrossRef] [PubMed]

Harris, A. G.

R. G. Nadeau, W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, and K. Messmer, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med.5(10), 1209–1212 (1999).
[CrossRef] [PubMed]

Hern, S.

S. Hern and P. S. Mortimer, “Visualization of dermal blood vessels—capillaroscopy,” Clin. Exp. Dermatol.24(6), 473–478 (1999).
[CrossRef] [PubMed]

Ince, C.

P. T. Goedhart, M. Khalilzada, R. Bezemer, J. Merza, and C. Ince, “Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation,” Opt. Express15(23), 15101–15114 (2007).
[CrossRef] [PubMed]

R. G. Nadeau, W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, and K. Messmer, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med.5(10), 1209–1212 (1999).
[CrossRef] [PubMed]

Jacques, S. L.

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med.26(2), 119–129 (2000).
[CrossRef] [PubMed]

Jay, G.

J. McMurdy, G. Jay, S. Suner, and G. Crawford, “Photonics-based in vivo total hemoglobin monitoring and clinical relevance,” J. Biophotonics2(5), 277–287 (2009).
[CrossRef] [PubMed]

Kaiser, M.

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns37(3), 377–386 (2011).
[CrossRef] [PubMed]

Khalilzada, M.

Kofler, S.

A. Bauer, S. Kofler, M. Thiel, S. Eifert, and F. Christ, “Monitoring of the sublingual microcirculation in cardiac surgery using orthogonal polarization spectral imaging: preliminary results,” Anesthesiology107(6), 939–945 (2007).
[CrossRef] [PubMed]

Leahy, M. J.

J. O’Doherty, P. McNamara, N. T. Clancy, J. G. Enfield, and M. J. Leahy, “Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration,” J. Biomed. Opt.14(3), 034025 (2009).
[CrossRef] [PubMed]

Lee, K.

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med.26(2), 119–129 (2000).
[CrossRef] [PubMed]

Lei, J. F.

Q. Xu, J. F. Lei, and L. B. Zeng, “Observation of and research on intravital microcirculation use of orthogonal polarization multi-spectral technique,” Spectrosc. Spectral Anal.30(7), 1886–1889 (2010).
[PubMed]

Lupi, O.

C. M. Treu, O. Lupi, D. A. Bottino, and E. Bouskela, “Sidestream dark field imaging: the evolution of real-time visualization of cutaneous microcirculation and its potential application in dermatology,” Arch. Dermatol. Res.303(2), 69–78 (2011).
[CrossRef] [PubMed]

O. Lupi, I. Semenovitch, C. Treu, and E. Bouskela, “Orthogonal polarization technique in the assessment of human skin microcirculation,” Int. J. Dermatol.47(5), 425–431 (2008).
[CrossRef] [PubMed]

MacKintosh, F. C.

F. C. MacKintosh, J. Zhu, D. Pine, and D. Weitz, “Polarization memory of multiple scattered light,” Phys. Rev. B40(13), 9342–9345 (1989).
[CrossRef]

McMurdy, J.

J. McMurdy, G. Jay, S. Suner, and G. Crawford, “Photonics-based in vivo total hemoglobin monitoring and clinical relevance,” J. Biophotonics2(5), 277–287 (2009).
[CrossRef] [PubMed]

McNamara, P.

J. O’Doherty, P. McNamara, N. T. Clancy, J. G. Enfield, and M. J. Leahy, “Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration,” J. Biomed. Opt.14(3), 034025 (2009).
[CrossRef] [PubMed]

Merza, J.

Messmer, K.

R. G. Nadeau, W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, and K. Messmer, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med.5(10), 1209–1212 (1999).
[CrossRef] [PubMed]

Morgan, S. P.

J. W. Wu, S. P. Morgan, and Y. Xiao, “Superficial microcirculation flow measurement using polarized light,” Proc. SPIE7280, 728021, 728021–10 (2008).
[CrossRef]

S. P. Morgan and I. M. Stockford, “Surface-reflection elimination in polarization imaging of superficial tissue,” Opt. Lett.28(2), 114–116 (2003).
[CrossRef] [PubMed]

Mortimer, P. S.

S. Hern and P. S. Mortimer, “Visualization of dermal blood vessels—capillaroscopy,” Clin. Exp. Dermatol.24(6), 473–478 (1999).
[CrossRef] [PubMed]

Nadeau, R. G.

R. G. Nadeau, W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, and K. Messmer, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med.5(10), 1209–1212 (1999).
[CrossRef] [PubMed]

O’Doherty, J.

J. O’Doherty, P. McNamara, N. T. Clancy, J. G. Enfield, and M. J. Leahy, “Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration,” J. Biomed. Opt.14(3), 034025 (2009).
[CrossRef] [PubMed]

Ortel, B.

H. Z. Zhao, R. H. Webb, and B. Ortel, “A new approach for noninvasive skin blood imaging in microcirculation,” Opt. Laser Technol.34(1), 51–54 (2002).
[CrossRef]

Pajor, L.

Z. Bajory, A. Szabó, G. Deák, R. Varga, and L. Pajor, “Orthogonal polarization spectral imaging: a novel tool for examination of microcirculatory changes in the testis,” J. Androl.33(3), 499–504 (2012).
[CrossRef] [PubMed]

Parízková, R.

V. Cerný, Z. Turek, and R. Parízková, “Orthogonal polarization spectral imaging,” Physiol. Res.56(2), 141–147 (2007).
[PubMed]

Pine, D.

F. C. MacKintosh, J. Zhu, D. Pine, and D. Weitz, “Polarization memory of multiple scattered light,” Phys. Rev. B40(13), 9342–9345 (1989).
[CrossRef]

Planat-Chretien, A.

S. Rehn, A. Planat-Chretien, M. Berger, J. M. Dinten, C. Deumie, and A. Da Silva, “Comparison of polarized light penetration depth in scattering media,” Proc. SPIE8088, 80881I (2011).
[CrossRef]

Rehn, S.

S. Rehn, A. Planat-Chretien, M. Berger, J. M. Dinten, C. Deumie, and A. Da Silva, “Comparison of polarized light penetration depth in scattering media,” Proc. SPIE8088, 80881I (2011).
[CrossRef]

A. Da Silva, P. Stahl, S. Rehn, I. Vanzetta, and C. Deumie, “Depth selectivity in biological tissues by polarization analysis of backscattered light,” Proc. SPIE8172, 817205–817207 (2011).
[CrossRef]

Roman, J. R.

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med.26(2), 119–129 (2000).
[CrossRef] [PubMed]

Roustit, M.

M. Roustit and J. L. Cracowski, “Non-invasive assessment of skin microvascular function in humans: an insight into methods,” Microcirculation19(1), 47–64 (2012).
[CrossRef] [PubMed]

Semenovitch, I.

O. Lupi, I. Semenovitch, C. Treu, and E. Bouskela, “Orthogonal polarization technique in the assessment of human skin microcirculation,” Int. J. Dermatol.47(5), 425–431 (2008).
[CrossRef] [PubMed]

Stahl, P.

A. Da Silva, P. Stahl, S. Rehn, I. Vanzetta, and C. Deumie, “Depth selectivity in biological tissues by polarization analysis of backscattered light,” Proc. SPIE8172, 817205–817207 (2011).
[CrossRef]

Stockford, I. M.

Suner, S.

J. McMurdy, G. Jay, S. Suner, and G. Crawford, “Photonics-based in vivo total hemoglobin monitoring and clinical relevance,” J. Biophotonics2(5), 277–287 (2009).
[CrossRef] [PubMed]

Szabó, A.

Z. Bajory, A. Szabó, G. Deák, R. Varga, and L. Pajor, “Orthogonal polarization spectral imaging: a novel tool for examination of microcirculatory changes in the testis,” J. Androl.33(3), 499–504 (2012).
[CrossRef] [PubMed]

Thiel, M.

A. Bauer, S. Kofler, M. Thiel, S. Eifert, and F. Christ, “Monitoring of the sublingual microcirculation in cardiac surgery using orthogonal polarization spectral imaging: preliminary results,” Anesthesiology107(6), 939–945 (2007).
[CrossRef] [PubMed]

Treu, C.

O. Lupi, I. Semenovitch, C. Treu, and E. Bouskela, “Orthogonal polarization technique in the assessment of human skin microcirculation,” Int. J. Dermatol.47(5), 425–431 (2008).
[CrossRef] [PubMed]

Treu, C. M.

C. M. Treu, O. Lupi, D. A. Bottino, and E. Bouskela, “Sidestream dark field imaging: the evolution of real-time visualization of cutaneous microcirculation and its potential application in dermatology,” Arch. Dermatol. Res.303(2), 69–78 (2011).
[CrossRef] [PubMed]

Tuchin, V. V.

V. V. Tuchin, “Light scattering study of tissues,” Usp. Fiziol. Nauk167(5), 517–539 (1997).
[CrossRef]

Turek, Z.

V. Cerný, Z. Turek, and R. Parízková, “Orthogonal polarization spectral imaging,” Physiol. Res.56(2), 141–147 (2007).
[PubMed]

Vanzetta, I.

A. Da Silva, C. Deumié, and I. Vanzetta, “Elliptically polarized light for depth resolved optical imaging,” Biomed. Opt. Express3(11), 2907–2915 (2012).
[CrossRef] [PubMed]

A. Da Silva, P. Stahl, S. Rehn, I. Vanzetta, and C. Deumie, “Depth selectivity in biological tissues by polarization analysis of backscattered light,” Proc. SPIE8172, 817205–817207 (2011).
[CrossRef]

Varga, R.

Z. Bajory, A. Szabó, G. Deák, R. Varga, and L. Pajor, “Orthogonal polarization spectral imaging: a novel tool for examination of microcirculatory changes in the testis,” J. Androl.33(3), 499–504 (2012).
[CrossRef] [PubMed]

Webb, R. H.

H. Z. Zhao, R. H. Webb, and B. Ortel, “A new approach for noninvasive skin blood imaging in microcirculation,” Opt. Laser Technol.34(1), 51–54 (2002).
[CrossRef]

Weitz, D.

F. C. MacKintosh, J. Zhu, D. Pine, and D. Weitz, “Polarization memory of multiple scattered light,” Phys. Rev. B40(13), 9342–9345 (1989).
[CrossRef]

Winkelman, J. W.

R. G. Nadeau, W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, and K. Messmer, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med.5(10), 1209–1212 (1999).
[CrossRef] [PubMed]

Wu, J. W.

J. W. Wu, S. P. Morgan, and Y. Xiao, “Superficial microcirculation flow measurement using polarized light,” Proc. SPIE7280, 728021, 728021–10 (2008).
[CrossRef]

Xiao, Y.

J. W. Wu, S. P. Morgan, and Y. Xiao, “Superficial microcirculation flow measurement using polarized light,” Proc. SPIE7280, 728021, 728021–10 (2008).
[CrossRef]

Xu, Q.

Q. Xu, J. F. Lei, and L. B. Zeng, “Observation of and research on intravital microcirculation use of orthogonal polarization multi-spectral technique,” Spectrosc. Spectral Anal.30(7), 1886–1889 (2010).
[PubMed]

Yafi, A.

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns37(3), 377–386 (2011).
[CrossRef] [PubMed]

Zeng, L. B.

Q. Xu, J. F. Lei, and L. B. Zeng, “Observation of and research on intravital microcirculation use of orthogonal polarization multi-spectral technique,” Spectrosc. Spectral Anal.30(7), 1886–1889 (2010).
[PubMed]

Zhao, H. Z.

H. Z. Zhao, R. H. Webb, and B. Ortel, “A new approach for noninvasive skin blood imaging in microcirculation,” Opt. Laser Technol.34(1), 51–54 (2002).
[CrossRef]

Zhu, J.

F. C. MacKintosh, J. Zhu, D. Pine, and D. Weitz, “Polarization memory of multiple scattered light,” Phys. Rev. B40(13), 9342–9345 (1989).
[CrossRef]

Anesthesiology (1)

A. Bauer, S. Kofler, M. Thiel, S. Eifert, and F. Christ, “Monitoring of the sublingual microcirculation in cardiac surgery using orthogonal polarization spectral imaging: preliminary results,” Anesthesiology107(6), 939–945 (2007).
[CrossRef] [PubMed]

Arch. Dermatol. (1)

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol.127(7), 1000–1005 (1991).
[CrossRef] [PubMed]

Arch. Dermatol. Res. (1)

C. M. Treu, O. Lupi, D. A. Bottino, and E. Bouskela, “Sidestream dark field imaging: the evolution of real-time visualization of cutaneous microcirculation and its potential application in dermatology,” Arch. Dermatol. Res.303(2), 69–78 (2011).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

Burns (1)

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns37(3), 377–386 (2011).
[CrossRef] [PubMed]

Clin. Exp. Dermatol. (1)

S. Hern and P. S. Mortimer, “Visualization of dermal blood vessels—capillaroscopy,” Clin. Exp. Dermatol.24(6), 473–478 (1999).
[CrossRef] [PubMed]

Clin. Rheumatol. (1)

W. Grassi and R. De Angelis, “Capillaroscopy: questions and answers,” Clin. Rheumatol.26(12), 2009–2016 (2007).
[CrossRef] [PubMed]

Int. J. Dermatol. (1)

O. Lupi, I. Semenovitch, C. Treu, and E. Bouskela, “Orthogonal polarization technique in the assessment of human skin microcirculation,” Int. J. Dermatol.47(5), 425–431 (2008).
[CrossRef] [PubMed]

J. Androl. (1)

Z. Bajory, A. Szabó, G. Deák, R. Varga, and L. Pajor, “Orthogonal polarization spectral imaging: a novel tool for examination of microcirculatory changes in the testis,” J. Androl.33(3), 499–504 (2012).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

J. O’Doherty, P. McNamara, N. T. Clancy, J. G. Enfield, and M. J. Leahy, “Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration,” J. Biomed. Opt.14(3), 034025 (2009).
[CrossRef] [PubMed]

J. Biophotonics (1)

J. McMurdy, G. Jay, S. Suner, and G. Crawford, “Photonics-based in vivo total hemoglobin monitoring and clinical relevance,” J. Biophotonics2(5), 277–287 (2009).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med.26(2), 119–129 (2000).
[CrossRef] [PubMed]

Microcirculation (1)

M. Roustit and J. L. Cracowski, “Non-invasive assessment of skin microvascular function in humans: an insight into methods,” Microcirculation19(1), 47–64 (2012).
[CrossRef] [PubMed]

Nat. Med. (1)

R. G. Nadeau, W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, and K. Messmer, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med.5(10), 1209–1212 (1999).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Laser Technol. (1)

H. Z. Zhao, R. H. Webb, and B. Ortel, “A new approach for noninvasive skin blood imaging in microcirculation,” Opt. Laser Technol.34(1), 51–54 (2002).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

F. C. MacKintosh, J. Zhu, D. Pine, and D. Weitz, “Polarization memory of multiple scattered light,” Phys. Rev. B40(13), 9342–9345 (1989).
[CrossRef]

Physiol. Res. (1)

V. Cerný, Z. Turek, and R. Parízková, “Orthogonal polarization spectral imaging,” Physiol. Res.56(2), 141–147 (2007).
[PubMed]

Proc. SPIE (3)

S. Rehn, A. Planat-Chretien, M. Berger, J. M. Dinten, C. Deumie, and A. Da Silva, “Comparison of polarized light penetration depth in scattering media,” Proc. SPIE8088, 80881I (2011).
[CrossRef]

J. W. Wu, S. P. Morgan, and Y. Xiao, “Superficial microcirculation flow measurement using polarized light,” Proc. SPIE7280, 728021, 728021–10 (2008).
[CrossRef]

A. Da Silva, P. Stahl, S. Rehn, I. Vanzetta, and C. Deumie, “Depth selectivity in biological tissues by polarization analysis of backscattered light,” Proc. SPIE8172, 817205–817207 (2011).
[CrossRef]

Spectrosc. Spectral Anal. (1)

Q. Xu, J. F. Lei, and L. B. Zeng, “Observation of and research on intravital microcirculation use of orthogonal polarization multi-spectral technique,” Spectrosc. Spectral Anal.30(7), 1886–1889 (2010).
[PubMed]

Usp. Fiziol. Nauk (1)

V. V. Tuchin, “Light scattering study of tissues,” Usp. Fiziol. Nauk167(5), 517–539 (1997).
[CrossRef]

Other (1)

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Principle of OPS imaging.

Fig. 2
Fig. 2

Sketch of the experimental setup.

Fig. 3
Fig. 3

First two row images: selected polarization images obtained at different degrees of ellipticity for biological phantom experiment. In this experiment, the hair is half exposed to the air and half inside the phantom. Imaging channels 2-4 are measured. The angle value measures the angle θ between the polarizer and the quarter-wave plate. Third row image: relation between image contrast and the corresponding θ in imaging channel 3 and 4. Pixel size 6.5μm × 6.25μm.

Fig. 4
Fig. 4

First two row images: polarization images in channel 2 and 3. The hair is fully inserted with a tilt angle of 16.3°. Left bottom: channel 1 image. X and Y axis indicates the pixel numbers. The hair is inserted in a shallower layer as the pixel number along the Y axis increases. Right bottom: comparison of contrast in three regions under the corresponding θ. Pixel size 6.45μm × 6.45μm.

Fig. 5
Fig. 5

First row: same as in Fig. 4, for microvessel detection in a mouse ear. Left bottom: zones A and B are the detection areas. Right bottom: comparison of contrast in two zones under the corresponding θ. Pixel size 6.5μm × 6.25μm.

Tables (1)

Tables Icon

Table 1 Category of Light Under Four Polarization Channels

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

contrast= ( I background I signal ) / ( I background + I signal )

Metrics