Abstract

Variance processing methods in Fourier domain optical coherence tomography (FD-OCT) have enabled depth-resolved visualization of the capillary beds in the retina due to the development of imaging systems capable of acquiring A-scan data in the 100 kHz regime. However, acquisition of volumetric variance data sets still requires several seconds of acquisition time, even with high speed systems. Movement of the subject during this time span is sufficient to corrupt visualization of the vasculature. We demonstrate a method to eliminate motion artifacts in speckle variance FD-OCT images of the retinal vasculature by creating a composite image from multiple volumes of data acquired sequentially. Slight changes in the orientation of the subject’s eye relative to the optical system between acquired volumes may result in non-rigid warping of the image. Thus, we use a B-spline based free form deformation method to automatically register variance images from multiple volumes to obtain a motion-free composite image of the retinal vessels. We extend this technique to automatically mosaic individual vascular images into a widefield image of the retinal vasculature.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Opt. Lett.25(19), 1448–1450 (2000).
    [CrossRef] [PubMed]
  2. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express11(23), 3116–3121 (2003).
    [CrossRef] [PubMed]
  3. B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express11(25), 3490–3497 (2003).
    [CrossRef] [PubMed]
  4. L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt.15(1), 016029 (2010).
    [CrossRef] [PubMed]
  5. S. Makita, F. Jaillon, M. Yamanari, M. Miura, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express19(2), 1271–1283 (2011).
    [CrossRef] [PubMed]
  6. B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express2(6), 1539–1552 (2011).
    [CrossRef] [PubMed]
  7. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.13(6), 064003 (2008).
    [CrossRef] [PubMed]
  8. C. D. Hart, M. D. Sanders, and S. J. H. Miller, “Benign retinal vasculitis: clinical and fluorescein angiographic study,” Br. J. Ophthalmol.55(11), 721–733 (1971).
    [CrossRef] [PubMed]
  9. J. S. Slakter, L. A. Yannuzzi, U. Schneider, J. A. Sorenson, A. Ciardella, D. R. Guyer, R. F. Spaide, K. B. Freund, and D. A. Orlock, “Retinal choroidal anastomoses and occult choroidal neovascularization in age-related macular degeneration,” Ophthalmology107(4), 742–753 (2000).
    [CrossRef] [PubMed]
  10. A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37(5), 326–330 (1981).
    [CrossRef]
  11. L. Kagemann, A. Harris, H. S. Chung, D. Evans, S. Buck, and B. Martin, “Heidelberg retinal flowmetry: factors affecting blood flow measurement,” Br. J. Ophthalmol.82(2), 131–136 (1998).
    [CrossRef] [PubMed]
  12. G. Landa, A. A. Jangi, P. M. Garcia, and R. B. Rosen, “Initial report of quantification of retinal blood flow velocity in normal human subjects using the Retinal Functional Imager (RFI),” Int. Ophthalmol.32(3), 211–215 (2012).
    [CrossRef] [PubMed]
  13. J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci.51(3), 1691–1698 (2010).
    [CrossRef] [PubMed]
  14. M. Iwasaki and H. Inomata, “Relation between superficial capillaries and foveal structures in the human retina,” Invest. Ophthalmol. Vis. Sci.27(12), 1698–1705 (1986).
    [PubMed]
  15. R. F. Gariano and T. W. Gardner, “Retinal angiogenesis in development and disease,” Nature438(7070), 960–966 (2005).
    [CrossRef] [PubMed]
  16. R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett.35(9), 1467–1469 (2010).
    [CrossRef] [PubMed]
  17. I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express17(26), 23736–23754 (2009).
    [CrossRef] [PubMed]
  18. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett.33(13), 1530–1532 (2008).
    [CrossRef] [PubMed]
  19. D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express2(6), 1504–1513 (2011).
    [CrossRef] [PubMed]
  20. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express14(17), 7821–7840 (2006).
    [CrossRef] [PubMed]
  21. Y. Jia, J. C. Morrison, J. Tokayer, O. Tan, L. Lombardi, B. Baumann, C. D. Lu, W. Choi, J. G. Fujimoto, and D. Huang, “Quantitative OCT angiography of optic nerve head blood flow,” Biomed. Opt. Express3(12), 3127–3137 (2012).
    [CrossRef] [PubMed]
  22. S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5(3), 229–240 (2004).
    [CrossRef] [PubMed]
  23. A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol.49(7), 1277–1294 (2004).
    [CrossRef] [PubMed]
  24. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993).
    [CrossRef] [PubMed]
  25. A. Kuo, C. Toth, and J. Izatt, “Spatial correction of retinal SDOCT images to reflect expected ocular curvature,” presented at the Association for Research in Vision and Ophthalmology (2011).
  26. R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607 (2007).
    [CrossRef]
  27. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
    [CrossRef] [PubMed]
  28. M. D. Robinson, S. J. Chiu, C. A. Toth, J. Izatt, J. Y. Lo, and S. Farsiu, “Novel applications of super-resolution in medical imaging,” in Super-Resolution Imaging, P. Milanfar, ed. (CRC Press, 2010), pp. 383–412.
  29. M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
    [CrossRef] [PubMed]
  30. X. Song, R. Estrada, S. J. Chiu, A.-H. Dhalla, C. A. Toth, J. A. Izatt, and S. Farsiu, “Segmentation-based registration of retinal optical coherence tomography images with pathology,” Invest. Ophthalmol. Vis. Sci.52, 1309 (2011).
  31. D. X. Hammer, R. D. Ferguson, J. C. Magill, M. A. White, A. E. Elsner, and R. H. Webb, “Compact scanning laser ophthalmoscope with high-speed retinal tracker,” Appl. Opt.42(22), 4621–4632 (2003).
    [CrossRef] [PubMed]
  32. S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE5688, 145–151 (2005).
    [CrossRef]
  33. S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” in Medical Image Computing and Computer-Assisted Intervention-MICCAI (Springer, 2009), pp. 100–107.
  34. B. Braaf, K. V. Vienola, C. K. Sheehy, Q. Yang, K. A. Vermeer, P. Tiruveedhula, D. W. Arathorn, A. Roorda, and J. F. de Boer, “Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO,” Biomed. Opt. Express4(1), 51–65 (2013).
    [CrossRef] [PubMed]
  35. Y. Li, G. Gregori, B. L. Lam, and P. J. Rosenfeld, “Automatic montage of SD-OCT data sets,” Opt. Express19(27), 26239–26248 (2011).
    [CrossRef] [PubMed]
  36. D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes, “Nonrigid registration using free-form deformations: application to breast MR images,” IEEE Trans. Med. Imaging18(8), 712–721 (1999).
    [CrossRef] [PubMed]
  37. Occupational Safety and Health Administration, “Maximum permissible exposure limits ANSI Z 136.1,” in Lasar Hazards (1999).
  38. L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv.24(4), 325–376 (1992).
    [CrossRef]
  39. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18(18), 19413–19428 (2010).
    [CrossRef] [PubMed]
  40. R. Estrada, C. Tomasi, M. T. Cabrera, D. K. Wallace, S. F. Freedman, and S. Farsiu, “Enhanced video indirect ophthalmoscopy (VIO) via robust mosaicing,” Biomed. Opt. Express2(10), 2871–2887 (2011).
    [CrossRef] [PubMed]
  41. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett.33(2), 156–158 (2008).
    [CrossRef] [PubMed]
  42. S. Lee, G. Wolberg, and S. Y. Shin, “Scattered data interpolation with multilevel B-splines,” IEEE Trans. Vis. Comput. Graph.3(3), 228–244 (1997).
    [CrossRef]
  43. K. Kurokawa, K. Sasaki, S. Makita, Y.-J. Hong, and Y. Yasuno, “Three-dimensional retinal and choroidal capillary imaging by power Doppler optical coherence angiography with adaptive optics,” Opt. Express20(20), 22796–22812 (2012).
    [CrossRef] [PubMed]
  44. K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express18(11), 11772–11784 (2010).
    [CrossRef] [PubMed]
  45. J. Li, P. Bloch, J. Xu, M. V. Sarunic, and L. Shannon, “Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units,” Appl. Opt.50(13), 1832–1838 (2011).
    [CrossRef] [PubMed]
  46. S. Farsiu, M. Elad, and P. Milanfar, “Constrained, globally optimal, multi-frame motion estimation,” in IEEE/SP 13th Workshop on Statistical Signal Processing (2005), pp. 1396–1401.
  47. D. Robinson, S. Farsiu, and P. Milanfar, “Optimal registration of aliased images using variable projection with applications to super-resolution,” Comput. J.52(1), 31–42 (2008).
    [CrossRef]
  48. M. D. Robinson, C. A. Toth, J. Y. Lo, and S. Farsiu, “Efficient Fourier-wavelet super-resolution,” IEEE Trans. Image Process.19(10), 2669–2681 (2010).
    [CrossRef] [PubMed]

2013 (1)

2012 (4)

2011 (7)

X. Song, R. Estrada, S. J. Chiu, A.-H. Dhalla, C. A. Toth, J. A. Izatt, and S. Farsiu, “Segmentation-based registration of retinal optical coherence tomography images with pathology,” Invest. Ophthalmol. Vis. Sci.52, 1309 (2011).

S. Makita, F. Jaillon, M. Yamanari, M. Miura, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express19(2), 1271–1283 (2011).
[CrossRef] [PubMed]

J. Li, P. Bloch, J. Xu, M. V. Sarunic, and L. Shannon, “Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units,” Appl. Opt.50(13), 1832–1838 (2011).
[CrossRef] [PubMed]

D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express2(6), 1504–1513 (2011).
[CrossRef] [PubMed]

B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express2(6), 1539–1552 (2011).
[CrossRef] [PubMed]

R. Estrada, C. Tomasi, M. T. Cabrera, D. K. Wallace, S. F. Freedman, and S. Farsiu, “Enhanced video indirect ophthalmoscopy (VIO) via robust mosaicing,” Biomed. Opt. Express2(10), 2871–2887 (2011).
[CrossRef] [PubMed]

Y. Li, G. Gregori, B. L. Lam, and P. J. Rosenfeld, “Automatic montage of SD-OCT data sets,” Opt. Express19(27), 26239–26248 (2011).
[CrossRef] [PubMed]

2010 (6)

2009 (1)

2008 (5)

2007 (1)

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607 (2007).
[CrossRef]

2006 (1)

2005 (2)

S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE5688, 145–151 (2005).
[CrossRef]

R. F. Gariano and T. W. Gardner, “Retinal angiogenesis in development and disease,” Nature438(7070), 960–966 (2005).
[CrossRef] [PubMed]

2004 (2)

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5(3), 229–240 (2004).
[CrossRef] [PubMed]

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol.49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

2003 (3)

2000 (2)

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Opt. Lett.25(19), 1448–1450 (2000).
[CrossRef] [PubMed]

J. S. Slakter, L. A. Yannuzzi, U. Schneider, J. A. Sorenson, A. Ciardella, D. R. Guyer, R. F. Spaide, K. B. Freund, and D. A. Orlock, “Retinal choroidal anastomoses and occult choroidal neovascularization in age-related macular degeneration,” Ophthalmology107(4), 742–753 (2000).
[CrossRef] [PubMed]

1999 (1)

D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes, “Nonrigid registration using free-form deformations: application to breast MR images,” IEEE Trans. Med. Imaging18(8), 712–721 (1999).
[CrossRef] [PubMed]

1998 (1)

L. Kagemann, A. Harris, H. S. Chung, D. Evans, S. Buck, and B. Martin, “Heidelberg retinal flowmetry: factors affecting blood flow measurement,” Br. J. Ophthalmol.82(2), 131–136 (1998).
[CrossRef] [PubMed]

1997 (1)

S. Lee, G. Wolberg, and S. Y. Shin, “Scattered data interpolation with multilevel B-splines,” IEEE Trans. Vis. Comput. Graph.3(3), 228–244 (1997).
[CrossRef]

1993 (1)

1992 (1)

L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv.24(4), 325–376 (1992).
[CrossRef]

1986 (1)

M. Iwasaki and H. Inomata, “Relation between superficial capillaries and foveal structures in the human retina,” Invest. Ophthalmol. Vis. Sci.27(12), 1698–1705 (1986).
[PubMed]

1981 (1)

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37(5), 326–330 (1981).
[CrossRef]

1971 (1)

C. D. Hart, M. D. Sanders, and S. J. H. Miller, “Benign retinal vasculitis: clinical and fluorescein angiographic study,” Br. J. Ophthalmol.55(11), 721–733 (1971).
[CrossRef] [PubMed]

An, L.

Arathorn, D. W.

Bajraszewski, T.

Baumann, B.

Bloch, P.

Bock, R.

Bouma, B.

Bower, B. A.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.13(6), 064003 (2008).
[CrossRef] [PubMed]

Braaf, B.

Briers, J. D.

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37(5), 326–330 (1981).
[CrossRef]

Brown, L. G.

L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv.24(4), 325–376 (1992).
[CrossRef]

Buck, S.

L. Kagemann, A. Harris, H. S. Chung, D. Evans, S. Buck, and B. Martin, “Heidelberg retinal flowmetry: factors affecting blood flow measurement,” Br. J. Ophthalmol.82(2), 131–136 (1998).
[CrossRef] [PubMed]

Cable, A.

Cable, A. E.

Cabrera, M. T.

Cense, B.

Charalambous, I.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol.49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Chen, T.

Chen, Y.

Chen, Z.

L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt.15(1), 016029 (2010).
[CrossRef] [PubMed]

Chiu, S. J.

X. Song, R. Estrada, S. J. Chiu, A.-H. Dhalla, C. A. Toth, J. A. Izatt, and S. Farsiu, “Segmentation-based registration of retinal optical coherence tomography images with pathology,” Invest. Ophthalmol. Vis. Sci.52, 1309 (2011).

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18(18), 19413–19428 (2010).
[CrossRef] [PubMed]

Choi, S. S.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607 (2007).
[CrossRef]

Choi, W.

Chung, H. S.

L. Kagemann, A. Harris, H. S. Chung, D. Evans, S. Buck, and B. Martin, “Heidelberg retinal flowmetry: factors affecting blood flow measurement,” Br. J. Ophthalmol.82(2), 131–136 (1998).
[CrossRef] [PubMed]

Ciardella, A.

J. S. Slakter, L. A. Yannuzzi, U. Schneider, J. A. Sorenson, A. Ciardella, D. R. Guyer, R. F. Spaide, K. B. Freund, and D. A. Orlock, “Retinal choroidal anastomoses and occult choroidal neovascularization in age-related macular degeneration,” Ophthalmology107(4), 742–753 (2000).
[CrossRef] [PubMed]

de Boer, J.

de Boer, J. F.

Dhalla, A.-H.

X. Song, R. Estrada, S. J. Chiu, A.-H. Dhalla, C. A. Toth, J. A. Izatt, and S. Farsiu, “Segmentation-based registration of retinal optical coherence tomography images with pathology,” Invest. Ophthalmol. Vis. Sci.52, 1309 (2011).

Dogariu, A.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol.49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Drexler, W.

Duker, J. S.

Elsner, A. E.

Estrada, R.

X. Song, R. Estrada, S. J. Chiu, A.-H. Dhalla, C. A. Toth, J. A. Izatt, and S. Farsiu, “Segmentation-based registration of retinal optical coherence tomography images with pathology,” Invest. Ophthalmol. Vis. Sci.52, 1309 (2011).

R. Estrada, C. Tomasi, M. T. Cabrera, D. K. Wallace, S. F. Freedman, and S. Farsiu, “Enhanced video indirect ophthalmoscopy (VIO) via robust mosaicing,” Biomed. Opt. Express2(10), 2871–2887 (2011).
[CrossRef] [PubMed]

Evans, D.

L. Kagemann, A. Harris, H. S. Chung, D. Evans, S. Buck, and B. Martin, “Heidelberg retinal flowmetry: factors affecting blood flow measurement,” Br. J. Ophthalmol.82(2), 131–136 (1998).
[CrossRef] [PubMed]

Farsiu, S.

X. Song, R. Estrada, S. J. Chiu, A.-H. Dhalla, C. A. Toth, J. A. Izatt, and S. Farsiu, “Segmentation-based registration of retinal optical coherence tomography images with pathology,” Invest. Ophthalmol. Vis. Sci.52, 1309 (2011).

R. Estrada, C. Tomasi, M. T. Cabrera, D. K. Wallace, S. F. Freedman, and S. Farsiu, “Enhanced video indirect ophthalmoscopy (VIO) via robust mosaicing,” Biomed. Opt. Express2(10), 2871–2887 (2011).
[CrossRef] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18(18), 19413–19428 (2010).
[CrossRef] [PubMed]

M. D. Robinson, C. A. Toth, J. Y. Lo, and S. Farsiu, “Efficient Fourier-wavelet super-resolution,” IEEE Trans. Image Process.19(10), 2669–2681 (2010).
[CrossRef] [PubMed]

D. Robinson, S. Farsiu, and P. Milanfar, “Optimal registration of aliased images using variable projection with applications to super-resolution,” Comput. J.52(1), 31–42 (2008).
[CrossRef]

Fercher, A. F.

Ferguson, R. D.

Fienup, J. R.

Fingler, J.

Francis, P.

Fraser, S. E.

Freedman, S. F.

Freund, K. B.

J. S. Slakter, L. A. Yannuzzi, U. Schneider, J. A. Sorenson, A. Ciardella, D. R. Guyer, R. F. Spaide, K. B. Freund, and D. A. Orlock, “Retinal choroidal anastomoses and occult choroidal neovascularization in age-related macular degeneration,” Ophthalmology107(4), 742–753 (2000).
[CrossRef] [PubMed]

Fujimoto, J. G.

Fuller, A. R.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607 (2007).
[CrossRef]

Garcia, P. M.

G. Landa, A. A. Jangi, P. M. Garcia, and R. B. Rosen, “Initial report of quantification of retinal blood flow velocity in normal human subjects using the Retinal Functional Imager (RFI),” Int. Ophthalmol.32(3), 211–215 (2012).
[CrossRef] [PubMed]

Gardner, T. W.

R. F. Gariano and T. W. Gardner, “Retinal angiogenesis in development and disease,” Nature438(7070), 960–966 (2005).
[CrossRef] [PubMed]

Gariano, R. F.

R. F. Gariano and T. W. Gardner, “Retinal angiogenesis in development and disease,” Nature438(7070), 960–966 (2005).
[CrossRef] [PubMed]

Gorczynska, I.

Gregori, G.

Grulkowski, I.

Guizar-Sicairos, M.

Guyer, D. R.

J. S. Slakter, L. A. Yannuzzi, U. Schneider, J. A. Sorenson, A. Ciardella, D. R. Guyer, R. F. Spaide, K. B. Freund, and D. A. Orlock, “Retinal choroidal anastomoses and occult choroidal neovascularization in age-related macular degeneration,” Ophthalmology107(4), 742–753 (2000).
[CrossRef] [PubMed]

Hamann, B.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607 (2007).
[CrossRef]

Hammer, D. X.

Harris, A.

L. Kagemann, A. Harris, H. S. Chung, D. Evans, S. Buck, and B. Martin, “Heidelberg retinal flowmetry: factors affecting blood flow measurement,” Br. J. Ophthalmol.82(2), 131–136 (1998).
[CrossRef] [PubMed]

Hart, C. D.

C. D. Hart, M. D. Sanders, and S. J. H. Miller, “Benign retinal vasculitis: clinical and fluorescein angiographic study,” Br. J. Ophthalmol.55(11), 721–733 (1971).
[CrossRef] [PubMed]

Hawkes, D. J.

D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes, “Nonrigid registration using free-form deformations: application to breast MR images,” IEEE Trans. Med. Imaging18(8), 712–721 (1999).
[CrossRef] [PubMed]

Hayes, C.

D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes, “Nonrigid registration using free-form deformations: application to breast MR images,” IEEE Trans. Med. Imaging18(8), 712–721 (1999).
[CrossRef] [PubMed]

Hee, M. R.

Hill, D. L.

D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes, “Nonrigid registration using free-form deformations: application to breast MR images,” IEEE Trans. Med. Imaging18(8), 712–721 (1999).
[CrossRef] [PubMed]

Hong, Y.

Hong, Y.-J.

Hornegger, J.

Huang, D.

Hubel, D. H.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5(3), 229–240 (2004).
[CrossRef] [PubMed]

Inomata, H.

M. Iwasaki and H. Inomata, “Relation between superficial capillaries and foveal structures in the human retina,” Invest. Ophthalmol. Vis. Sci.27(12), 1698–1705 (1986).
[PubMed]

Iwasaki, M.

M. Iwasaki and H. Inomata, “Relation between superficial capillaries and foveal structures in the human retina,” Invest. Ophthalmol. Vis. Sci.27(12), 1698–1705 (1986).
[PubMed]

Izatt, J. A.

Jaillon, F.

Jangi, A. A.

G. Landa, A. A. Jangi, P. M. Garcia, and R. B. Rosen, “Initial report of quantification of retinal blood flow velocity in normal human subjects using the Retinal Functional Imager (RFI),” Int. Ophthalmol.32(3), 211–215 (2012).
[CrossRef] [PubMed]

Jia, Y.

Jiang, J.

Kagemann, L.

L. Kagemann, A. Harris, H. S. Chung, D. Evans, S. Buck, and B. Martin, “Heidelberg retinal flowmetry: factors affecting blood flow measurement,” Br. J. Ophthalmol.82(2), 131–136 (1998).
[CrossRef] [PubMed]

Kang, J. U.

Khurana, M.

Kim, D. Y.

Kowalczyk, A.

Kraus, M. F.

Kurokawa, K.

Lam, B. L.

Landa, G.

G. Landa, A. A. Jangi, P. M. Garcia, and R. B. Rosen, “Initial report of quantification of retinal blood flow velocity in normal human subjects using the Retinal Functional Imager (RFI),” Int. Ophthalmol.32(3), 211–215 (2012).
[CrossRef] [PubMed]

Leach, M. O.

D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes, “Nonrigid registration using free-form deformations: application to breast MR images,” IEEE Trans. Med. Imaging18(8), 712–721 (1999).
[CrossRef] [PubMed]

Lee, S.

S. Lee, G. Wolberg, and S. Y. Shin, “Scattered data interpolation with multilevel B-splines,” IEEE Trans. Vis. Comput. Graph.3(3), 228–244 (1997).
[CrossRef]

Leitgeb, R. A.

Leung, M. K. K.

Li, J.

Li, X. T.

Li, Y.

Lin, C. P.

Liu, J. J.

Lo, J. Y.

M. D. Robinson, C. A. Toth, J. Y. Lo, and S. Farsiu, “Efficient Fourier-wavelet super-resolution,” IEEE Trans. Image Process.19(10), 2669–2681 (2010).
[CrossRef] [PubMed]

Lombardi, L.

Lu, C. D.

Macknik, S. L.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5(3), 229–240 (2004).
[CrossRef] [PubMed]

Magill, J. C.

Makita, S.

Mariampillai, A.

Martin, B.

L. Kagemann, A. Harris, H. S. Chung, D. Evans, S. Buck, and B. Martin, “Heidelberg retinal flowmetry: factors affecting blood flow measurement,” Br. J. Ophthalmol.82(2), 131–136 (1998).
[CrossRef] [PubMed]

Martin, J. A.

J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci.51(3), 1691–1698 (2010).
[CrossRef] [PubMed]

Martinez-Conde, S.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5(3), 229–240 (2004).
[CrossRef] [PubMed]

Mayer, M. A.

Milanfar, P.

D. Robinson, S. Farsiu, and P. Milanfar, “Optimal registration of aliased images using variable projection with applications to super-resolution,” Comput. J.52(1), 31–42 (2008).
[CrossRef]

Miller, S. J. H.

C. D. Hart, M. D. Sanders, and S. J. H. Miller, “Benign retinal vasculitis: clinical and fluorescein angiographic study,” Br. J. Ophthalmol.55(11), 721–733 (1971).
[CrossRef] [PubMed]

Miura, M.

Moriyama, E. H.

Morrison, J. C.

Munce, N. R.

Nassif, N.

Nicholas, P.

Orlock, D. A.

J. S. Slakter, L. A. Yannuzzi, U. Schneider, J. A. Sorenson, A. Ciardella, D. R. Guyer, R. F. Spaide, K. B. Freund, and D. A. Orlock, “Retinal choroidal anastomoses and occult choroidal neovascularization in age-related macular degeneration,” Ophthalmology107(4), 742–753 (2000).
[CrossRef] [PubMed]

Park, B.

Pierce, M.

Plesea, L.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol.49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Podoleanu, A.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol.49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Potsaid, B.

Puliafito, C. A.

Robinson, D.

D. Robinson, S. Farsiu, and P. Milanfar, “Optimal registration of aliased images using variable projection with applications to super-resolution,” Comput. J.52(1), 31–42 (2008).
[CrossRef]

Robinson, M. D.

M. D. Robinson, C. A. Toth, J. Y. Lo, and S. Farsiu, “Efficient Fourier-wavelet super-resolution,” IEEE Trans. Image Process.19(10), 2669–2681 (2010).
[CrossRef] [PubMed]

Rollins, A. M.

Roorda, A.

B. Braaf, K. V. Vienola, C. K. Sheehy, Q. Yang, K. A. Vermeer, P. Tiruveedhula, D. W. Arathorn, A. Roorda, and J. F. de Boer, “Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO,” Biomed. Opt. Express4(1), 51–65 (2013).
[CrossRef] [PubMed]

J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci.51(3), 1691–1698 (2010).
[CrossRef] [PubMed]

S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE5688, 145–151 (2005).
[CrossRef]

Rosen, R.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol.49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Rosen, R. B.

G. Landa, A. A. Jangi, P. M. Garcia, and R. B. Rosen, “Initial report of quantification of retinal blood flow velocity in normal human subjects using the Retinal Functional Imager (RFI),” Int. Ophthalmol.32(3), 211–215 (2012).
[CrossRef] [PubMed]

Rosenfeld, P. J.

Rueckert, D.

D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes, “Nonrigid registration using free-form deformations: application to breast MR images,” IEEE Trans. Med. Imaging18(8), 712–721 (1999).
[CrossRef] [PubMed]

Sanders, M. D.

C. D. Hart, M. D. Sanders, and S. J. H. Miller, “Benign retinal vasculitis: clinical and fluorescein angiographic study,” Br. J. Ophthalmol.55(11), 721–733 (1971).
[CrossRef] [PubMed]

Sarunic, M. V.

Sasaki, K.

Schmetterer, L.

Schneider, U.

J. S. Slakter, L. A. Yannuzzi, U. Schneider, J. A. Sorenson, A. Ciardella, D. R. Guyer, R. F. Spaide, K. B. Freund, and D. A. Orlock, “Retinal choroidal anastomoses and occult choroidal neovascularization in age-related macular degeneration,” Ophthalmology107(4), 742–753 (2000).
[CrossRef] [PubMed]

Schuman, J. S.

Schwartz, D. M.

Shannon, L.

Sheehy, C. K.

Shin, S. Y.

S. Lee, G. Wolberg, and S. Y. Shin, “Scattered data interpolation with multilevel B-splines,” IEEE Trans. Vis. Comput. Graph.3(3), 228–244 (1997).
[CrossRef]

Slakter, J. S.

J. S. Slakter, L. A. Yannuzzi, U. Schneider, J. A. Sorenson, A. Ciardella, D. R. Guyer, R. F. Spaide, K. B. Freund, and D. A. Orlock, “Retinal choroidal anastomoses and occult choroidal neovascularization in age-related macular degeneration,” Ophthalmology107(4), 742–753 (2000).
[CrossRef] [PubMed]

Song, X.

X. Song, R. Estrada, S. J. Chiu, A.-H. Dhalla, C. A. Toth, J. A. Izatt, and S. Farsiu, “Segmentation-based registration of retinal optical coherence tomography images with pathology,” Invest. Ophthalmol. Vis. Sci.52, 1309 (2011).

Sonoda, L. I.

D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes, “Nonrigid registration using free-form deformations: application to breast MR images,” IEEE Trans. Med. Imaging18(8), 712–721 (1999).
[CrossRef] [PubMed]

Sorenson, J. A.

J. S. Slakter, L. A. Yannuzzi, U. Schneider, J. A. Sorenson, A. Ciardella, D. R. Guyer, R. F. Spaide, K. B. Freund, and D. A. Orlock, “Retinal choroidal anastomoses and occult choroidal neovascularization in age-related macular degeneration,” Ophthalmology107(4), 742–753 (2000).
[CrossRef] [PubMed]

Spaide, R. F.

J. S. Slakter, L. A. Yannuzzi, U. Schneider, J. A. Sorenson, A. Ciardella, D. R. Guyer, R. F. Spaide, K. B. Freund, and D. A. Orlock, “Retinal choroidal anastomoses and occult choroidal neovascularization in age-related macular degeneration,” Ophthalmology107(4), 742–753 (2000).
[CrossRef] [PubMed]

Srinivasan, V. J.

Standish, B. A.

Stevenson, S. B.

S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE5688, 145–151 (2005).
[CrossRef]

Swanson, E. A.

Szkulmowska, A.

Szkulmowski, M.

Szlag, D.

Tam, J.

J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci.51(3), 1691–1698 (2010).
[CrossRef] [PubMed]

Tan, O.

Y. Jia, J. C. Morrison, J. Tokayer, O. Tan, L. Lombardi, B. Baumann, C. D. Lu, W. Choi, J. G. Fujimoto, and D. Huang, “Quantitative OCT angiography of optic nerve head blood flow,” Biomed. Opt. Express3(12), 3127–3137 (2012).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.13(6), 064003 (2008).
[CrossRef] [PubMed]

Tearney, G.

Thurman, S. T.

Tiruveedhula, P.

Tokayer, J.

Tomasi, C.

Toth, C. A.

X. Song, R. Estrada, S. J. Chiu, A.-H. Dhalla, C. A. Toth, J. A. Izatt, and S. Farsiu, “Segmentation-based registration of retinal optical coherence tomography images with pathology,” Invest. Ophthalmol. Vis. Sci.52, 1309 (2011).

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18(18), 19413–19428 (2010).
[CrossRef] [PubMed]

M. D. Robinson, C. A. Toth, J. Y. Lo, and S. Farsiu, “Efficient Fourier-wavelet super-resolution,” IEEE Trans. Image Process.19(10), 2669–2681 (2010).
[CrossRef] [PubMed]

Vermeer, K. A.

Vienola, K. V.

Vitkin, I. A.

Wallace, D. K.

Wang, R. K.

Wang, Y.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.13(6), 064003 (2008).
[CrossRef] [PubMed]

Webb, R. H.

Werner, J. S.

D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express2(6), 1504–1513 (2011).
[CrossRef] [PubMed]

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607 (2007).
[CrossRef]

White, B.

White, M. A.

Wiley, D. F.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607 (2007).
[CrossRef]

Wilson, B. C.

Wilson, D. J.

Wojtkowski, M.

Wolberg, G.

S. Lee, G. Wolberg, and S. Y. Shin, “Scattered data interpolation with multilevel B-splines,” IEEE Trans. Vis. Comput. Graph.3(3), 228–244 (1997).
[CrossRef]

Xu, J.

Yamanari, M.

Yang, Q.

Yang, V. X. D.

Yannuzzi, L. A.

J. S. Slakter, L. A. Yannuzzi, U. Schneider, J. A. Sorenson, A. Ciardella, D. R. Guyer, R. F. Spaide, K. B. Freund, and D. A. Orlock, “Retinal choroidal anastomoses and occult choroidal neovascularization in age-related macular degeneration,” Ophthalmology107(4), 742–753 (2000).
[CrossRef] [PubMed]

Yasuno, Y.

Yatagai, T.

Yazdanfar, S.

Yu, L.

L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt.15(1), 016029 (2010).
[CrossRef] [PubMed]

Zawadzki, R. J.

Zhang, K.

ACM Comput. Surv. (1)

L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv.24(4), 325–376 (1992).
[CrossRef]

Appl. Opt. (2)

Biomed. Opt. Express (6)

D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express2(6), 1504–1513 (2011).
[CrossRef] [PubMed]

B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express2(6), 1539–1552 (2011).
[CrossRef] [PubMed]

R. Estrada, C. Tomasi, M. T. Cabrera, D. K. Wallace, S. F. Freedman, and S. Farsiu, “Enhanced video indirect ophthalmoscopy (VIO) via robust mosaicing,” Biomed. Opt. Express2(10), 2871–2887 (2011).
[CrossRef] [PubMed]

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
[CrossRef] [PubMed]

Y. Jia, J. C. Morrison, J. Tokayer, O. Tan, L. Lombardi, B. Baumann, C. D. Lu, W. Choi, J. G. Fujimoto, and D. Huang, “Quantitative OCT angiography of optic nerve head blood flow,” Biomed. Opt. Express3(12), 3127–3137 (2012).
[CrossRef] [PubMed]

B. Braaf, K. V. Vienola, C. K. Sheehy, Q. Yang, K. A. Vermeer, P. Tiruveedhula, D. W. Arathorn, A. Roorda, and J. F. de Boer, “Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO,” Biomed. Opt. Express4(1), 51–65 (2013).
[CrossRef] [PubMed]

Br. J. Ophthalmol. (2)

L. Kagemann, A. Harris, H. S. Chung, D. Evans, S. Buck, and B. Martin, “Heidelberg retinal flowmetry: factors affecting blood flow measurement,” Br. J. Ophthalmol.82(2), 131–136 (1998).
[CrossRef] [PubMed]

C. D. Hart, M. D. Sanders, and S. J. H. Miller, “Benign retinal vasculitis: clinical and fluorescein angiographic study,” Br. J. Ophthalmol.55(11), 721–733 (1971).
[CrossRef] [PubMed]

Comput. J. (1)

D. Robinson, S. Farsiu, and P. Milanfar, “Optimal registration of aliased images using variable projection with applications to super-resolution,” Comput. J.52(1), 31–42 (2008).
[CrossRef]

IEEE Trans. Image Process. (1)

M. D. Robinson, C. A. Toth, J. Y. Lo, and S. Farsiu, “Efficient Fourier-wavelet super-resolution,” IEEE Trans. Image Process.19(10), 2669–2681 (2010).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (1)

D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes, “Nonrigid registration using free-form deformations: application to breast MR images,” IEEE Trans. Med. Imaging18(8), 712–721 (1999).
[CrossRef] [PubMed]

IEEE Trans. Vis. Comput. Graph. (1)

S. Lee, G. Wolberg, and S. Y. Shin, “Scattered data interpolation with multilevel B-splines,” IEEE Trans. Vis. Comput. Graph.3(3), 228–244 (1997).
[CrossRef]

Int. Ophthalmol. (1)

G. Landa, A. A. Jangi, P. M. Garcia, and R. B. Rosen, “Initial report of quantification of retinal blood flow velocity in normal human subjects using the Retinal Functional Imager (RFI),” Int. Ophthalmol.32(3), 211–215 (2012).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (3)

J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci.51(3), 1691–1698 (2010).
[CrossRef] [PubMed]

M. Iwasaki and H. Inomata, “Relation between superficial capillaries and foveal structures in the human retina,” Invest. Ophthalmol. Vis. Sci.27(12), 1698–1705 (1986).
[PubMed]

X. Song, R. Estrada, S. J. Chiu, A.-H. Dhalla, C. A. Toth, J. A. Izatt, and S. Farsiu, “Segmentation-based registration of retinal optical coherence tomography images with pathology,” Invest. Ophthalmol. Vis. Sci.52, 1309 (2011).

J. Biomed. Opt. (2)

L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt.15(1), 016029 (2010).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.13(6), 064003 (2008).
[CrossRef] [PubMed]

Nat. Rev. Neurosci. (1)

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5(3), 229–240 (2004).
[CrossRef] [PubMed]

Nature (1)

R. F. Gariano and T. W. Gardner, “Retinal angiogenesis in development and disease,” Nature438(7070), 960–966 (2005).
[CrossRef] [PubMed]

Ophthalmology (1)

J. S. Slakter, L. A. Yannuzzi, U. Schneider, J. A. Sorenson, A. Ciardella, D. R. Guyer, R. F. Spaide, K. B. Freund, and D. A. Orlock, “Retinal choroidal anastomoses and occult choroidal neovascularization in age-related macular degeneration,” Ophthalmology107(4), 742–753 (2000).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37(5), 326–330 (1981).
[CrossRef]

Opt. Express (10)

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express17(26), 23736–23754 (2009).
[CrossRef] [PubMed]

Y. Li, G. Gregori, B. L. Lam, and P. J. Rosenfeld, “Automatic montage of SD-OCT data sets,” Opt. Express19(27), 26239–26248 (2011).
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express11(23), 3116–3121 (2003).
[CrossRef] [PubMed]

B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express11(25), 3490–3497 (2003).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express14(17), 7821–7840 (2006).
[CrossRef] [PubMed]

K. Kurokawa, K. Sasaki, S. Makita, Y.-J. Hong, and Y. Yasuno, “Three-dimensional retinal and choroidal capillary imaging by power Doppler optical coherence angiography with adaptive optics,” Opt. Express20(20), 22796–22812 (2012).
[CrossRef] [PubMed]

K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express18(11), 11772–11784 (2010).
[CrossRef] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18(18), 19413–19428 (2010).
[CrossRef] [PubMed]

S. Makita, F. Jaillon, M. Yamanari, M. Miura, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express19(2), 1271–1283 (2011).
[CrossRef] [PubMed]

Opt. Lett. (5)

Phys. Med. Biol. (1)

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol.49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Proc. SPIE (2)

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607 (2007).
[CrossRef]

S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE5688, 145–151 (2005).
[CrossRef]

Other (5)

S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” in Medical Image Computing and Computer-Assisted Intervention-MICCAI (Springer, 2009), pp. 100–107.

Occupational Safety and Health Administration, “Maximum permissible exposure limits ANSI Z 136.1,” in Lasar Hazards (1999).

M. D. Robinson, S. J. Chiu, C. A. Toth, J. Izatt, J. Y. Lo, and S. Farsiu, “Novel applications of super-resolution in medical imaging,” in Super-Resolution Imaging, P. Milanfar, ed. (CRC Press, 2010), pp. 383–412.

A. Kuo, C. Toth, and J. Izatt, “Spatial correction of retinal SDOCT images to reflect expected ocular curvature,” presented at the Association for Research in Vision and Ophthalmology (2011).

S. Farsiu, M. Elad, and P. Milanfar, “Constrained, globally optimal, multi-frame motion estimation,” in IEEE/SP 13th Workshop on Statistical Signal Processing (2005), pp. 1396–1401.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Example of retinal motion artifacts in speckle variance OCT data sets. Two volumes acquired from the same subject at different times show horizontal streaks along the fast scan axis due to subject motion.

Fig. 2
Fig. 2

System schematic of the swept-source optical coherence tomography retinal scanner.

Fig. 3
Fig. 3

Diagram of image registration steps.

Fig. 4
Fig. 4

Automatic segmentation of retinal layers and corresponding variance SVPs. (A) Automated segmentation of 7 retinal layers according to [39]. NFL: Nerve Fiber Layer, GCL + IPL: Ganglion Cell Layer + Inner Plexiform Layer, INL: Inner Nuclear Layer, OPL: Outer Plexiform Layer, ONL: Outer Nuclear Layer, OS: Outer Segments, RPE: Retinal Pigment Epithelium. (B) Expanded view of the inner retina from (A). Dashed lines indicate added boundaries used to create SVPs of the vascular beds in the GCL + IPL, IPL-INL and INL-OPL junction. Boundaries were created at 16 µm above (green dash), in the middle (red dash), and 16 µm below (yellow dash) the INL. (C) SVPs of each segmented retinal layer. The GCL + IPL (green), IPL-INL (red), and INL-OPL (yellow) contain the distinct vessel layers of interest and correspond to the shaded regions in (B). The choroid image was summed over a depth of 30 µm below the choroid boundary. Each SVP was 2.5 × 2.5 mm in size.

Fig. 5
Fig. 5

Example of image sub-division at locations of motion artifacts. Image strips on right have undergone histogram equalization to remove slight intensity differences between B-scans.

Fig. 6
Fig. 6

Example of multiresolution Gabor filtering on speckle variance image of retinal vessels.

Fig. 7
Fig. 7

Examples of image registration process. Top row shows images after global and local registration. Bottom row shows magnification of the region within the red box on each of the top images. Yellow arrows point out several vessels that show improved registration after free form deformation.

Fig. 8
Fig. 8

Registration result from subject 1. Two X-fast and two Y-fast data sets were acquired. The original SVPs for each of the 3 main vessel layers are shown in the 4 left columns. The right most column shows results of image registration for each of the 3 layers. Each image covers a 2.5 × 2.5 mm scan area.

Fig. 9
Fig. 9

Enlarged view of images in Fig. 8 comparing the registered images to SVPs from a single volume. Motion artifacts are removed and visualization of the vasculature is enhanced in the registered images. A color encoded depth image is shown on the right, combining information from the registered images of the 3 vessel layers. Red indicates more superficial vessels while blue indicates deeper vessels.

Fig. 10
Fig. 10

Registration results of a second subject from a region nasal to the fovea. Three x-fast and three y-fast data sets were acquired. Each image covers a 2.5 × 2.5 mm scan area.

Fig. 11
Fig. 11

Enlarged view of images in Fig. 10 comparing the registered images to SVPs from a single volume. A color encoded depth image is shown on the right combining information from the 3 registered images.

Fig. 12
Fig. 12

Automated widefield mosaic showing vasculature of the ganglion cell plexus as generated from segmentation of the GCL + IPL. The individual motion corrected images are shown on the left. Representative B-scans from different volumes are shown corresponding to the dashed lines on the widefield mosaic. The nasal retina is on the left side of the mosaic, temporal on the right. The widefield image spans approximately a 6 × 4mm field of view.

Fig. 13
Fig. 13

Widefield mosaic of retinal layers showing vasculature of the superficial capillary plexus based on the segmentation of the IPL-INL junction. The individual motion corrected images are shown on the left. The nasal retina is on the left side of the mosaic, temporal on the right.

Fig. 14
Fig. 14

Widefield mosaic of retinal layers showing vasculature of the deep capillary plexus based on the segmentation of the INL-OPL junction. The individual motion corrected images are shown on the left. The nasal retina is on the left side of the mosaic, temporal on the right.

Fig. 15
Fig. 15

Widefield mosaic of retinal layers showing a color encoded depth image of the widefield mosaic with information from the registered mosaics of the 3 main vessel layers. Red indicates superficial vessels while blue indicates deeper vessels. The individual, color encoded depth, motion corrected images are shown on the left. The nasal retina is on the left side of the mosaic, temporal on the right.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

h( m x , m y ,θ)= e 1 2 ( m x ' 2 σ x 2 + m y ' 2 σ y 2 ) cos( ν m x ' ),
m x ' = m x cosθ+ m y sinθ m y ' = m x sinθ+ m y cosθ.
g n (x,y)= k max θ [ f n (x,y) h k ( m x , m y ,θ) ] ,
M n (x,y)={ 1, b r (x,y)+ b n (x,y)=2 0,otherwise .
G r (u,v)=fft[ M n (x,y) g r (x,y) ] G n (u,v)=fft[ M n (x,y) g n (x,y) ].
CC(Δ x max ,Δ y max )=max{ ifft( G r (u,v) G n * (u,v) }.
g n (x,y) g n (x+Δx,y+Δy).
T(x,y)= k=0 3 l=0 3 B k (s) B l (t) φ i+k,j+l ,
B 0 (s)= ( 1s ) 3 /6 B 1 (s)=( 3 s 3 6 s 2 +4 )/6 B 2 (s)=( 3 s 3 +3 s 2 +3s+1 )/6 B 3 (s)= s 3 /6,
g n ' (x',y')=T( g n (x+Δx,y+Δy)).

Metrics