Abstract

In this paper, the effects of two-dimensional correlation spectroscopy (2DCOS) on chance correlations in the spectral data, generated from the correlations between glucose concentration and some undesirable experimental factors, such as instrument drift, sample temperature variations, and interferent compositions in the sample matrix, are investigated. The aim is to evaluate the validity of the spectral data set, instead of assessing the calibration models, and then to provide a complementary procedure for better verifying or rejecting the data set. It includes tracing back to the source of the chance correlation on the chemical basis, selecting appropriate preprocessing methods before building multivariate calibration models, and therefore may avoid invalid models. The utility of the proposed analysis is demonstrated with a series of aqueous solutions using near-infrared spectra over the overtone band of glucose. Results show that, spectral variations from chance correlations induced by those experimental factors can be determined by the 2DCOS method, which develops avenues for prospectively accurate prediction in clinical application of this technology.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kottmann, J. M. Rey, J. Luginbühl, E. Reichmann, and M. W. Sigrist, “Glucose sensing in human epidermis using mid-infrared photoacoustic detection,” Biomed. Opt. Express3(4), 667–680 (2012).
    [CrossRef] [PubMed]
  2. C. Chou, C. Y. Han, W. C. Kuo, Y. C. Huang, C. M. Feng, and J. C. Shyu, “Noninvasive glucose monitoring in vivo with an optical heterodyne polarimeter,” Appl. Opt.37(16), 3553–3557 (1998).
    [CrossRef] [PubMed]
  3. V. V. Tuchin, ed., Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues (CRC Press, Taylor & Francis Group, 2009).
  4. X. Guo, A. Mandelis, and B. Zinman, “Noninvasive glucose detection in human skin using wavelength modulated differential laser photothermal radiometry,” Biomed. Opt. Express3(11), 3012–3021 (2012).
    [CrossRef] [PubMed]
  5. H. M. Heise, A. Bittner, and R. Marbach, “Clinical chemistry and near infrared spectroscopy: technology for non-invasive glucose monitoring,” J. Near Infrared Spectrosc.6(1), 349–359 (1998).
    [CrossRef]
  6. K. Maruo, T. Oota, M. Tsurugi, T. Nakagawa, H. Arimoto, M. Tamura, Y. Ozaki, and Y. Yamada, “New methodology to obtain a calibration model for noninvasive near-infrared blood glucose monitoring,” Appl. Spectrosc.60(4), 441–449 (2006).
    [CrossRef] [PubMed]
  7. M. A. Arnold, J. J. Burmeister, and G. W. Small, “Phantom glucose calibration models from simulated noninvasive human near-infrared spectra,” Anal. Chem.70(9), 1773–1781 (1998).
    [CrossRef] [PubMed]
  8. J. T. Olesberg, L. Liu, V. Van Zee, and M. A. Arnold, “In vivo near-infrared spectroscopy of rat skin tissue with varying blood glucose levels,” Anal. Chem.78(1), 215–223 (2006).
    [CrossRef] [PubMed]
  9. R. Liu, W. Chen, X. Gu, R. Wang, and K. Xu, “Chance correlation in non-invasive glucose measurement using near-infrared spectroscopy,” J. Phys. D Appl. Phys.38(15), 2675–2681 (2005).
    [CrossRef]
  10. N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011).
    [CrossRef] [PubMed]
  11. M. A. Arnold, G. W. Small, D. Xiang, J. Qui, and D. W. Murhammer, “Pure component selectivity analysis of multivariate calibration models from near-infrared spectra,” Anal. Chem.76(9), 2583–2590 (2004).
    [CrossRef] [PubMed]
  12. J. Chen, M. A. Arnold, and G. W. Small, “Comparison of combination and first overtone spectral regions for near-infrared calibration models for glucose and other biomolecules in aqueous solutions,” Anal. Chem.76(18), 5405–5413 (2004).
    [CrossRef] [PubMed]
  13. M. A. Arnold, L. Liu, and J. T. Olesberg, “Selectivity assessment of noninvasive glucose measurements based on analysis of multivariate calibration vectors,” J. Diabetes Sci. Tech.1(4), 454–462 (2007).
    [PubMed]
  14. L. Liu and M. A. Arnold, “Selectivity for glucose, glucose-6-phosphate, and pyruvate in ternary mixtures from the multivariate analysis of near-infrared spectra,” Anal. Bioanal. Chem.393(2), 669–677 (2009).
    [CrossRef] [PubMed]
  15. I. Noda, “Generalized two-dimensional correlation method application to infrared, Raman, and other types of spectroscopy,” Appl. Spectrosc.47(9), 1329–1336 (1993).
    [CrossRef]
  16. I. Noda, A. E. Dowrey, C. Marcoli, G. M. Story, and Y. Ozaki, “Generalized two-dimensional correlation spectroscopy,” Appl. Spectrosc.54(7), 236A–248A (2000).
    [CrossRef]
  17. I. Noda, “Advances in two-dimensional correlation spectroscopy,” Vib. Spectrosc.36(2), 143–165 (2004).
    [CrossRef]
  18. I. Noda, “Recent advancement in the field of two-dimensional correlation spectroscopy,” J. Mol. Struct.883–884, 2–26 (2008).
    [CrossRef]
  19. I. Noda, “Two-dimensional correlation spectroscopy—Biannual survey 2007–2009,” J. Mol. Struct.974(1-3), 3–24 (2010).
    [CrossRef]
  20. I. Noda and Y. Ozaki, Two-Dimensional Correlation Spectroscopy—Applications in Vibrational and Optical Spectroscopy (John Wiley & Sons, Ltd., 2004).
  21. Š. Šašić, J. H. Jiang, and Y. Ozaki, “Potentials of variable-variable and sample-sample, generalized and statistical, two-dimensional correlation spectroscopies in investigations of chemical reactions,” Chemom. Intell. Lab. Syst.65(1), 1–15 (2003).
    [CrossRef]
  22. V. H. Segtnan, Š. Sasić, T. Isaksson, and Y. Ozaki, “Studies on the structure of water using two-dimensional near-infrared correlation spectroscopy and principal component analysis,” Anal. Chem.73(13), 3153–3161 (2001).
    [CrossRef] [PubMed]
  23. Y. Wu, J. Jiang, and Y. Ozaki, “A new possibility of generalized two-dimensional correlation spectroscopy: hybrid two-dimensional correlation spectroscopy,” J. Phys. Chem. A106(11), 2422–2429 (2002).
    [CrossRef]
  24. G. W. Small, “Chemometrics and near-infrared spectroscopy: avoiding the pitfalls,” Trends Analyt. Chem.25(11), 1057–1066 (2006).
    [CrossRef]
  25. M. Tarumi, M. Shimada, T. Murakami, M. Tamura, M. Shimada, H. Arimoto, and Y. Yamada, “Simulation study of in vitro glucose measurement by NIR spectroscopy and a method of error reduction,” Phys. Med. Biol.48(15), 2373–2390 (2003).
    [CrossRef] [PubMed]
  26. U. Thissen, B. Ustün, W. J. Melssen, and L. M. C. Buydens, “Multivariate calibration with least-squares support vector machines,” Anal. Chem.76(11), 3099–3105 (2004).
    [CrossRef] [PubMed]
  27. K. H. Hazen, M. A. Arnold, and G. W. Small, “Temperature-insensitive near-infrared spectroscopic measurement of glucose in aqueous solutions,” Appl. Spectrosc.48(4), 477–483 (1994).
    [CrossRef]
  28. Y. Ozaki, Y. Liu, and I. Noda, “Two-dimensional infrared and near-infrared correlation spectroscopy: applications to studies of temperature-dependent spectral variations of self-associated molecules,” Appl. Spectrosc.51(4), 526–535 (1997).
    [CrossRef]
  29. P. S. Jensen, J. Bak, and S. Andersson-Engels, “Influence of temperature on water and aqueous glucose absorption spectra in the near- and mid-infrared regions at physiologically relevant temperatures,” Appl. Spectrosc.57(1), 28–36 (2003).
    [CrossRef] [PubMed]
  30. B. Czarnik-Matusewicz and S. Pilorz, “Study of the temperature-dependent near-infrared spectra of water by two-dimensional correlation spectroscopy and principal components analysis,” Vib. Spectrosc.40(2), 235–245 (2006).
    [CrossRef]
  31. B. Czarnik-Matusewicz, S. Pilorz, and J. P. Hawranek, “Temperature-dependent water structural transitions examined by near-IR and mid-IR spectra analyzed by multivariate curve resolution and two-dimensional correlation spectroscopy,” Anal. Chim. Acta544(1–2), 15–25 (2005).
    [CrossRef]
  32. H. Cui, L. An, W. Chen, and K. Xu, “Quantitative effect of temperature to the absorbance of aqueous glucose in wavelength range from 1200nm to 1700nm,” Opt. Express13(18), 6887–6891 (2005).
    [CrossRef] [PubMed]
  33. Š. Šašić, A. Muszynski, and Y. Ozaki, “A new possibility of the generalized two-dimensional correlation spectroscopy. 2. Sample-sample and wavenumber-wavenumber correlations of temperature-dependent near-infrared spectra of oleic acid in the pure liquid state,” J. Phys. Chem. A104(27), 6388–6394 (2000).
    [CrossRef]
  34. K. E. Kramer and G. W. Small, “Blank augmentation protocol for improving the robustness of multivariate calibrations,” Appl. Spectrosc.61(5), 497–506 (2007).
    [CrossRef] [PubMed]
  35. Y. Chen, W. Chen, Z. Shi, Y. Yang, and K. Xu, “A reference-wavelength-based method for improved analysis of near-infrared spectroscopy,” Appl. Spectrosc.63(5), 544–548 (2009).
    [CrossRef] [PubMed]
  36. A. Lorber, “Error propagation and figures of merit for quantification by solving matrix equations,” Anal. Chem.58(6), 1167–1172 (1986).
    [CrossRef]
  37. A. Lorber, K. Faber, and B. R. Kowalski, “Net analyte signal calculation in multivariate calibration,” Anal. Chem.69(8), 1620–1626 (1997).
    [CrossRef]
  38. Y. Liang, K. Fang, and Q. Xu, “Uniform design and its application in chemistry and chemical engineering,” Chemom. Intell. Lab. Syst.58(1), 43–57 (2001).
    [CrossRef]

2012 (2)

2011 (1)

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011).
[CrossRef] [PubMed]

2010 (1)

I. Noda, “Two-dimensional correlation spectroscopy—Biannual survey 2007–2009,” J. Mol. Struct.974(1-3), 3–24 (2010).
[CrossRef]

2009 (2)

Y. Chen, W. Chen, Z. Shi, Y. Yang, and K. Xu, “A reference-wavelength-based method for improved analysis of near-infrared spectroscopy,” Appl. Spectrosc.63(5), 544–548 (2009).
[CrossRef] [PubMed]

L. Liu and M. A. Arnold, “Selectivity for glucose, glucose-6-phosphate, and pyruvate in ternary mixtures from the multivariate analysis of near-infrared spectra,” Anal. Bioanal. Chem.393(2), 669–677 (2009).
[CrossRef] [PubMed]

2008 (1)

I. Noda, “Recent advancement in the field of two-dimensional correlation spectroscopy,” J. Mol. Struct.883–884, 2–26 (2008).
[CrossRef]

2007 (2)

M. A. Arnold, L. Liu, and J. T. Olesberg, “Selectivity assessment of noninvasive glucose measurements based on analysis of multivariate calibration vectors,” J. Diabetes Sci. Tech.1(4), 454–462 (2007).
[PubMed]

K. E. Kramer and G. W. Small, “Blank augmentation protocol for improving the robustness of multivariate calibrations,” Appl. Spectrosc.61(5), 497–506 (2007).
[CrossRef] [PubMed]

2006 (4)

B. Czarnik-Matusewicz and S. Pilorz, “Study of the temperature-dependent near-infrared spectra of water by two-dimensional correlation spectroscopy and principal components analysis,” Vib. Spectrosc.40(2), 235–245 (2006).
[CrossRef]

G. W. Small, “Chemometrics and near-infrared spectroscopy: avoiding the pitfalls,” Trends Analyt. Chem.25(11), 1057–1066 (2006).
[CrossRef]

K. Maruo, T. Oota, M. Tsurugi, T. Nakagawa, H. Arimoto, M. Tamura, Y. Ozaki, and Y. Yamada, “New methodology to obtain a calibration model for noninvasive near-infrared blood glucose monitoring,” Appl. Spectrosc.60(4), 441–449 (2006).
[CrossRef] [PubMed]

J. T. Olesberg, L. Liu, V. Van Zee, and M. A. Arnold, “In vivo near-infrared spectroscopy of rat skin tissue with varying blood glucose levels,” Anal. Chem.78(1), 215–223 (2006).
[CrossRef] [PubMed]

2005 (3)

R. Liu, W. Chen, X. Gu, R. Wang, and K. Xu, “Chance correlation in non-invasive glucose measurement using near-infrared spectroscopy,” J. Phys. D Appl. Phys.38(15), 2675–2681 (2005).
[CrossRef]

B. Czarnik-Matusewicz, S. Pilorz, and J. P. Hawranek, “Temperature-dependent water structural transitions examined by near-IR and mid-IR spectra analyzed by multivariate curve resolution and two-dimensional correlation spectroscopy,” Anal. Chim. Acta544(1–2), 15–25 (2005).
[CrossRef]

H. Cui, L. An, W. Chen, and K. Xu, “Quantitative effect of temperature to the absorbance of aqueous glucose in wavelength range from 1200nm to 1700nm,” Opt. Express13(18), 6887–6891 (2005).
[CrossRef] [PubMed]

2004 (4)

U. Thissen, B. Ustün, W. J. Melssen, and L. M. C. Buydens, “Multivariate calibration with least-squares support vector machines,” Anal. Chem.76(11), 3099–3105 (2004).
[CrossRef] [PubMed]

I. Noda, “Advances in two-dimensional correlation spectroscopy,” Vib. Spectrosc.36(2), 143–165 (2004).
[CrossRef]

M. A. Arnold, G. W. Small, D. Xiang, J. Qui, and D. W. Murhammer, “Pure component selectivity analysis of multivariate calibration models from near-infrared spectra,” Anal. Chem.76(9), 2583–2590 (2004).
[CrossRef] [PubMed]

J. Chen, M. A. Arnold, and G. W. Small, “Comparison of combination and first overtone spectral regions for near-infrared calibration models for glucose and other biomolecules in aqueous solutions,” Anal. Chem.76(18), 5405–5413 (2004).
[CrossRef] [PubMed]

2003 (3)

M. Tarumi, M. Shimada, T. Murakami, M. Tamura, M. Shimada, H. Arimoto, and Y. Yamada, “Simulation study of in vitro glucose measurement by NIR spectroscopy and a method of error reduction,” Phys. Med. Biol.48(15), 2373–2390 (2003).
[CrossRef] [PubMed]

Š. Šašić, J. H. Jiang, and Y. Ozaki, “Potentials of variable-variable and sample-sample, generalized and statistical, two-dimensional correlation spectroscopies in investigations of chemical reactions,” Chemom. Intell. Lab. Syst.65(1), 1–15 (2003).
[CrossRef]

P. S. Jensen, J. Bak, and S. Andersson-Engels, “Influence of temperature on water and aqueous glucose absorption spectra in the near- and mid-infrared regions at physiologically relevant temperatures,” Appl. Spectrosc.57(1), 28–36 (2003).
[CrossRef] [PubMed]

2002 (1)

Y. Wu, J. Jiang, and Y. Ozaki, “A new possibility of generalized two-dimensional correlation spectroscopy: hybrid two-dimensional correlation spectroscopy,” J. Phys. Chem. A106(11), 2422–2429 (2002).
[CrossRef]

2001 (2)

V. H. Segtnan, Š. Sasić, T. Isaksson, and Y. Ozaki, “Studies on the structure of water using two-dimensional near-infrared correlation spectroscopy and principal component analysis,” Anal. Chem.73(13), 3153–3161 (2001).
[CrossRef] [PubMed]

Y. Liang, K. Fang, and Q. Xu, “Uniform design and its application in chemistry and chemical engineering,” Chemom. Intell. Lab. Syst.58(1), 43–57 (2001).
[CrossRef]

2000 (2)

Š. Šašić, A. Muszynski, and Y. Ozaki, “A new possibility of the generalized two-dimensional correlation spectroscopy. 2. Sample-sample and wavenumber-wavenumber correlations of temperature-dependent near-infrared spectra of oleic acid in the pure liquid state,” J. Phys. Chem. A104(27), 6388–6394 (2000).
[CrossRef]

I. Noda, A. E. Dowrey, C. Marcoli, G. M. Story, and Y. Ozaki, “Generalized two-dimensional correlation spectroscopy,” Appl. Spectrosc.54(7), 236A–248A (2000).
[CrossRef]

1998 (3)

M. A. Arnold, J. J. Burmeister, and G. W. Small, “Phantom glucose calibration models from simulated noninvasive human near-infrared spectra,” Anal. Chem.70(9), 1773–1781 (1998).
[CrossRef] [PubMed]

H. M. Heise, A. Bittner, and R. Marbach, “Clinical chemistry and near infrared spectroscopy: technology for non-invasive glucose monitoring,” J. Near Infrared Spectrosc.6(1), 349–359 (1998).
[CrossRef]

C. Chou, C. Y. Han, W. C. Kuo, Y. C. Huang, C. M. Feng, and J. C. Shyu, “Noninvasive glucose monitoring in vivo with an optical heterodyne polarimeter,” Appl. Opt.37(16), 3553–3557 (1998).
[CrossRef] [PubMed]

1997 (2)

1994 (1)

1993 (1)

1986 (1)

A. Lorber, “Error propagation and figures of merit for quantification by solving matrix equations,” Anal. Chem.58(6), 1167–1172 (1986).
[CrossRef]

An, L.

Andersson-Engels, S.

Arimoto, H.

K. Maruo, T. Oota, M. Tsurugi, T. Nakagawa, H. Arimoto, M. Tamura, Y. Ozaki, and Y. Yamada, “New methodology to obtain a calibration model for noninvasive near-infrared blood glucose monitoring,” Appl. Spectrosc.60(4), 441–449 (2006).
[CrossRef] [PubMed]

M. Tarumi, M. Shimada, T. Murakami, M. Tamura, M. Shimada, H. Arimoto, and Y. Yamada, “Simulation study of in vitro glucose measurement by NIR spectroscopy and a method of error reduction,” Phys. Med. Biol.48(15), 2373–2390 (2003).
[CrossRef] [PubMed]

Arnold, M. A.

L. Liu and M. A. Arnold, “Selectivity for glucose, glucose-6-phosphate, and pyruvate in ternary mixtures from the multivariate analysis of near-infrared spectra,” Anal. Bioanal. Chem.393(2), 669–677 (2009).
[CrossRef] [PubMed]

M. A. Arnold, L. Liu, and J. T. Olesberg, “Selectivity assessment of noninvasive glucose measurements based on analysis of multivariate calibration vectors,” J. Diabetes Sci. Tech.1(4), 454–462 (2007).
[PubMed]

J. T. Olesberg, L. Liu, V. Van Zee, and M. A. Arnold, “In vivo near-infrared spectroscopy of rat skin tissue with varying blood glucose levels,” Anal. Chem.78(1), 215–223 (2006).
[CrossRef] [PubMed]

J. Chen, M. A. Arnold, and G. W. Small, “Comparison of combination and first overtone spectral regions for near-infrared calibration models for glucose and other biomolecules in aqueous solutions,” Anal. Chem.76(18), 5405–5413 (2004).
[CrossRef] [PubMed]

M. A. Arnold, G. W. Small, D. Xiang, J. Qui, and D. W. Murhammer, “Pure component selectivity analysis of multivariate calibration models from near-infrared spectra,” Anal. Chem.76(9), 2583–2590 (2004).
[CrossRef] [PubMed]

M. A. Arnold, J. J. Burmeister, and G. W. Small, “Phantom glucose calibration models from simulated noninvasive human near-infrared spectra,” Anal. Chem.70(9), 1773–1781 (1998).
[CrossRef] [PubMed]

K. H. Hazen, M. A. Arnold, and G. W. Small, “Temperature-insensitive near-infrared spectroscopic measurement of glucose in aqueous solutions,” Appl. Spectrosc.48(4), 477–483 (1994).
[CrossRef]

Bak, J.

Barman, I.

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011).
[CrossRef] [PubMed]

Bittner, A.

H. M. Heise, A. Bittner, and R. Marbach, “Clinical chemistry and near infrared spectroscopy: technology for non-invasive glucose monitoring,” J. Near Infrared Spectrosc.6(1), 349–359 (1998).
[CrossRef]

Burmeister, J. J.

M. A. Arnold, J. J. Burmeister, and G. W. Small, “Phantom glucose calibration models from simulated noninvasive human near-infrared spectra,” Anal. Chem.70(9), 1773–1781 (1998).
[CrossRef] [PubMed]

Buydens, L. M. C.

U. Thissen, B. Ustün, W. J. Melssen, and L. M. C. Buydens, “Multivariate calibration with least-squares support vector machines,” Anal. Chem.76(11), 3099–3105 (2004).
[CrossRef] [PubMed]

Chen, J.

J. Chen, M. A. Arnold, and G. W. Small, “Comparison of combination and first overtone spectral regions for near-infrared calibration models for glucose and other biomolecules in aqueous solutions,” Anal. Chem.76(18), 5405–5413 (2004).
[CrossRef] [PubMed]

Chen, W.

Chen, Y.

Chou, C.

Cui, H.

Czarnik-Matusewicz, B.

B. Czarnik-Matusewicz and S. Pilorz, “Study of the temperature-dependent near-infrared spectra of water by two-dimensional correlation spectroscopy and principal components analysis,” Vib. Spectrosc.40(2), 235–245 (2006).
[CrossRef]

B. Czarnik-Matusewicz, S. Pilorz, and J. P. Hawranek, “Temperature-dependent water structural transitions examined by near-IR and mid-IR spectra analyzed by multivariate curve resolution and two-dimensional correlation spectroscopy,” Anal. Chim. Acta544(1–2), 15–25 (2005).
[CrossRef]

Dasari, R. R.

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011).
[CrossRef] [PubMed]

Dingari, N. C.

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011).
[CrossRef] [PubMed]

Dowrey, A. E.

Faber, K.

A. Lorber, K. Faber, and B. R. Kowalski, “Net analyte signal calculation in multivariate calibration,” Anal. Chem.69(8), 1620–1626 (1997).
[CrossRef]

Fang, K.

Y. Liang, K. Fang, and Q. Xu, “Uniform design and its application in chemistry and chemical engineering,” Chemom. Intell. Lab. Syst.58(1), 43–57 (2001).
[CrossRef]

Feld, M. S.

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011).
[CrossRef] [PubMed]

Feng, C. M.

Gu, X.

R. Liu, W. Chen, X. Gu, R. Wang, and K. Xu, “Chance correlation in non-invasive glucose measurement using near-infrared spectroscopy,” J. Phys. D Appl. Phys.38(15), 2675–2681 (2005).
[CrossRef]

Guo, X.

Han, C. Y.

Hawranek, J. P.

B. Czarnik-Matusewicz, S. Pilorz, and J. P. Hawranek, “Temperature-dependent water structural transitions examined by near-IR and mid-IR spectra analyzed by multivariate curve resolution and two-dimensional correlation spectroscopy,” Anal. Chim. Acta544(1–2), 15–25 (2005).
[CrossRef]

Hazen, K. H.

Heise, H. M.

H. M. Heise, A. Bittner, and R. Marbach, “Clinical chemistry and near infrared spectroscopy: technology for non-invasive glucose monitoring,” J. Near Infrared Spectrosc.6(1), 349–359 (1998).
[CrossRef]

Huang, Y. C.

Isaksson, T.

V. H. Segtnan, Š. Sasić, T. Isaksson, and Y. Ozaki, “Studies on the structure of water using two-dimensional near-infrared correlation spectroscopy and principal component analysis,” Anal. Chem.73(13), 3153–3161 (2001).
[CrossRef] [PubMed]

Jensen, P. S.

Jiang, J.

Y. Wu, J. Jiang, and Y. Ozaki, “A new possibility of generalized two-dimensional correlation spectroscopy: hybrid two-dimensional correlation spectroscopy,” J. Phys. Chem. A106(11), 2422–2429 (2002).
[CrossRef]

Jiang, J. H.

Š. Šašić, J. H. Jiang, and Y. Ozaki, “Potentials of variable-variable and sample-sample, generalized and statistical, two-dimensional correlation spectroscopies in investigations of chemical reactions,” Chemom. Intell. Lab. Syst.65(1), 1–15 (2003).
[CrossRef]

Kang, J. W.

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011).
[CrossRef] [PubMed]

Kottmann, J.

Kowalski, B. R.

A. Lorber, K. Faber, and B. R. Kowalski, “Net analyte signal calculation in multivariate calibration,” Anal. Chem.69(8), 1620–1626 (1997).
[CrossRef]

Kramer, K. E.

Kuo, W. C.

Liang, Y.

Y. Liang, K. Fang, and Q. Xu, “Uniform design and its application in chemistry and chemical engineering,” Chemom. Intell. Lab. Syst.58(1), 43–57 (2001).
[CrossRef]

Liu, L.

L. Liu and M. A. Arnold, “Selectivity for glucose, glucose-6-phosphate, and pyruvate in ternary mixtures from the multivariate analysis of near-infrared spectra,” Anal. Bioanal. Chem.393(2), 669–677 (2009).
[CrossRef] [PubMed]

M. A. Arnold, L. Liu, and J. T. Olesberg, “Selectivity assessment of noninvasive glucose measurements based on analysis of multivariate calibration vectors,” J. Diabetes Sci. Tech.1(4), 454–462 (2007).
[PubMed]

J. T. Olesberg, L. Liu, V. Van Zee, and M. A. Arnold, “In vivo near-infrared spectroscopy of rat skin tissue with varying blood glucose levels,” Anal. Chem.78(1), 215–223 (2006).
[CrossRef] [PubMed]

Liu, R.

R. Liu, W. Chen, X. Gu, R. Wang, and K. Xu, “Chance correlation in non-invasive glucose measurement using near-infrared spectroscopy,” J. Phys. D Appl. Phys.38(15), 2675–2681 (2005).
[CrossRef]

Liu, Y.

Lorber, A.

A. Lorber, K. Faber, and B. R. Kowalski, “Net analyte signal calculation in multivariate calibration,” Anal. Chem.69(8), 1620–1626 (1997).
[CrossRef]

A. Lorber, “Error propagation and figures of merit for quantification by solving matrix equations,” Anal. Chem.58(6), 1167–1172 (1986).
[CrossRef]

Luginbühl, J.

Mandelis, A.

Marbach, R.

H. M. Heise, A. Bittner, and R. Marbach, “Clinical chemistry and near infrared spectroscopy: technology for non-invasive glucose monitoring,” J. Near Infrared Spectrosc.6(1), 349–359 (1998).
[CrossRef]

Marcoli, C.

Maruo, K.

Melssen, W. J.

U. Thissen, B. Ustün, W. J. Melssen, and L. M. C. Buydens, “Multivariate calibration with least-squares support vector machines,” Anal. Chem.76(11), 3099–3105 (2004).
[CrossRef] [PubMed]

Murakami, T.

M. Tarumi, M. Shimada, T. Murakami, M. Tamura, M. Shimada, H. Arimoto, and Y. Yamada, “Simulation study of in vitro glucose measurement by NIR spectroscopy and a method of error reduction,” Phys. Med. Biol.48(15), 2373–2390 (2003).
[CrossRef] [PubMed]

Murhammer, D. W.

M. A. Arnold, G. W. Small, D. Xiang, J. Qui, and D. W. Murhammer, “Pure component selectivity analysis of multivariate calibration models from near-infrared spectra,” Anal. Chem.76(9), 2583–2590 (2004).
[CrossRef] [PubMed]

Muszynski, A.

Š. Šašić, A. Muszynski, and Y. Ozaki, “A new possibility of the generalized two-dimensional correlation spectroscopy. 2. Sample-sample and wavenumber-wavenumber correlations of temperature-dependent near-infrared spectra of oleic acid in the pure liquid state,” J. Phys. Chem. A104(27), 6388–6394 (2000).
[CrossRef]

Nakagawa, T.

Noda, I.

Olesberg, J. T.

M. A. Arnold, L. Liu, and J. T. Olesberg, “Selectivity assessment of noninvasive glucose measurements based on analysis of multivariate calibration vectors,” J. Diabetes Sci. Tech.1(4), 454–462 (2007).
[PubMed]

J. T. Olesberg, L. Liu, V. Van Zee, and M. A. Arnold, “In vivo near-infrared spectroscopy of rat skin tissue with varying blood glucose levels,” Anal. Chem.78(1), 215–223 (2006).
[CrossRef] [PubMed]

Oota, T.

Ozaki, Y.

K. Maruo, T. Oota, M. Tsurugi, T. Nakagawa, H. Arimoto, M. Tamura, Y. Ozaki, and Y. Yamada, “New methodology to obtain a calibration model for noninvasive near-infrared blood glucose monitoring,” Appl. Spectrosc.60(4), 441–449 (2006).
[CrossRef] [PubMed]

Š. Šašić, J. H. Jiang, and Y. Ozaki, “Potentials of variable-variable and sample-sample, generalized and statistical, two-dimensional correlation spectroscopies in investigations of chemical reactions,” Chemom. Intell. Lab. Syst.65(1), 1–15 (2003).
[CrossRef]

Y. Wu, J. Jiang, and Y. Ozaki, “A new possibility of generalized two-dimensional correlation spectroscopy: hybrid two-dimensional correlation spectroscopy,” J. Phys. Chem. A106(11), 2422–2429 (2002).
[CrossRef]

V. H. Segtnan, Š. Sasić, T. Isaksson, and Y. Ozaki, “Studies on the structure of water using two-dimensional near-infrared correlation spectroscopy and principal component analysis,” Anal. Chem.73(13), 3153–3161 (2001).
[CrossRef] [PubMed]

I. Noda, A. E. Dowrey, C. Marcoli, G. M. Story, and Y. Ozaki, “Generalized two-dimensional correlation spectroscopy,” Appl. Spectrosc.54(7), 236A–248A (2000).
[CrossRef]

Š. Šašić, A. Muszynski, and Y. Ozaki, “A new possibility of the generalized two-dimensional correlation spectroscopy. 2. Sample-sample and wavenumber-wavenumber correlations of temperature-dependent near-infrared spectra of oleic acid in the pure liquid state,” J. Phys. Chem. A104(27), 6388–6394 (2000).
[CrossRef]

Y. Ozaki, Y. Liu, and I. Noda, “Two-dimensional infrared and near-infrared correlation spectroscopy: applications to studies of temperature-dependent spectral variations of self-associated molecules,” Appl. Spectrosc.51(4), 526–535 (1997).
[CrossRef]

Pilorz, S.

B. Czarnik-Matusewicz and S. Pilorz, “Study of the temperature-dependent near-infrared spectra of water by two-dimensional correlation spectroscopy and principal components analysis,” Vib. Spectrosc.40(2), 235–245 (2006).
[CrossRef]

B. Czarnik-Matusewicz, S. Pilorz, and J. P. Hawranek, “Temperature-dependent water structural transitions examined by near-IR and mid-IR spectra analyzed by multivariate curve resolution and two-dimensional correlation spectroscopy,” Anal. Chim. Acta544(1–2), 15–25 (2005).
[CrossRef]

Qui, J.

M. A. Arnold, G. W. Small, D. Xiang, J. Qui, and D. W. Murhammer, “Pure component selectivity analysis of multivariate calibration models from near-infrared spectra,” Anal. Chem.76(9), 2583–2590 (2004).
[CrossRef] [PubMed]

Reichmann, E.

Rey, J. M.

Sasic, Š.

V. H. Segtnan, Š. Sasić, T. Isaksson, and Y. Ozaki, “Studies on the structure of water using two-dimensional near-infrared correlation spectroscopy and principal component analysis,” Anal. Chem.73(13), 3153–3161 (2001).
[CrossRef] [PubMed]

Šašic, Š.

Š. Šašić, J. H. Jiang, and Y. Ozaki, “Potentials of variable-variable and sample-sample, generalized and statistical, two-dimensional correlation spectroscopies in investigations of chemical reactions,” Chemom. Intell. Lab. Syst.65(1), 1–15 (2003).
[CrossRef]

Š. Šašić, A. Muszynski, and Y. Ozaki, “A new possibility of the generalized two-dimensional correlation spectroscopy. 2. Sample-sample and wavenumber-wavenumber correlations of temperature-dependent near-infrared spectra of oleic acid in the pure liquid state,” J. Phys. Chem. A104(27), 6388–6394 (2000).
[CrossRef]

Segtnan, V. H.

V. H. Segtnan, Š. Sasić, T. Isaksson, and Y. Ozaki, “Studies on the structure of water using two-dimensional near-infrared correlation spectroscopy and principal component analysis,” Anal. Chem.73(13), 3153–3161 (2001).
[CrossRef] [PubMed]

Shi, Z.

Shimada, M.

M. Tarumi, M. Shimada, T. Murakami, M. Tamura, M. Shimada, H. Arimoto, and Y. Yamada, “Simulation study of in vitro glucose measurement by NIR spectroscopy and a method of error reduction,” Phys. Med. Biol.48(15), 2373–2390 (2003).
[CrossRef] [PubMed]

M. Tarumi, M. Shimada, T. Murakami, M. Tamura, M. Shimada, H. Arimoto, and Y. Yamada, “Simulation study of in vitro glucose measurement by NIR spectroscopy and a method of error reduction,” Phys. Med. Biol.48(15), 2373–2390 (2003).
[CrossRef] [PubMed]

Shyu, J. C.

Sigrist, M. W.

Singh, G. P.

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011).
[CrossRef] [PubMed]

Small, G. W.

K. E. Kramer and G. W. Small, “Blank augmentation protocol for improving the robustness of multivariate calibrations,” Appl. Spectrosc.61(5), 497–506 (2007).
[CrossRef] [PubMed]

G. W. Small, “Chemometrics and near-infrared spectroscopy: avoiding the pitfalls,” Trends Analyt. Chem.25(11), 1057–1066 (2006).
[CrossRef]

M. A. Arnold, G. W. Small, D. Xiang, J. Qui, and D. W. Murhammer, “Pure component selectivity analysis of multivariate calibration models from near-infrared spectra,” Anal. Chem.76(9), 2583–2590 (2004).
[CrossRef] [PubMed]

J. Chen, M. A. Arnold, and G. W. Small, “Comparison of combination and first overtone spectral regions for near-infrared calibration models for glucose and other biomolecules in aqueous solutions,” Anal. Chem.76(18), 5405–5413 (2004).
[CrossRef] [PubMed]

M. A. Arnold, J. J. Burmeister, and G. W. Small, “Phantom glucose calibration models from simulated noninvasive human near-infrared spectra,” Anal. Chem.70(9), 1773–1781 (1998).
[CrossRef] [PubMed]

K. H. Hazen, M. A. Arnold, and G. W. Small, “Temperature-insensitive near-infrared spectroscopic measurement of glucose in aqueous solutions,” Appl. Spectrosc.48(4), 477–483 (1994).
[CrossRef]

Story, G. M.

Tamura, M.

K. Maruo, T. Oota, M. Tsurugi, T. Nakagawa, H. Arimoto, M. Tamura, Y. Ozaki, and Y. Yamada, “New methodology to obtain a calibration model for noninvasive near-infrared blood glucose monitoring,” Appl. Spectrosc.60(4), 441–449 (2006).
[CrossRef] [PubMed]

M. Tarumi, M. Shimada, T. Murakami, M. Tamura, M. Shimada, H. Arimoto, and Y. Yamada, “Simulation study of in vitro glucose measurement by NIR spectroscopy and a method of error reduction,” Phys. Med. Biol.48(15), 2373–2390 (2003).
[CrossRef] [PubMed]

Tarumi, M.

M. Tarumi, M. Shimada, T. Murakami, M. Tamura, M. Shimada, H. Arimoto, and Y. Yamada, “Simulation study of in vitro glucose measurement by NIR spectroscopy and a method of error reduction,” Phys. Med. Biol.48(15), 2373–2390 (2003).
[CrossRef] [PubMed]

Thissen, U.

U. Thissen, B. Ustün, W. J. Melssen, and L. M. C. Buydens, “Multivariate calibration with least-squares support vector machines,” Anal. Chem.76(11), 3099–3105 (2004).
[CrossRef] [PubMed]

Tsurugi, M.

Ustün, B.

U. Thissen, B. Ustün, W. J. Melssen, and L. M. C. Buydens, “Multivariate calibration with least-squares support vector machines,” Anal. Chem.76(11), 3099–3105 (2004).
[CrossRef] [PubMed]

Van Zee, V.

J. T. Olesberg, L. Liu, V. Van Zee, and M. A. Arnold, “In vivo near-infrared spectroscopy of rat skin tissue with varying blood glucose levels,” Anal. Chem.78(1), 215–223 (2006).
[CrossRef] [PubMed]

Wang, R.

R. Liu, W. Chen, X. Gu, R. Wang, and K. Xu, “Chance correlation in non-invasive glucose measurement using near-infrared spectroscopy,” J. Phys. D Appl. Phys.38(15), 2675–2681 (2005).
[CrossRef]

Wu, Y.

Y. Wu, J. Jiang, and Y. Ozaki, “A new possibility of generalized two-dimensional correlation spectroscopy: hybrid two-dimensional correlation spectroscopy,” J. Phys. Chem. A106(11), 2422–2429 (2002).
[CrossRef]

Xiang, D.

M. A. Arnold, G. W. Small, D. Xiang, J. Qui, and D. W. Murhammer, “Pure component selectivity analysis of multivariate calibration models from near-infrared spectra,” Anal. Chem.76(9), 2583–2590 (2004).
[CrossRef] [PubMed]

Xu, K.

Xu, Q.

Y. Liang, K. Fang, and Q. Xu, “Uniform design and its application in chemistry and chemical engineering,” Chemom. Intell. Lab. Syst.58(1), 43–57 (2001).
[CrossRef]

Yamada, Y.

K. Maruo, T. Oota, M. Tsurugi, T. Nakagawa, H. Arimoto, M. Tamura, Y. Ozaki, and Y. Yamada, “New methodology to obtain a calibration model for noninvasive near-infrared blood glucose monitoring,” Appl. Spectrosc.60(4), 441–449 (2006).
[CrossRef] [PubMed]

M. Tarumi, M. Shimada, T. Murakami, M. Tamura, M. Shimada, H. Arimoto, and Y. Yamada, “Simulation study of in vitro glucose measurement by NIR spectroscopy and a method of error reduction,” Phys. Med. Biol.48(15), 2373–2390 (2003).
[CrossRef] [PubMed]

Yang, Y.

Zinman, B.

Anal. Bioanal. Chem. (2)

N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011).
[CrossRef] [PubMed]

L. Liu and M. A. Arnold, “Selectivity for glucose, glucose-6-phosphate, and pyruvate in ternary mixtures from the multivariate analysis of near-infrared spectra,” Anal. Bioanal. Chem.393(2), 669–677 (2009).
[CrossRef] [PubMed]

Anal. Chem. (8)

M. A. Arnold, J. J. Burmeister, and G. W. Small, “Phantom glucose calibration models from simulated noninvasive human near-infrared spectra,” Anal. Chem.70(9), 1773–1781 (1998).
[CrossRef] [PubMed]

J. T. Olesberg, L. Liu, V. Van Zee, and M. A. Arnold, “In vivo near-infrared spectroscopy of rat skin tissue with varying blood glucose levels,” Anal. Chem.78(1), 215–223 (2006).
[CrossRef] [PubMed]

M. A. Arnold, G. W. Small, D. Xiang, J. Qui, and D. W. Murhammer, “Pure component selectivity analysis of multivariate calibration models from near-infrared spectra,” Anal. Chem.76(9), 2583–2590 (2004).
[CrossRef] [PubMed]

J. Chen, M. A. Arnold, and G. W. Small, “Comparison of combination and first overtone spectral regions for near-infrared calibration models for glucose and other biomolecules in aqueous solutions,” Anal. Chem.76(18), 5405–5413 (2004).
[CrossRef] [PubMed]

V. H. Segtnan, Š. Sasić, T. Isaksson, and Y. Ozaki, “Studies on the structure of water using two-dimensional near-infrared correlation spectroscopy and principal component analysis,” Anal. Chem.73(13), 3153–3161 (2001).
[CrossRef] [PubMed]

U. Thissen, B. Ustün, W. J. Melssen, and L. M. C. Buydens, “Multivariate calibration with least-squares support vector machines,” Anal. Chem.76(11), 3099–3105 (2004).
[CrossRef] [PubMed]

A. Lorber, “Error propagation and figures of merit for quantification by solving matrix equations,” Anal. Chem.58(6), 1167–1172 (1986).
[CrossRef]

A. Lorber, K. Faber, and B. R. Kowalski, “Net analyte signal calculation in multivariate calibration,” Anal. Chem.69(8), 1620–1626 (1997).
[CrossRef]

Anal. Chim. Acta (1)

B. Czarnik-Matusewicz, S. Pilorz, and J. P. Hawranek, “Temperature-dependent water structural transitions examined by near-IR and mid-IR spectra analyzed by multivariate curve resolution and two-dimensional correlation spectroscopy,” Anal. Chim. Acta544(1–2), 15–25 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (8)

K. Maruo, T. Oota, M. Tsurugi, T. Nakagawa, H. Arimoto, M. Tamura, Y. Ozaki, and Y. Yamada, “New methodology to obtain a calibration model for noninvasive near-infrared blood glucose monitoring,” Appl. Spectrosc.60(4), 441–449 (2006).
[CrossRef] [PubMed]

P. S. Jensen, J. Bak, and S. Andersson-Engels, “Influence of temperature on water and aqueous glucose absorption spectra in the near- and mid-infrared regions at physiologically relevant temperatures,” Appl. Spectrosc.57(1), 28–36 (2003).
[CrossRef] [PubMed]

I. Noda, A. E. Dowrey, C. Marcoli, G. M. Story, and Y. Ozaki, “Generalized two-dimensional correlation spectroscopy,” Appl. Spectrosc.54(7), 236A–248A (2000).
[CrossRef]

K. H. Hazen, M. A. Arnold, and G. W. Small, “Temperature-insensitive near-infrared spectroscopic measurement of glucose in aqueous solutions,” Appl. Spectrosc.48(4), 477–483 (1994).
[CrossRef]

I. Noda, “Generalized two-dimensional correlation method application to infrared, Raman, and other types of spectroscopy,” Appl. Spectrosc.47(9), 1329–1336 (1993).
[CrossRef]

Y. Ozaki, Y. Liu, and I. Noda, “Two-dimensional infrared and near-infrared correlation spectroscopy: applications to studies of temperature-dependent spectral variations of self-associated molecules,” Appl. Spectrosc.51(4), 526–535 (1997).
[CrossRef]

K. E. Kramer and G. W. Small, “Blank augmentation protocol for improving the robustness of multivariate calibrations,” Appl. Spectrosc.61(5), 497–506 (2007).
[CrossRef] [PubMed]

Y. Chen, W. Chen, Z. Shi, Y. Yang, and K. Xu, “A reference-wavelength-based method for improved analysis of near-infrared spectroscopy,” Appl. Spectrosc.63(5), 544–548 (2009).
[CrossRef] [PubMed]

Biomed. Opt. Express (2)

Chemom. Intell. Lab. Syst. (2)

Y. Liang, K. Fang, and Q. Xu, “Uniform design and its application in chemistry and chemical engineering,” Chemom. Intell. Lab. Syst.58(1), 43–57 (2001).
[CrossRef]

Š. Šašić, J. H. Jiang, and Y. Ozaki, “Potentials of variable-variable and sample-sample, generalized and statistical, two-dimensional correlation spectroscopies in investigations of chemical reactions,” Chemom. Intell. Lab. Syst.65(1), 1–15 (2003).
[CrossRef]

J. Diabetes Sci. Tech. (1)

M. A. Arnold, L. Liu, and J. T. Olesberg, “Selectivity assessment of noninvasive glucose measurements based on analysis of multivariate calibration vectors,” J. Diabetes Sci. Tech.1(4), 454–462 (2007).
[PubMed]

J. Mol. Struct. (2)

I. Noda, “Recent advancement in the field of two-dimensional correlation spectroscopy,” J. Mol. Struct.883–884, 2–26 (2008).
[CrossRef]

I. Noda, “Two-dimensional correlation spectroscopy—Biannual survey 2007–2009,” J. Mol. Struct.974(1-3), 3–24 (2010).
[CrossRef]

J. Near Infrared Spectrosc. (1)

H. M. Heise, A. Bittner, and R. Marbach, “Clinical chemistry and near infrared spectroscopy: technology for non-invasive glucose monitoring,” J. Near Infrared Spectrosc.6(1), 349–359 (1998).
[CrossRef]

J. Phys. Chem. A (2)

Š. Šašić, A. Muszynski, and Y. Ozaki, “A new possibility of the generalized two-dimensional correlation spectroscopy. 2. Sample-sample and wavenumber-wavenumber correlations of temperature-dependent near-infrared spectra of oleic acid in the pure liquid state,” J. Phys. Chem. A104(27), 6388–6394 (2000).
[CrossRef]

Y. Wu, J. Jiang, and Y. Ozaki, “A new possibility of generalized two-dimensional correlation spectroscopy: hybrid two-dimensional correlation spectroscopy,” J. Phys. Chem. A106(11), 2422–2429 (2002).
[CrossRef]

J. Phys. D Appl. Phys. (1)

R. Liu, W. Chen, X. Gu, R. Wang, and K. Xu, “Chance correlation in non-invasive glucose measurement using near-infrared spectroscopy,” J. Phys. D Appl. Phys.38(15), 2675–2681 (2005).
[CrossRef]

Opt. Express (1)

Phys. Med. Biol. (1)

M. Tarumi, M. Shimada, T. Murakami, M. Tamura, M. Shimada, H. Arimoto, and Y. Yamada, “Simulation study of in vitro glucose measurement by NIR spectroscopy and a method of error reduction,” Phys. Med. Biol.48(15), 2373–2390 (2003).
[CrossRef] [PubMed]

Trends Analyt. Chem. (1)

G. W. Small, “Chemometrics and near-infrared spectroscopy: avoiding the pitfalls,” Trends Analyt. Chem.25(11), 1057–1066 (2006).
[CrossRef]

Vib. Spectrosc. (2)

I. Noda, “Advances in two-dimensional correlation spectroscopy,” Vib. Spectrosc.36(2), 143–165 (2004).
[CrossRef]

B. Czarnik-Matusewicz and S. Pilorz, “Study of the temperature-dependent near-infrared spectra of water by two-dimensional correlation spectroscopy and principal components analysis,” Vib. Spectrosc.40(2), 235–245 (2006).
[CrossRef]

Other (2)

I. Noda and Y. Ozaki, Two-Dimensional Correlation Spectroscopy—Applications in Vibrational and Optical Spectroscopy (John Wiley & Sons, Ltd., 2004).

V. V. Tuchin, ed., Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues (CRC Press, Taylor & Francis Group, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Spectra of aqueous solution with a glucose concentration of 100 mg/dL (the custom-built spectrometer).

Fig. 2
Fig. 2

Schematic contour map of (a) synchronous (b) slice 2D correlation spectra of aqueous solutions with a glucose concentration of 100 mg/dL (the custom-built spectrometer).

Fig. 3
Fig. 3

Spectra of pure water (the FT-IR spectrometer).

Fig. 4
Fig. 4

Schematic contour map of (a) synchronous (b) slice 2D correlation spectra of pure water (the FT-IR spectrometer).

Fig. 5
Fig. 5

Synchronous 2D correlation spectra of aqueous solutions with series of glucose concentrations after background correction (the custom-built spectrometer).

Fig. 6
Fig. 6

Comparison of 2D correlation slice spectra of aqueous glucose solutions with background correction (blue, assigned to the right ordinate), without background correction (red, assigned to the left ordinate), and pure water (black, assigned to the left ordinate) (the custom-built spectrometer).

Fig. 7
Fig. 7

(a) Synchronous (b) asynchronous 2D correlation spectra of pure water under temperature perturbation (the FT-IR spectrometer).

Fig. 8
Fig. 8

Synchronous (a) sample-sample (b) variable-variable hybrid 2D correlation spectra under perturbations of concentration and temperature. (the FT-IR spectrometer).

Fig. 9
Fig. 9

Molar absorptitives for the solute of hemoglobin (black) and glucose (red).

Fig. 10
Fig. 10

Synchronous 2D correlation spectra of (a) correlation (b) uncorrelation between glucose and hemoglobin (the FT-IR spectrometer).

Fig. 11
Fig. 11

Slice spectra of correlation (black, assigned to the left ordinate) and uncorrelation (red, assigned to the right ordinate) between glucose and hemoglobin (the FT-IR spectrometer).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Φ( v 1 , v 2 )=1/(s1) X T X
Ψ( v 1 , v 2 )=1/(s1) X T HX

Metrics