Abstract

Simultaneous spatial temporal focusing (SSTF) is used to deliver microjoule femtosecond pulses with low numerical aperture geometries (<0.05 NA) with characteristics that are significantly improved compared to standard focusing paradigms. Nonlinear effects that would normally result in focal plane shifts and focal spot distortion are mitigated when SSTF is employed. As a result, it is shown that SSTF will enable surgical implementations that are presently inhibited.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Pronko, S. Dutta, J. Squier, V. Rudd, D. Du, and G. Mourou, “Machining of submicron holes using a femtosecond laser at 800 nm,” Opt. Commun.114(1-2), 106–110 (1995).
    [CrossRef]
  2. C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett.26(2), 93–95 (2001).
    [CrossRef] [PubMed]
  3. T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med.19(1), 23–31 (1996).
    [CrossRef] [PubMed]
  4. T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron.5(4), 902–910 (1999).
    [CrossRef]
  5. R. M. Kurtz, C. Horvath, H. H. Liu, R. R. Krueger, and T. Juhasz, “Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes,” J. Refract. Surg.14(5), 541–548 (1998).
    [PubMed]
  6. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express13(5), 1468–1476 (2005).
    [CrossRef] [PubMed]
  7. G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express13(6), 2153–2159 (2005).
    [CrossRef] [PubMed]
  8. F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses,” Opt. Lett.35(7), 1106–1108 (2010).
    [CrossRef] [PubMed]
  9. D. N. Vitek, D. E. Adams, A. Johnson, P. S. Tsai, S. Backus, C. G. Durfee, D. Kleinfeld, and J. A. Squier, “Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials,” Opt. Express18(17), 18086–18094 (2010).
    [CrossRef] [PubMed]
  10. D. N. Vitek, E. Block, Y. Bellouard, D. E. Adams, S. Backus, D. Kleinfeld, C. G. Durfee, and J. A. Squier, “Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials,” Opt. Express18(24), 24673–24678 (2010).
    [CrossRef] [PubMed]
  11. R. Kammel, R. Ackermann, A. Tünnermann, and S. Nolte, “Pump-probe investigation of fs-LIOB in water by simultaneous spatial and temporal focusing,” Proc. SPIE8611, 86110A, 86110A-7 (2013).
    [CrossRef]
  12. C. G. Durfee, M. Greco, E. Block, D. Vitek, and J. A. Squier, “Intuitive analysis of space-time focusing with double-ABCD calculation,” Opt. Express20(13), 14244–14259 (2012).
    [CrossRef] [PubMed]
  13. J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron.4, 35–110 (1975).
    [CrossRef]
  14. D. Giguère, G. Olivié, F. Vidal, S. Toetsch, G. Girard, T. Ozaki, J.-C. Kieffer, O. Nada, and I. Brunette, “Laser ablation threshold dependence on pulse duration for fused silica and corneal tissues: experiments and modeling,” J. Opt. Soc. Am. A24(6), 1562–1568 (2007).
    [CrossRef] [PubMed]
  15. L. Hoffart, P. Lassonde, F. Légaré, F. Vidal, N. Sanner, O. Utéza, M. Sentis, J. C. Kieffer, and I. Brunette, “Surface ablation of corneal stroma with few-cycle laser pulses at 800 nm,” Opt. Express19(1), 230–240 (2011).
    [CrossRef] [PubMed]

2013 (1)

R. Kammel, R. Ackermann, A. Tünnermann, and S. Nolte, “Pump-probe investigation of fs-LIOB in water by simultaneous spatial and temporal focusing,” Proc. SPIE8611, 86110A, 86110A-7 (2013).
[CrossRef]

2012 (1)

2011 (1)

2010 (3)

2007 (1)

2005 (2)

2001 (1)

1999 (1)

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron.5(4), 902–910 (1999).
[CrossRef]

1998 (1)

R. M. Kurtz, C. Horvath, H. H. Liu, R. R. Krueger, and T. Juhasz, “Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes,” J. Refract. Surg.14(5), 541–548 (1998).
[PubMed]

1996 (1)

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med.19(1), 23–31 (1996).
[CrossRef] [PubMed]

1995 (1)

P. Pronko, S. Dutta, J. Squier, V. Rudd, D. Du, and G. Mourou, “Machining of submicron holes using a femtosecond laser at 800 nm,” Opt. Commun.114(1-2), 106–110 (1995).
[CrossRef]

1975 (1)

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron.4, 35–110 (1975).
[CrossRef]

Ackermann, R.

R. Kammel, R. Ackermann, A. Tünnermann, and S. Nolte, “Pump-probe investigation of fs-LIOB in water by simultaneous spatial and temporal focusing,” Proc. SPIE8611, 86110A, 86110A-7 (2013).
[CrossRef]

Adams, D. E.

Backus, S.

Bellouard, Y.

Bille, J. F.

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron.5(4), 902–910 (1999).
[CrossRef]

Block, E.

Bor, Z.

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med.19(1), 23–31 (1996).
[CrossRef] [PubMed]

Brodeur, A.

Bron, W. E.

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med.19(1), 23–31 (1996).
[CrossRef] [PubMed]

Brunette, I.

Cheng, Y.

Du, D.

P. Pronko, S. Dutta, J. Squier, V. Rudd, D. Du, and G. Mourou, “Machining of submicron holes using a femtosecond laser at 800 nm,” Opt. Commun.114(1-2), 106–110 (1995).
[CrossRef]

Durfee, C. G.

Durst, M.

Dutta, S.

P. Pronko, S. Dutta, J. Squier, V. Rudd, D. Du, and G. Mourou, “Machining of submicron holes using a femtosecond laser at 800 nm,” Opt. Commun.114(1-2), 106–110 (1995).
[CrossRef]

García, J. F.

Giguère, D.

Girard, G.

Greco, M.

He, F.

Hoffart, L.

Horvath, C.

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron.5(4), 902–910 (1999).
[CrossRef]

R. M. Kurtz, C. Horvath, H. H. Liu, R. R. Krueger, and T. Juhasz, “Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes,” J. Refract. Surg.14(5), 541–548 (1998).
[PubMed]

Johnson, A.

Juhasz, T.

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron.5(4), 902–910 (1999).
[CrossRef]

R. M. Kurtz, C. Horvath, H. H. Liu, R. R. Krueger, and T. Juhasz, “Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes,” J. Refract. Surg.14(5), 541–548 (1998).
[PubMed]

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med.19(1), 23–31 (1996).
[CrossRef] [PubMed]

Kammel, R.

R. Kammel, R. Ackermann, A. Tünnermann, and S. Nolte, “Pump-probe investigation of fs-LIOB in water by simultaneous spatial and temporal focusing,” Proc. SPIE8611, 86110A, 86110A-7 (2013).
[CrossRef]

Kastis, G. A.

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med.19(1), 23–31 (1996).
[CrossRef] [PubMed]

Kieffer, J. C.

Kieffer, J.-C.

Kleinfeld, D.

Krueger, R. R.

R. M. Kurtz, C. Horvath, H. H. Liu, R. R. Krueger, and T. Juhasz, “Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes,” J. Refract. Surg.14(5), 541–548 (1998).
[PubMed]

Kurtz, R. M.

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron.5(4), 902–910 (1999).
[CrossRef]

R. M. Kurtz, C. Horvath, H. H. Liu, R. R. Krueger, and T. Juhasz, “Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes,” J. Refract. Surg.14(5), 541–548 (1998).
[PubMed]

Lassonde, P.

Légaré, F.

Liu, H. H.

R. M. Kurtz, C. Horvath, H. H. Liu, R. R. Krueger, and T. Juhasz, “Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes,” J. Refract. Surg.14(5), 541–548 (1998).
[PubMed]

Loesel, F. H.

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron.5(4), 902–910 (1999).
[CrossRef]

Marburger, J. H.

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron.4, 35–110 (1975).
[CrossRef]

Mazur, E.

Midorikawa, K.

Mourou, G.

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron.5(4), 902–910 (1999).
[CrossRef]

P. Pronko, S. Dutta, J. Squier, V. Rudd, D. Du, and G. Mourou, “Machining of submicron holes using a femtosecond laser at 800 nm,” Opt. Commun.114(1-2), 106–110 (1995).
[CrossRef]

Nada, O.

Ni, J.

Nolte, S.

R. Kammel, R. Ackermann, A. Tünnermann, and S. Nolte, “Pump-probe investigation of fs-LIOB in water by simultaneous spatial and temporal focusing,” Proc. SPIE8611, 86110A, 86110A-7 (2013).
[CrossRef]

Olivié, G.

Oron, D.

Ozaki, T.

Pronko, P.

P. Pronko, S. Dutta, J. Squier, V. Rudd, D. Du, and G. Mourou, “Machining of submicron holes using a femtosecond laser at 800 nm,” Opt. Commun.114(1-2), 106–110 (1995).
[CrossRef]

Rudd, V.

P. Pronko, S. Dutta, J. Squier, V. Rudd, D. Du, and G. Mourou, “Machining of submicron holes using a femtosecond laser at 800 nm,” Opt. Commun.114(1-2), 106–110 (1995).
[CrossRef]

Sanner, N.

Schaffer, C. B.

Sentis, M.

Silberberg, Y.

Squier, J.

P. Pronko, S. Dutta, J. Squier, V. Rudd, D. Du, and G. Mourou, “Machining of submicron holes using a femtosecond laser at 800 nm,” Opt. Commun.114(1-2), 106–110 (1995).
[CrossRef]

Squier, J. A.

Suárez, C.

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med.19(1), 23–31 (1996).
[CrossRef] [PubMed]

Sugioka, K.

Tal, E.

Toetsch, S.

Tsai, P. S.

Tünnermann, A.

R. Kammel, R. Ackermann, A. Tünnermann, and S. Nolte, “Pump-probe investigation of fs-LIOB in water by simultaneous spatial and temporal focusing,” Proc. SPIE8611, 86110A, 86110A-7 (2013).
[CrossRef]

Utéza, O.

van Howe, J.

Vidal, F.

Vitek, D.

Vitek, D. N.

Xiong, H.

Xu, C.

Xu, H.

Xu, Z.

Zhu, G.

Zipfel, W.

IEEE J. Sel. Top. Quantum Electron. (1)

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron.5(4), 902–910 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Refract. Surg. (1)

R. M. Kurtz, C. Horvath, H. H. Liu, R. R. Krueger, and T. Juhasz, “Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes,” J. Refract. Surg.14(5), 541–548 (1998).
[PubMed]

Lasers Surg. Med. (1)

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med.19(1), 23–31 (1996).
[CrossRef] [PubMed]

Opt. Commun. (1)

P. Pronko, S. Dutta, J. Squier, V. Rudd, D. Du, and G. Mourou, “Machining of submicron holes using a femtosecond laser at 800 nm,” Opt. Commun.114(1-2), 106–110 (1995).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Proc. SPIE (1)

R. Kammel, R. Ackermann, A. Tünnermann, and S. Nolte, “Pump-probe investigation of fs-LIOB in water by simultaneous spatial and temporal focusing,” Proc. SPIE8611, 86110A, 86110A-7 (2013).
[CrossRef]

Prog. Quantum Electron. (1)

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron.4, 35–110 (1975).
[CrossRef]

Supplementary Material (2)

» Media 1: MP4 (669 KB)     
» Media 2: MP4 (714 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics