Abstract

Myelin figures (MFs) are cylindrical multilamellar lipid tubes that can be found in various healthy and diseased living cells. Their formation and dynamics involve some of the most mysterious configurations that lipid molecules can adopt under certain conditions. They have been studied with different microscopy methods. Due to the frequent coiling of their structure, the usual methods of microscopy fail to give precise quantitative information about their dynamics. In this paper, we introduced Digital Holographic Microscopy (DHM) as a useful method to calculate the precise dynamical volume, thickness, surface and length of the myelin figures. As an example of DHM imaging of myelin figures, their structure and growth rate in the presence and absence of temperature gradient have been studied in this work. We showed that the thickness of a myelin figure can be changed during the first few seconds. However, after approximately ten seconds, the thickness stabilizes and does not alter significantly. We further studied the effect of the thermal gradient on the length growth. The calculation of the length growth from the measurement of the myelin figure volume shows that the length (L) grows in time (t) as Ltat the early stage of the myelin protrusion in both the presence and the absence of the thermal gradient. However, thermal gradient facilitates the growth and increases its rate.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. B. Murphy, and M. W. Davidson, Fundamentals of Light Microscopy and Electronic Imaging (Wiley-Blackwell, 2012).
  2. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
    [Crossref]
  3. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2004).
  4. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
    [Crossref]
  5. P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital holography,” Opt. Express 13(18), 6738–6749 (2005).
    [Crossref]
  6. B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13(12), 4492–4506 (2005).
    [Crossref]
  7. X. Yu, M. Cross, C. Liu, D. C. Clark, D. T. Haynie, and M. K. Kim, “Measurement of the traction force of biological cells by digital holography,” Biomed. Opt. Express 3(1), 153–159 (2012).
    [Crossref]
  8. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1(1), 018005 (2010).
    [Crossref]
  9. V. Micó, C. Ferreira, Z. Zalevsky, and J. García, “Basic principles and applications of digital holographic microscopy,” in Microscopy: Science Technology, Applications and Education, A. Méndez-Vilas and J. Díaz, eds. (Formatex Research Center, 2010), pp. 1411–1418.
  10. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
    [Crossref]
  11. A. Anand, V. K. Chhaniwal, and B. Javidi, “Real-time digital holographic microscopy for phase contrast 3D imaging of dynamic phenomena,” J. Disp. Technol. 6(10), 500–505 (2010).
    [Crossref]
  12. K. Farsad and P. De Camilli, “Mechanisms of membrane deformation,” Curr. Opin. Cell Biol. 15(4), 372–381 (2003).
    [Crossref]
  13. H. Ewers, W. Romer, A. E. Smith, K. Bacia, S. Dmitrieff, W. G. Chai, R. Mancini, J. Kartenbeck, V. Chambon, L. Berland, A. Oppenheim, G. Schwarzmann, T. Feizi, P. Schwille, P. Sens, A. Helenius, and L. Johannes, “GM1 structure determines SV40-induced membrane invagination and infection,” Nat. Cell Biol. 12(1), 11–18 (2010).
    [Crossref]
  14. W. Römer, L. Berland, V. Chambon, K. Gaus, B. Windschiegl, D. Tenza, M. R. E. Aly, V. Fraisier, J. C. Florent, D. Perrais, C. Lamaze, G. Raposo, C. Steinem, P. Sens, P. Bassereau, and L. Johannes, “Shiga toxin induces tubular membrane invaginations for its uptake into cells,” Nature 450(7170), 670–675 (2007).
    [Crossref]
  15. J. C. Stachowiak, C. C. Hayden, and D. Y. Sasaki, “Steric confinement of proteins on lipid membranes can drive curvature and tubulation,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7781–7786 (2010).
    [Crossref]
  16. D. G. Dervichian, “Swelling and molecular organisation in colloidal electrolytes,” Trans. Faraday Soc. 42, B180–B187 (1946).
    [Crossref]
  17. A. Policard, A. Collet, and S. Pregermain, “Etude au microscope electronique des premiers stades de la lipophanerose dans les cellules histiocytaires,” C. R. Hebd. Seances Acad. Sci. 246, 3405–3407 (1958).
  18. W. Stoeckenius, “Oso4-fixierung intrazellularer myelinfiguren,” Exp. Cell Res. 13(2), 410–414 (1957).
    [Crossref]
  19. I. K. Buckley, “Cellular injury in vitro - phase contrast studies on injured cytoplasm,” J. Cell Biol. 14(3), 401–420 (1962).
    [Crossref]
  20. I. K. Buckley, “Microscopic morphology of injured living tissue,” Int. Rev. Exp. Pathol. 2, 241–310 (1963).
  21. M. Besisi, Living Blood Cells and Their Ultrastructure (Springer-Verlag, 1973).
  22. N. Basic-Jukic, M. Coric, P. Kes, L. J. Bubic-Filipi, J. Pasini, and I. Mokos, “Anderson-Fabry disease in kidneys from deceased donor,” Am. J. Transplant. 7(12), 2829–2833 (2007).
    [Crossref]
  23. R. J. Sanderson and A. E. Vatter, “Mode of formation of tubular myelin from lamellar bodies in lung,” J. Cell Biol. 74(3), 1027–1031 (1977).
    [Crossref]
  24. L. M. G. Vangolde, J. J. Batenburg, and B. Robertson, “The pulmonary surfactant system - biochemical aspects and functional-significance,” Physiol. Rev. 68, 374–455 (1988).
  25. E. R. Weibel, G. S. Kistler, and G. Tondury, “A stereologic electron microscope study of ‘tubular myelin figures’ in alveolar fluids of rat lungs,” Z. Zellforsch. Mikrosk. Anat. 69(1), 418–427 (1966).
    [Crossref]
  26. L. N. Zou and S. R. Nagel, “Stability and growth of single myelin figures,” Phys. Rev. Lett. 96(13), 138301 (2006).
    [Crossref]
  27. D. M. Davis and S. Sowinski, “Membrane nanotubes: dynamic long-distance connections between animal cells,” Nat. Rev. Mol. Cell Biol. 9(6), 431–436 (2008).
    [Crossref]
  28. I. Titushkin and M. Cho, “Distinct membrane mechanical properties of human mesenchymal stem cells determined using laser optical tweezers,” Biophys. J. 90(7), 2582–2591 (2006).
    [Crossref]
  29. W. Rawicz, K. C. Olbrich, T. McIntosh, D. Needham, and E. Evans, “Effect of chain length and unsaturation on elasticity of lipid bilayers,” Biophys. J. 79(1), 328–339 (2000).
    [Crossref]
  30. E. Evans and W. Rawicz, “Entropy-driven tension and bending elasticity in condensed-fluid membranes,” Phys. Rev. Lett. 64(17), 2094–2097 (1990).
    [Crossref]
  31. T. J. McIntosh, S. Advani, R. E. Burton, D. V. Zhelev, D. Needham, and S. A. Simon, “Experimental tests for protrusion and undulation pressures in phospholipid-bilayers,” Biochemistry 34(27), 8520–8532 (1995).
    [Crossref]
  32. L. Tayebi, M. Mozafari, D. Vashaee, and A. N. Parikh, “Structural configuration of myelin figures using fluorescence microscopy,” Int. J. Photoenergy 2012, 685617 (2012).
    [Crossref]
  33. I. Tsafrir, M.-A. Guedeau-Boudeville, D. Kandel, and J. Stavans, “Coiling instability of multilamellar membrane tubes with anchored polymers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(3), 031603 (2001).
    [Crossref]
  34. I. Sakurai, T. Suzuki, and S. Sakurai, “Cross-sectional view of myelin figures,” Biochim. Biophys. Acta 985(1), 101–105 (1989).
    [Crossref]
  35. C. D. Santangelo and P. Pincus, “Coiling instabilities of multilamellar tubes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 061501 (2002).
    [Crossref]
  36. M. Haran, A. Chowdhury, C. Manohar, and J. Bellare, “Myelin growth and coiling,” Colloids Surf. A Physicochem. Eng. Asp. 205(1-2), 21–30 (2002).
    [Crossref]
  37. K. Mishima, T. Ogihara, M. Tomita, and K. Satoh, “Growth rate of myelin figures for phosphatidylcholine and phosphatidylethanolamine,” Chem. Phys. Lipids 62(2), 87–91 (1992).
    [Crossref]
  38. L. N. Zou, “Myelin figures: the buckling and flow of wet soap,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(6), 061502 (2009).
    [Crossref]

2012 (2)

L. Tayebi, M. Mozafari, D. Vashaee, and A. N. Parikh, “Structural configuration of myelin figures using fluorescence microscopy,” Int. J. Photoenergy 2012, 685617 (2012).
[Crossref]

X. Yu, M. Cross, C. Liu, D. C. Clark, D. T. Haynie, and M. K. Kim, “Measurement of the traction force of biological cells by digital holography,” Biomed. Opt. Express 3(1), 153–159 (2012).
[Crossref]

2010 (4)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1(1), 018005 (2010).
[Crossref]

A. Anand, V. K. Chhaniwal, and B. Javidi, “Real-time digital holographic microscopy for phase contrast 3D imaging of dynamic phenomena,” J. Disp. Technol. 6(10), 500–505 (2010).
[Crossref]

H. Ewers, W. Romer, A. E. Smith, K. Bacia, S. Dmitrieff, W. G. Chai, R. Mancini, J. Kartenbeck, V. Chambon, L. Berland, A. Oppenheim, G. Schwarzmann, T. Feizi, P. Schwille, P. Sens, A. Helenius, and L. Johannes, “GM1 structure determines SV40-induced membrane invagination and infection,” Nat. Cell Biol. 12(1), 11–18 (2010).
[Crossref]

J. C. Stachowiak, C. C. Hayden, and D. Y. Sasaki, “Steric confinement of proteins on lipid membranes can drive curvature and tubulation,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7781–7786 (2010).
[Crossref]

2009 (1)

L. N. Zou, “Myelin figures: the buckling and flow of wet soap,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(6), 061502 (2009).
[Crossref]

2008 (1)

D. M. Davis and S. Sowinski, “Membrane nanotubes: dynamic long-distance connections between animal cells,” Nat. Rev. Mol. Cell Biol. 9(6), 431–436 (2008).
[Crossref]

2007 (2)

N. Basic-Jukic, M. Coric, P. Kes, L. J. Bubic-Filipi, J. Pasini, and I. Mokos, “Anderson-Fabry disease in kidneys from deceased donor,” Am. J. Transplant. 7(12), 2829–2833 (2007).
[Crossref]

W. Römer, L. Berland, V. Chambon, K. Gaus, B. Windschiegl, D. Tenza, M. R. E. Aly, V. Fraisier, J. C. Florent, D. Perrais, C. Lamaze, G. Raposo, C. Steinem, P. Sens, P. Bassereau, and L. Johannes, “Shiga toxin induces tubular membrane invaginations for its uptake into cells,” Nature 450(7170), 670–675 (2007).
[Crossref]

2006 (2)

I. Titushkin and M. Cho, “Distinct membrane mechanical properties of human mesenchymal stem cells determined using laser optical tweezers,” Biophys. J. 90(7), 2582–2591 (2006).
[Crossref]

L. N. Zou and S. R. Nagel, “Stability and growth of single myelin figures,” Phys. Rev. Lett. 96(13), 138301 (2006).
[Crossref]

2005 (2)

2003 (1)

K. Farsad and P. De Camilli, “Mechanisms of membrane deformation,” Curr. Opin. Cell Biol. 15(4), 372–381 (2003).
[Crossref]

2002 (2)

C. D. Santangelo and P. Pincus, “Coiling instabilities of multilamellar tubes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 061501 (2002).
[Crossref]

M. Haran, A. Chowdhury, C. Manohar, and J. Bellare, “Myelin growth and coiling,” Colloids Surf. A Physicochem. Eng. Asp. 205(1-2), 21–30 (2002).
[Crossref]

2001 (1)

I. Tsafrir, M.-A. Guedeau-Boudeville, D. Kandel, and J. Stavans, “Coiling instability of multilamellar membrane tubes with anchored polymers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(3), 031603 (2001).
[Crossref]

2000 (1)

W. Rawicz, K. C. Olbrich, T. McIntosh, D. Needham, and E. Evans, “Effect of chain length and unsaturation on elasticity of lipid bilayers,” Biophys. J. 79(1), 328–339 (2000).
[Crossref]

1999 (1)

1995 (1)

T. J. McIntosh, S. Advani, R. E. Burton, D. V. Zhelev, D. Needham, and S. A. Simon, “Experimental tests for protrusion and undulation pressures in phospholipid-bilayers,” Biochemistry 34(27), 8520–8532 (1995).
[Crossref]

1992 (1)

K. Mishima, T. Ogihara, M. Tomita, and K. Satoh, “Growth rate of myelin figures for phosphatidylcholine and phosphatidylethanolamine,” Chem. Phys. Lipids 62(2), 87–91 (1992).
[Crossref]

1990 (1)

E. Evans and W. Rawicz, “Entropy-driven tension and bending elasticity in condensed-fluid membranes,” Phys. Rev. Lett. 64(17), 2094–2097 (1990).
[Crossref]

1989 (1)

I. Sakurai, T. Suzuki, and S. Sakurai, “Cross-sectional view of myelin figures,” Biochim. Biophys. Acta 985(1), 101–105 (1989).
[Crossref]

1988 (1)

L. M. G. Vangolde, J. J. Batenburg, and B. Robertson, “The pulmonary surfactant system - biochemical aspects and functional-significance,” Physiol. Rev. 68, 374–455 (1988).

1982 (1)

1977 (1)

R. J. Sanderson and A. E. Vatter, “Mode of formation of tubular myelin from lamellar bodies in lung,” J. Cell Biol. 74(3), 1027–1031 (1977).
[Crossref]

1966 (1)

E. R. Weibel, G. S. Kistler, and G. Tondury, “A stereologic electron microscope study of ‘tubular myelin figures’ in alveolar fluids of rat lungs,” Z. Zellforsch. Mikrosk. Anat. 69(1), 418–427 (1966).
[Crossref]

1963 (1)

I. K. Buckley, “Microscopic morphology of injured living tissue,” Int. Rev. Exp. Pathol. 2, 241–310 (1963).

1962 (1)

I. K. Buckley, “Cellular injury in vitro - phase contrast studies on injured cytoplasm,” J. Cell Biol. 14(3), 401–420 (1962).
[Crossref]

1958 (1)

A. Policard, A. Collet, and S. Pregermain, “Etude au microscope electronique des premiers stades de la lipophanerose dans les cellules histiocytaires,” C. R. Hebd. Seances Acad. Sci. 246, 3405–3407 (1958).

1957 (1)

W. Stoeckenius, “Oso4-fixierung intrazellularer myelinfiguren,” Exp. Cell Res. 13(2), 410–414 (1957).
[Crossref]

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref]

1946 (1)

D. G. Dervichian, “Swelling and molecular organisation in colloidal electrolytes,” Trans. Faraday Soc. 42, B180–B187 (1946).
[Crossref]

Advani, S.

T. J. McIntosh, S. Advani, R. E. Burton, D. V. Zhelev, D. Needham, and S. A. Simon, “Experimental tests for protrusion and undulation pressures in phospholipid-bilayers,” Biochemistry 34(27), 8520–8532 (1995).
[Crossref]

Alfieri, D.

Aly, M. R. E.

W. Römer, L. Berland, V. Chambon, K. Gaus, B. Windschiegl, D. Tenza, M. R. E. Aly, V. Fraisier, J. C. Florent, D. Perrais, C. Lamaze, G. Raposo, C. Steinem, P. Sens, P. Bassereau, and L. Johannes, “Shiga toxin induces tubular membrane invaginations for its uptake into cells,” Nature 450(7170), 670–675 (2007).
[Crossref]

Anand, A.

A. Anand, V. K. Chhaniwal, and B. Javidi, “Real-time digital holographic microscopy for phase contrast 3D imaging of dynamic phenomena,” J. Disp. Technol. 6(10), 500–505 (2010).
[Crossref]

Bacia, K.

H. Ewers, W. Romer, A. E. Smith, K. Bacia, S. Dmitrieff, W. G. Chai, R. Mancini, J. Kartenbeck, V. Chambon, L. Berland, A. Oppenheim, G. Schwarzmann, T. Feizi, P. Schwille, P. Sens, A. Helenius, and L. Johannes, “GM1 structure determines SV40-induced membrane invagination and infection,” Nat. Cell Biol. 12(1), 11–18 (2010).
[Crossref]

Basic-Jukic, N.

N. Basic-Jukic, M. Coric, P. Kes, L. J. Bubic-Filipi, J. Pasini, and I. Mokos, “Anderson-Fabry disease in kidneys from deceased donor,” Am. J. Transplant. 7(12), 2829–2833 (2007).
[Crossref]

Bassereau, P.

W. Römer, L. Berland, V. Chambon, K. Gaus, B. Windschiegl, D. Tenza, M. R. E. Aly, V. Fraisier, J. C. Florent, D. Perrais, C. Lamaze, G. Raposo, C. Steinem, P. Sens, P. Bassereau, and L. Johannes, “Shiga toxin induces tubular membrane invaginations for its uptake into cells,” Nature 450(7170), 670–675 (2007).
[Crossref]

Batenburg, J. J.

L. M. G. Vangolde, J. J. Batenburg, and B. Robertson, “The pulmonary surfactant system - biochemical aspects and functional-significance,” Physiol. Rev. 68, 374–455 (1988).

Bellare, J.

M. Haran, A. Chowdhury, C. Manohar, and J. Bellare, “Myelin growth and coiling,” Colloids Surf. A Physicochem. Eng. Asp. 205(1-2), 21–30 (2002).
[Crossref]

Berland, L.

H. Ewers, W. Romer, A. E. Smith, K. Bacia, S. Dmitrieff, W. G. Chai, R. Mancini, J. Kartenbeck, V. Chambon, L. Berland, A. Oppenheim, G. Schwarzmann, T. Feizi, P. Schwille, P. Sens, A. Helenius, and L. Johannes, “GM1 structure determines SV40-induced membrane invagination and infection,” Nat. Cell Biol. 12(1), 11–18 (2010).
[Crossref]

W. Römer, L. Berland, V. Chambon, K. Gaus, B. Windschiegl, D. Tenza, M. R. E. Aly, V. Fraisier, J. C. Florent, D. Perrais, C. Lamaze, G. Raposo, C. Steinem, P. Sens, P. Bassereau, and L. Johannes, “Shiga toxin induces tubular membrane invaginations for its uptake into cells,” Nature 450(7170), 670–675 (2007).
[Crossref]

Bubic-Filipi, L. J.

N. Basic-Jukic, M. Coric, P. Kes, L. J. Bubic-Filipi, J. Pasini, and I. Mokos, “Anderson-Fabry disease in kidneys from deceased donor,” Am. J. Transplant. 7(12), 2829–2833 (2007).
[Crossref]

Buckley, I. K.

I. K. Buckley, “Microscopic morphology of injured living tissue,” Int. Rev. Exp. Pathol. 2, 241–310 (1963).

I. K. Buckley, “Cellular injury in vitro - phase contrast studies on injured cytoplasm,” J. Cell Biol. 14(3), 401–420 (1962).
[Crossref]

Burton, R. E.

T. J. McIntosh, S. Advani, R. E. Burton, D. V. Zhelev, D. Needham, and S. A. Simon, “Experimental tests for protrusion and undulation pressures in phospholipid-bilayers,” Biochemistry 34(27), 8520–8532 (1995).
[Crossref]

Carapezza, E.

Chai, W. G.

H. Ewers, W. Romer, A. E. Smith, K. Bacia, S. Dmitrieff, W. G. Chai, R. Mancini, J. Kartenbeck, V. Chambon, L. Berland, A. Oppenheim, G. Schwarzmann, T. Feizi, P. Schwille, P. Sens, A. Helenius, and L. Johannes, “GM1 structure determines SV40-induced membrane invagination and infection,” Nat. Cell Biol. 12(1), 11–18 (2010).
[Crossref]

Chambon, V.

H. Ewers, W. Romer, A. E. Smith, K. Bacia, S. Dmitrieff, W. G. Chai, R. Mancini, J. Kartenbeck, V. Chambon, L. Berland, A. Oppenheim, G. Schwarzmann, T. Feizi, P. Schwille, P. Sens, A. Helenius, and L. Johannes, “GM1 structure determines SV40-induced membrane invagination and infection,” Nat. Cell Biol. 12(1), 11–18 (2010).
[Crossref]

W. Römer, L. Berland, V. Chambon, K. Gaus, B. Windschiegl, D. Tenza, M. R. E. Aly, V. Fraisier, J. C. Florent, D. Perrais, C. Lamaze, G. Raposo, C. Steinem, P. Sens, P. Bassereau, and L. Johannes, “Shiga toxin induces tubular membrane invaginations for its uptake into cells,” Nature 450(7170), 670–675 (2007).
[Crossref]

Chhaniwal, V. K.

A. Anand, V. K. Chhaniwal, and B. Javidi, “Real-time digital holographic microscopy for phase contrast 3D imaging of dynamic phenomena,” J. Disp. Technol. 6(10), 500–505 (2010).
[Crossref]

Cho, M.

I. Titushkin and M. Cho, “Distinct membrane mechanical properties of human mesenchymal stem cells determined using laser optical tweezers,” Biophys. J. 90(7), 2582–2591 (2006).
[Crossref]

Chowdhury, A.

M. Haran, A. Chowdhury, C. Manohar, and J. Bellare, “Myelin growth and coiling,” Colloids Surf. A Physicochem. Eng. Asp. 205(1-2), 21–30 (2002).
[Crossref]

Clark, D. C.

Collet, A.

A. Policard, A. Collet, and S. Pregermain, “Etude au microscope electronique des premiers stades de la lipophanerose dans les cellules histiocytaires,” C. R. Hebd. Seances Acad. Sci. 246, 3405–3407 (1958).

Coppola, G.

Coric, M.

N. Basic-Jukic, M. Coric, P. Kes, L. J. Bubic-Filipi, J. Pasini, and I. Mokos, “Anderson-Fabry disease in kidneys from deceased donor,” Am. J. Transplant. 7(12), 2829–2833 (2007).
[Crossref]

Cross, M.

Cuche, E.

Davis, D. M.

D. M. Davis and S. Sowinski, “Membrane nanotubes: dynamic long-distance connections between animal cells,” Nat. Rev. Mol. Cell Biol. 9(6), 431–436 (2008).
[Crossref]

De Camilli, P.

K. Farsad and P. De Camilli, “Mechanisms of membrane deformation,” Curr. Opin. Cell Biol. 15(4), 372–381 (2003).
[Crossref]

De Nicola, S.

Depeursinge, C.

Dervichian, D. G.

D. G. Dervichian, “Swelling and molecular organisation in colloidal electrolytes,” Trans. Faraday Soc. 42, B180–B187 (1946).
[Crossref]

Dmitrieff, S.

H. Ewers, W. Romer, A. E. Smith, K. Bacia, S. Dmitrieff, W. G. Chai, R. Mancini, J. Kartenbeck, V. Chambon, L. Berland, A. Oppenheim, G. Schwarzmann, T. Feizi, P. Schwille, P. Sens, A. Helenius, and L. Johannes, “GM1 structure determines SV40-induced membrane invagination and infection,” Nat. Cell Biol. 12(1), 11–18 (2010).
[Crossref]

Evans, E.

W. Rawicz, K. C. Olbrich, T. McIntosh, D. Needham, and E. Evans, “Effect of chain length and unsaturation on elasticity of lipid bilayers,” Biophys. J. 79(1), 328–339 (2000).
[Crossref]

E. Evans and W. Rawicz, “Entropy-driven tension and bending elasticity in condensed-fluid membranes,” Phys. Rev. Lett. 64(17), 2094–2097 (1990).
[Crossref]

Ewers, H.

H. Ewers, W. Romer, A. E. Smith, K. Bacia, S. Dmitrieff, W. G. Chai, R. Mancini, J. Kartenbeck, V. Chambon, L. Berland, A. Oppenheim, G. Schwarzmann, T. Feizi, P. Schwille, P. Sens, A. Helenius, and L. Johannes, “GM1 structure determines SV40-induced membrane invagination and infection,” Nat. Cell Biol. 12(1), 11–18 (2010).
[Crossref]

Farsad, K.

K. Farsad and P. De Camilli, “Mechanisms of membrane deformation,” Curr. Opin. Cell Biol. 15(4), 372–381 (2003).
[Crossref]

Feizi, T.

H. Ewers, W. Romer, A. E. Smith, K. Bacia, S. Dmitrieff, W. G. Chai, R. Mancini, J. Kartenbeck, V. Chambon, L. Berland, A. Oppenheim, G. Schwarzmann, T. Feizi, P. Schwille, P. Sens, A. Helenius, and L. Johannes, “GM1 structure determines SV40-induced membrane invagination and infection,” Nat. Cell Biol. 12(1), 11–18 (2010).
[Crossref]

Ferraro, P.

Finizio, A.

Florent, J. C.

W. Römer, L. Berland, V. Chambon, K. Gaus, B. Windschiegl, D. Tenza, M. R. E. Aly, V. Fraisier, J. C. Florent, D. Perrais, C. Lamaze, G. Raposo, C. Steinem, P. Sens, P. Bassereau, and L. Johannes, “Shiga toxin induces tubular membrane invaginations for its uptake into cells,” Nature 450(7170), 670–675 (2007).
[Crossref]

Fraisier, V.

W. Römer, L. Berland, V. Chambon, K. Gaus, B. Windschiegl, D. Tenza, M. R. E. Aly, V. Fraisier, J. C. Florent, D. Perrais, C. Lamaze, G. Raposo, C. Steinem, P. Sens, P. Bassereau, and L. Johannes, “Shiga toxin induces tubular membrane invaginations for its uptake into cells,” Nature 450(7170), 670–675 (2007).
[Crossref]

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref]

Gaus, K.

W. Römer, L. Berland, V. Chambon, K. Gaus, B. Windschiegl, D. Tenza, M. R. E. Aly, V. Fraisier, J. C. Florent, D. Perrais, C. Lamaze, G. Raposo, C. Steinem, P. Sens, P. Bassereau, and L. Johannes, “Shiga toxin induces tubular membrane invaginations for its uptake into cells,” Nature 450(7170), 670–675 (2007).
[Crossref]

Grilli, S.

Guedeau-Boudeville, M.-A.

I. Tsafrir, M.-A. Guedeau-Boudeville, D. Kandel, and J. Stavans, “Coiling instability of multilamellar membrane tubes with anchored polymers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(3), 031603 (2001).
[Crossref]

Haran, M.

M. Haran, A. Chowdhury, C. Manohar, and J. Bellare, “Myelin growth and coiling,” Colloids Surf. A Physicochem. Eng. Asp. 205(1-2), 21–30 (2002).
[Crossref]

Hayden, C. C.

J. C. Stachowiak, C. C. Hayden, and D. Y. Sasaki, “Steric confinement of proteins on lipid membranes can drive curvature and tubulation,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7781–7786 (2010).
[Crossref]

Haynie, D. T.

Helenius, A.

H. Ewers, W. Romer, A. E. Smith, K. Bacia, S. Dmitrieff, W. G. Chai, R. Mancini, J. Kartenbeck, V. Chambon, L. Berland, A. Oppenheim, G. Schwarzmann, T. Feizi, P. Schwille, P. Sens, A. Helenius, and L. Johannes, “GM1 structure determines SV40-induced membrane invagination and infection,” Nat. Cell Biol. 12(1), 11–18 (2010).
[Crossref]

Ina, H.

Javidi, B.

Johannes, L.

H. Ewers, W. Romer, A. E. Smith, K. Bacia, S. Dmitrieff, W. G. Chai, R. Mancini, J. Kartenbeck, V. Chambon, L. Berland, A. Oppenheim, G. Schwarzmann, T. Feizi, P. Schwille, P. Sens, A. Helenius, and L. Johannes, “GM1 structure determines SV40-induced membrane invagination and infection,” Nat. Cell Biol. 12(1), 11–18 (2010).
[Crossref]

W. Römer, L. Berland, V. Chambon, K. Gaus, B. Windschiegl, D. Tenza, M. R. E. Aly, V. Fraisier, J. C. Florent, D. Perrais, C. Lamaze, G. Raposo, C. Steinem, P. Sens, P. Bassereau, and L. Johannes, “Shiga toxin induces tubular membrane invaginations for its uptake into cells,” Nature 450(7170), 670–675 (2007).
[Crossref]

Kandel, D.

I. Tsafrir, M.-A. Guedeau-Boudeville, D. Kandel, and J. Stavans, “Coiling instability of multilamellar membrane tubes with anchored polymers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(3), 031603 (2001).
[Crossref]

Kartenbeck, J.

H. Ewers, W. Romer, A. E. Smith, K. Bacia, S. Dmitrieff, W. G. Chai, R. Mancini, J. Kartenbeck, V. Chambon, L. Berland, A. Oppenheim, G. Schwarzmann, T. Feizi, P. Schwille, P. Sens, A. Helenius, and L. Johannes, “GM1 structure determines SV40-induced membrane invagination and infection,” Nat. Cell Biol. 12(1), 11–18 (2010).
[Crossref]

Kes, P.

N. Basic-Jukic, M. Coric, P. Kes, L. J. Bubic-Filipi, J. Pasini, and I. Mokos, “Anderson-Fabry disease in kidneys from deceased donor,” Am. J. Transplant. 7(12), 2829–2833 (2007).
[Crossref]

Kim, M. K.

Kistler, G. S.

E. R. Weibel, G. S. Kistler, and G. Tondury, “A stereologic electron microscope study of ‘tubular myelin figures’ in alveolar fluids of rat lungs,” Z. Zellforsch. Mikrosk. Anat. 69(1), 418–427 (1966).
[Crossref]

Kobayashi, S.

Lamaze, C.

W. Römer, L. Berland, V. Chambon, K. Gaus, B. Windschiegl, D. Tenza, M. R. E. Aly, V. Fraisier, J. C. Florent, D. Perrais, C. Lamaze, G. Raposo, C. Steinem, P. Sens, P. Bassereau, and L. Johannes, “Shiga toxin induces tubular membrane invaginations for its uptake into cells,” Nature 450(7170), 670–675 (2007).
[Crossref]

Liu, C.

Mancini, R.

H. Ewers, W. Romer, A. E. Smith, K. Bacia, S. Dmitrieff, W. G. Chai, R. Mancini, J. Kartenbeck, V. Chambon, L. Berland, A. Oppenheim, G. Schwarzmann, T. Feizi, P. Schwille, P. Sens, A. Helenius, and L. Johannes, “GM1 structure determines SV40-induced membrane invagination and infection,” Nat. Cell Biol. 12(1), 11–18 (2010).
[Crossref]

Manohar, C.

M. Haran, A. Chowdhury, C. Manohar, and J. Bellare, “Myelin growth and coiling,” Colloids Surf. A Physicochem. Eng. Asp. 205(1-2), 21–30 (2002).
[Crossref]

Marquet, P.

McIntosh, T.

W. Rawicz, K. C. Olbrich, T. McIntosh, D. Needham, and E. Evans, “Effect of chain length and unsaturation on elasticity of lipid bilayers,” Biophys. J. 79(1), 328–339 (2000).
[Crossref]

McIntosh, T. J.

T. J. McIntosh, S. Advani, R. E. Burton, D. V. Zhelev, D. Needham, and S. A. Simon, “Experimental tests for protrusion and undulation pressures in phospholipid-bilayers,” Biochemistry 34(27), 8520–8532 (1995).
[Crossref]

Mishima, K.

K. Mishima, T. Ogihara, M. Tomita, and K. Satoh, “Growth rate of myelin figures for phosphatidylcholine and phosphatidylethanolamine,” Chem. Phys. Lipids 62(2), 87–91 (1992).
[Crossref]

Mokos, I.

N. Basic-Jukic, M. Coric, P. Kes, L. J. Bubic-Filipi, J. Pasini, and I. Mokos, “Anderson-Fabry disease in kidneys from deceased donor,” Am. J. Transplant. 7(12), 2829–2833 (2007).
[Crossref]

Moon, I.

Mozafari, M.

L. Tayebi, M. Mozafari, D. Vashaee, and A. N. Parikh, “Structural configuration of myelin figures using fluorescence microscopy,” Int. J. Photoenergy 2012, 685617 (2012).
[Crossref]

Nagel, S. R.

L. N. Zou and S. R. Nagel, “Stability and growth of single myelin figures,” Phys. Rev. Lett. 96(13), 138301 (2006).
[Crossref]

Needham, D.

W. Rawicz, K. C. Olbrich, T. McIntosh, D. Needham, and E. Evans, “Effect of chain length and unsaturation on elasticity of lipid bilayers,” Biophys. J. 79(1), 328–339 (2000).
[Crossref]

T. J. McIntosh, S. Advani, R. E. Burton, D. V. Zhelev, D. Needham, and S. A. Simon, “Experimental tests for protrusion and undulation pressures in phospholipid-bilayers,” Biochemistry 34(27), 8520–8532 (1995).
[Crossref]

Ogihara, T.

K. Mishima, T. Ogihara, M. Tomita, and K. Satoh, “Growth rate of myelin figures for phosphatidylcholine and phosphatidylethanolamine,” Chem. Phys. Lipids 62(2), 87–91 (1992).
[Crossref]

Olbrich, K. C.

W. Rawicz, K. C. Olbrich, T. McIntosh, D. Needham, and E. Evans, “Effect of chain length and unsaturation on elasticity of lipid bilayers,” Biophys. J. 79(1), 328–339 (2000).
[Crossref]

Oppenheim, A.

H. Ewers, W. Romer, A. E. Smith, K. Bacia, S. Dmitrieff, W. G. Chai, R. Mancini, J. Kartenbeck, V. Chambon, L. Berland, A. Oppenheim, G. Schwarzmann, T. Feizi, P. Schwille, P. Sens, A. Helenius, and L. Johannes, “GM1 structure determines SV40-induced membrane invagination and infection,” Nat. Cell Biol. 12(1), 11–18 (2010).
[Crossref]

Parikh, A. N.

L. Tayebi, M. Mozafari, D. Vashaee, and A. N. Parikh, “Structural configuration of myelin figures using fluorescence microscopy,” Int. J. Photoenergy 2012, 685617 (2012).
[Crossref]

Pasini, J.

N. Basic-Jukic, M. Coric, P. Kes, L. J. Bubic-Filipi, J. Pasini, and I. Mokos, “Anderson-Fabry disease in kidneys from deceased donor,” Am. J. Transplant. 7(12), 2829–2833 (2007).
[Crossref]

Perrais, D.

W. Römer, L. Berland, V. Chambon, K. Gaus, B. Windschiegl, D. Tenza, M. R. E. Aly, V. Fraisier, J. C. Florent, D. Perrais, C. Lamaze, G. Raposo, C. Steinem, P. Sens, P. Bassereau, and L. Johannes, “Shiga toxin induces tubular membrane invaginations for its uptake into cells,” Nature 450(7170), 670–675 (2007).
[Crossref]

Pierattini, G.

Pincus, P.

C. D. Santangelo and P. Pincus, “Coiling instabilities of multilamellar tubes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 061501 (2002).
[Crossref]

Policard, A.

A. Policard, A. Collet, and S. Pregermain, “Etude au microscope electronique des premiers stades de la lipophanerose dans les cellules histiocytaires,” C. R. Hebd. Seances Acad. Sci. 246, 3405–3407 (1958).

Pregermain, S.

A. Policard, A. Collet, and S. Pregermain, “Etude au microscope electronique des premiers stades de la lipophanerose dans les cellules histiocytaires,” C. R. Hebd. Seances Acad. Sci. 246, 3405–3407 (1958).

Raposo, G.

W. Römer, L. Berland, V. Chambon, K. Gaus, B. Windschiegl, D. Tenza, M. R. E. Aly, V. Fraisier, J. C. Florent, D. Perrais, C. Lamaze, G. Raposo, C. Steinem, P. Sens, P. Bassereau, and L. Johannes, “Shiga toxin induces tubular membrane invaginations for its uptake into cells,” Nature 450(7170), 670–675 (2007).
[Crossref]

Rawicz, W.

W. Rawicz, K. C. Olbrich, T. McIntosh, D. Needham, and E. Evans, “Effect of chain length and unsaturation on elasticity of lipid bilayers,” Biophys. J. 79(1), 328–339 (2000).
[Crossref]

E. Evans and W. Rawicz, “Entropy-driven tension and bending elasticity in condensed-fluid membranes,” Phys. Rev. Lett. 64(17), 2094–2097 (1990).
[Crossref]

Robertson, B.

L. M. G. Vangolde, J. J. Batenburg, and B. Robertson, “The pulmonary surfactant system - biochemical aspects and functional-significance,” Physiol. Rev. 68, 374–455 (1988).

Romer, W.

H. Ewers, W. Romer, A. E. Smith, K. Bacia, S. Dmitrieff, W. G. Chai, R. Mancini, J. Kartenbeck, V. Chambon, L. Berland, A. Oppenheim, G. Schwarzmann, T. Feizi, P. Schwille, P. Sens, A. Helenius, and L. Johannes, “GM1 structure determines SV40-induced membrane invagination and infection,” Nat. Cell Biol. 12(1), 11–18 (2010).
[Crossref]

Römer, W.

W. Römer, L. Berland, V. Chambon, K. Gaus, B. Windschiegl, D. Tenza, M. R. E. Aly, V. Fraisier, J. C. Florent, D. Perrais, C. Lamaze, G. Raposo, C. Steinem, P. Sens, P. Bassereau, and L. Johannes, “Shiga toxin induces tubular membrane invaginations for its uptake into cells,” Nature 450(7170), 670–675 (2007).
[Crossref]

Sakurai, I.

I. Sakurai, T. Suzuki, and S. Sakurai, “Cross-sectional view of myelin figures,” Biochim. Biophys. Acta 985(1), 101–105 (1989).
[Crossref]

Sakurai, S.

I. Sakurai, T. Suzuki, and S. Sakurai, “Cross-sectional view of myelin figures,” Biochim. Biophys. Acta 985(1), 101–105 (1989).
[Crossref]

Sanderson, R. J.

R. J. Sanderson and A. E. Vatter, “Mode of formation of tubular myelin from lamellar bodies in lung,” J. Cell Biol. 74(3), 1027–1031 (1977).
[Crossref]

Santangelo, C. D.

C. D. Santangelo and P. Pincus, “Coiling instabilities of multilamellar tubes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 061501 (2002).
[Crossref]

Sasaki, D. Y.

J. C. Stachowiak, C. C. Hayden, and D. Y. Sasaki, “Steric confinement of proteins on lipid membranes can drive curvature and tubulation,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7781–7786 (2010).
[Crossref]

Satoh, K.

K. Mishima, T. Ogihara, M. Tomita, and K. Satoh, “Growth rate of myelin figures for phosphatidylcholine and phosphatidylethanolamine,” Chem. Phys. Lipids 62(2), 87–91 (1992).
[Crossref]

Schwarzmann, G.

H. Ewers, W. Romer, A. E. Smith, K. Bacia, S. Dmitrieff, W. G. Chai, R. Mancini, J. Kartenbeck, V. Chambon, L. Berland, A. Oppenheim, G. Schwarzmann, T. Feizi, P. Schwille, P. Sens, A. Helenius, and L. Johannes, “GM1 structure determines SV40-induced membrane invagination and infection,” Nat. Cell Biol. 12(1), 11–18 (2010).
[Crossref]

Schwille, P.

H. Ewers, W. Romer, A. E. Smith, K. Bacia, S. Dmitrieff, W. G. Chai, R. Mancini, J. Kartenbeck, V. Chambon, L. Berland, A. Oppenheim, G. Schwarzmann, T. Feizi, P. Schwille, P. Sens, A. Helenius, and L. Johannes, “GM1 structure determines SV40-induced membrane invagination and infection,” Nat. Cell Biol. 12(1), 11–18 (2010).
[Crossref]

Sens, P.

H. Ewers, W. Romer, A. E. Smith, K. Bacia, S. Dmitrieff, W. G. Chai, R. Mancini, J. Kartenbeck, V. Chambon, L. Berland, A. Oppenheim, G. Schwarzmann, T. Feizi, P. Schwille, P. Sens, A. Helenius, and L. Johannes, “GM1 structure determines SV40-induced membrane invagination and infection,” Nat. Cell Biol. 12(1), 11–18 (2010).
[Crossref]

W. Römer, L. Berland, V. Chambon, K. Gaus, B. Windschiegl, D. Tenza, M. R. E. Aly, V. Fraisier, J. C. Florent, D. Perrais, C. Lamaze, G. Raposo, C. Steinem, P. Sens, P. Bassereau, and L. Johannes, “Shiga toxin induces tubular membrane invaginations for its uptake into cells,” Nature 450(7170), 670–675 (2007).
[Crossref]

Simon, S. A.

T. J. McIntosh, S. Advani, R. E. Burton, D. V. Zhelev, D. Needham, and S. A. Simon, “Experimental tests for protrusion and undulation pressures in phospholipid-bilayers,” Biochemistry 34(27), 8520–8532 (1995).
[Crossref]

Smith, A. E.

H. Ewers, W. Romer, A. E. Smith, K. Bacia, S. Dmitrieff, W. G. Chai, R. Mancini, J. Kartenbeck, V. Chambon, L. Berland, A. Oppenheim, G. Schwarzmann, T. Feizi, P. Schwille, P. Sens, A. Helenius, and L. Johannes, “GM1 structure determines SV40-induced membrane invagination and infection,” Nat. Cell Biol. 12(1), 11–18 (2010).
[Crossref]

Sowinski, S.

D. M. Davis and S. Sowinski, “Membrane nanotubes: dynamic long-distance connections between animal cells,” Nat. Rev. Mol. Cell Biol. 9(6), 431–436 (2008).
[Crossref]

Stachowiak, J. C.

J. C. Stachowiak, C. C. Hayden, and D. Y. Sasaki, “Steric confinement of proteins on lipid membranes can drive curvature and tubulation,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7781–7786 (2010).
[Crossref]

Stavans, J.

I. Tsafrir, M.-A. Guedeau-Boudeville, D. Kandel, and J. Stavans, “Coiling instability of multilamellar membrane tubes with anchored polymers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(3), 031603 (2001).
[Crossref]

Steinem, C.

W. Römer, L. Berland, V. Chambon, K. Gaus, B. Windschiegl, D. Tenza, M. R. E. Aly, V. Fraisier, J. C. Florent, D. Perrais, C. Lamaze, G. Raposo, C. Steinem, P. Sens, P. Bassereau, and L. Johannes, “Shiga toxin induces tubular membrane invaginations for its uptake into cells,” Nature 450(7170), 670–675 (2007).
[Crossref]

Stoeckenius, W.

W. Stoeckenius, “Oso4-fixierung intrazellularer myelinfiguren,” Exp. Cell Res. 13(2), 410–414 (1957).
[Crossref]

Striano, V.

Suzuki, T.

I. Sakurai, T. Suzuki, and S. Sakurai, “Cross-sectional view of myelin figures,” Biochim. Biophys. Acta 985(1), 101–105 (1989).
[Crossref]

Takeda, M.

Tayebi, L.

L. Tayebi, M. Mozafari, D. Vashaee, and A. N. Parikh, “Structural configuration of myelin figures using fluorescence microscopy,” Int. J. Photoenergy 2012, 685617 (2012).
[Crossref]

Tenza, D.

W. Römer, L. Berland, V. Chambon, K. Gaus, B. Windschiegl, D. Tenza, M. R. E. Aly, V. Fraisier, J. C. Florent, D. Perrais, C. Lamaze, G. Raposo, C. Steinem, P. Sens, P. Bassereau, and L. Johannes, “Shiga toxin induces tubular membrane invaginations for its uptake into cells,” Nature 450(7170), 670–675 (2007).
[Crossref]

Titushkin, I.

I. Titushkin and M. Cho, “Distinct membrane mechanical properties of human mesenchymal stem cells determined using laser optical tweezers,” Biophys. J. 90(7), 2582–2591 (2006).
[Crossref]

Tomita, M.

K. Mishima, T. Ogihara, M. Tomita, and K. Satoh, “Growth rate of myelin figures for phosphatidylcholine and phosphatidylethanolamine,” Chem. Phys. Lipids 62(2), 87–91 (1992).
[Crossref]

Tondury, G.

E. R. Weibel, G. S. Kistler, and G. Tondury, “A stereologic electron microscope study of ‘tubular myelin figures’ in alveolar fluids of rat lungs,” Z. Zellforsch. Mikrosk. Anat. 69(1), 418–427 (1966).
[Crossref]

Tsafrir, I.

I. Tsafrir, M.-A. Guedeau-Boudeville, D. Kandel, and J. Stavans, “Coiling instability of multilamellar membrane tubes with anchored polymers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(3), 031603 (2001).
[Crossref]

Vangolde, L. M. G.

L. M. G. Vangolde, J. J. Batenburg, and B. Robertson, “The pulmonary surfactant system - biochemical aspects and functional-significance,” Physiol. Rev. 68, 374–455 (1988).

Vashaee, D.

L. Tayebi, M. Mozafari, D. Vashaee, and A. N. Parikh, “Structural configuration of myelin figures using fluorescence microscopy,” Int. J. Photoenergy 2012, 685617 (2012).
[Crossref]

Vatter, A. E.

R. J. Sanderson and A. E. Vatter, “Mode of formation of tubular myelin from lamellar bodies in lung,” J. Cell Biol. 74(3), 1027–1031 (1977).
[Crossref]

Weibel, E. R.

E. R. Weibel, G. S. Kistler, and G. Tondury, “A stereologic electron microscope study of ‘tubular myelin figures’ in alveolar fluids of rat lungs,” Z. Zellforsch. Mikrosk. Anat. 69(1), 418–427 (1966).
[Crossref]

Windschiegl, B.

W. Römer, L. Berland, V. Chambon, K. Gaus, B. Windschiegl, D. Tenza, M. R. E. Aly, V. Fraisier, J. C. Florent, D. Perrais, C. Lamaze, G. Raposo, C. Steinem, P. Sens, P. Bassereau, and L. Johannes, “Shiga toxin induces tubular membrane invaginations for its uptake into cells,” Nature 450(7170), 670–675 (2007).
[Crossref]

Yeom, S.

Yu, X.

Zhelev, D. V.

T. J. McIntosh, S. Advani, R. E. Burton, D. V. Zhelev, D. Needham, and S. A. Simon, “Experimental tests for protrusion and undulation pressures in phospholipid-bilayers,” Biochemistry 34(27), 8520–8532 (1995).
[Crossref]

Zou, L. N.

L. N. Zou, “Myelin figures: the buckling and flow of wet soap,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(6), 061502 (2009).
[Crossref]

L. N. Zou and S. R. Nagel, “Stability and growth of single myelin figures,” Phys. Rev. Lett. 96(13), 138301 (2006).
[Crossref]

Am. J. Transplant. (1)

N. Basic-Jukic, M. Coric, P. Kes, L. J. Bubic-Filipi, J. Pasini, and I. Mokos, “Anderson-Fabry disease in kidneys from deceased donor,” Am. J. Transplant. 7(12), 2829–2833 (2007).
[Crossref]

Appl. Opt. (1)

Biochemistry (1)

T. J. McIntosh, S. Advani, R. E. Burton, D. V. Zhelev, D. Needham, and S. A. Simon, “Experimental tests for protrusion and undulation pressures in phospholipid-bilayers,” Biochemistry 34(27), 8520–8532 (1995).
[Crossref]

Biochim. Biophys. Acta (1)

I. Sakurai, T. Suzuki, and S. Sakurai, “Cross-sectional view of myelin figures,” Biochim. Biophys. Acta 985(1), 101–105 (1989).
[Crossref]

Biomed. Opt. Express (1)

Biophys. J. (2)

I. Titushkin and M. Cho, “Distinct membrane mechanical properties of human mesenchymal stem cells determined using laser optical tweezers,” Biophys. J. 90(7), 2582–2591 (2006).
[Crossref]

W. Rawicz, K. C. Olbrich, T. McIntosh, D. Needham, and E. Evans, “Effect of chain length and unsaturation on elasticity of lipid bilayers,” Biophys. J. 79(1), 328–339 (2000).
[Crossref]

C. R. Hebd. Seances Acad. Sci. (1)

A. Policard, A. Collet, and S. Pregermain, “Etude au microscope electronique des premiers stades de la lipophanerose dans les cellules histiocytaires,” C. R. Hebd. Seances Acad. Sci. 246, 3405–3407 (1958).

Chem. Phys. Lipids (1)

K. Mishima, T. Ogihara, M. Tomita, and K. Satoh, “Growth rate of myelin figures for phosphatidylcholine and phosphatidylethanolamine,” Chem. Phys. Lipids 62(2), 87–91 (1992).
[Crossref]

Colloids Surf. A Physicochem. Eng. Asp. (1)

M. Haran, A. Chowdhury, C. Manohar, and J. Bellare, “Myelin growth and coiling,” Colloids Surf. A Physicochem. Eng. Asp. 205(1-2), 21–30 (2002).
[Crossref]

Curr. Opin. Cell Biol. (1)

K. Farsad and P. De Camilli, “Mechanisms of membrane deformation,” Curr. Opin. Cell Biol. 15(4), 372–381 (2003).
[Crossref]

Exp. Cell Res. (1)

W. Stoeckenius, “Oso4-fixierung intrazellularer myelinfiguren,” Exp. Cell Res. 13(2), 410–414 (1957).
[Crossref]

Int. J. Photoenergy (1)

L. Tayebi, M. Mozafari, D. Vashaee, and A. N. Parikh, “Structural configuration of myelin figures using fluorescence microscopy,” Int. J. Photoenergy 2012, 685617 (2012).
[Crossref]

Int. Rev. Exp. Pathol. (1)

I. K. Buckley, “Microscopic morphology of injured living tissue,” Int. Rev. Exp. Pathol. 2, 241–310 (1963).

J. Cell Biol. (2)

I. K. Buckley, “Cellular injury in vitro - phase contrast studies on injured cytoplasm,” J. Cell Biol. 14(3), 401–420 (1962).
[Crossref]

R. J. Sanderson and A. E. Vatter, “Mode of formation of tubular myelin from lamellar bodies in lung,” J. Cell Biol. 74(3), 1027–1031 (1977).
[Crossref]

J. Disp. Technol. (1)

A. Anand, V. K. Chhaniwal, and B. Javidi, “Real-time digital holographic microscopy for phase contrast 3D imaging of dynamic phenomena,” J. Disp. Technol. 6(10), 500–505 (2010).
[Crossref]

J. Opt. Soc. Am. (1)

Nat. Cell Biol. (1)

H. Ewers, W. Romer, A. E. Smith, K. Bacia, S. Dmitrieff, W. G. Chai, R. Mancini, J. Kartenbeck, V. Chambon, L. Berland, A. Oppenheim, G. Schwarzmann, T. Feizi, P. Schwille, P. Sens, A. Helenius, and L. Johannes, “GM1 structure determines SV40-induced membrane invagination and infection,” Nat. Cell Biol. 12(1), 11–18 (2010).
[Crossref]

Nat. Rev. Mol. Cell Biol. (1)

D. M. Davis and S. Sowinski, “Membrane nanotubes: dynamic long-distance connections between animal cells,” Nat. Rev. Mol. Cell Biol. 9(6), 431–436 (2008).
[Crossref]

Nature (2)

W. Römer, L. Berland, V. Chambon, K. Gaus, B. Windschiegl, D. Tenza, M. R. E. Aly, V. Fraisier, J. C. Florent, D. Perrais, C. Lamaze, G. Raposo, C. Steinem, P. Sens, P. Bassereau, and L. Johannes, “Shiga toxin induces tubular membrane invaginations for its uptake into cells,” Nature 450(7170), 670–675 (2007).
[Crossref]

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref]

Opt. Express (2)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (3)

L. N. Zou, “Myelin figures: the buckling and flow of wet soap,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(6), 061502 (2009).
[Crossref]

I. Tsafrir, M.-A. Guedeau-Boudeville, D. Kandel, and J. Stavans, “Coiling instability of multilamellar membrane tubes with anchored polymers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(3), 031603 (2001).
[Crossref]

C. D. Santangelo and P. Pincus, “Coiling instabilities of multilamellar tubes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 061501 (2002).
[Crossref]

Phys. Rev. Lett. (2)

E. Evans and W. Rawicz, “Entropy-driven tension and bending elasticity in condensed-fluid membranes,” Phys. Rev. Lett. 64(17), 2094–2097 (1990).
[Crossref]

L. N. Zou and S. R. Nagel, “Stability and growth of single myelin figures,” Phys. Rev. Lett. 96(13), 138301 (2006).
[Crossref]

Physiol. Rev. (1)

L. M. G. Vangolde, J. J. Batenburg, and B. Robertson, “The pulmonary surfactant system - biochemical aspects and functional-significance,” Physiol. Rev. 68, 374–455 (1988).

Proc. Natl. Acad. Sci. U.S.A. (1)

J. C. Stachowiak, C. C. Hayden, and D. Y. Sasaki, “Steric confinement of proteins on lipid membranes can drive curvature and tubulation,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7781–7786 (2010).
[Crossref]

SPIE Rev. (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1(1), 018005 (2010).
[Crossref]

Trans. Faraday Soc. (1)

D. G. Dervichian, “Swelling and molecular organisation in colloidal electrolytes,” Trans. Faraday Soc. 42, B180–B187 (1946).
[Crossref]

Z. Zellforsch. Mikrosk. Anat. (1)

E. R. Weibel, G. S. Kistler, and G. Tondury, “A stereologic electron microscope study of ‘tubular myelin figures’ in alveolar fluids of rat lungs,” Z. Zellforsch. Mikrosk. Anat. 69(1), 418–427 (1966).
[Crossref]

Other (4)

D. B. Murphy, and M. W. Davidson, Fundamentals of Light Microscopy and Electronic Imaging (Wiley-Blackwell, 2012).

M. Besisi, Living Blood Cells and Their Ultrastructure (Springer-Verlag, 1973).

V. Micó, C. Ferreira, Z. Zalevsky, and J. García, “Basic principles and applications of digital holographic microscopy,” in Microscopy: Science Technology, Applications and Education, A. Méndez-Vilas and J. Díaz, eds. (Formatex Research Center, 2010), pp. 1411–1418.

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic DHM setup; M: mirror; BS: beam splitter; MO: microscope objective.

Fig. 2
Fig. 2

(a) Temperature gradient used in the experiments; (b) Conventional microscopy image of myelin figures recorded 10 sec. after hydration of the parent lipid dry drop. The arrow indicates the direction of the thermal gradient from low to high temperature. As thermal gradient can act as an external force, it facilitates the growth of MFs.

Fig. 3
Fig. 3

(a) Hologram of a MF at t = 3 s after its formation starts; (b) Fourier spectrum of the hologram; Associated phase (c) and intensity (d) patterns of the hologram; (e) Filtered phase image of the MF subtracted by phase of the reference hologram; (f) 2D phase map of a cropped part of the reconstructed image; (g) 1D profile of the MF along the line indicated in panel (f); (h) 3D phase map of the MF; (i) to (l): recorded hologram and reconstructed, 1D, 2D and 3D phase map of a coiled MF. Information such as volume, surface, and thickness of the MF can be derived from the reconstruction of holograms. The field of view was 85 µm × 60 µm.

Fig. 4
Fig. 4

The effect of temperature gradient on MF growth employing DHM technique. (a) Evolution of volume in time; (b) Thickness of myelin figures does not alter significantly during the growth; (c) Length of myelin figures vs. time at the presence and absence of thermal gradient.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

U(x,y, z 0 )=F T 1 {U(x,y,0) e ik 1 λ 2 f x 2 λ 2 f y 2 d },
φ(x,y)= tan 1 ImU(x,y) ReU(x,y) ,I(x,y)= | U(x,y) | 2 ,

Metrics