Abstract

We present a novel swept source optical coherence tomography configuration, equipped with acousto-optic deflectors that can be used to simultaneously acquire multiple B-scans originating from different depths. The sensitivity range of the configuration is evaluated while acquiring five simultaneous B-scans. Then the configuration is employed to demonstrate long range B-scan imaging by combining two simultaneous B-scans from a mouse head sample.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. A. G. Podoleanu, “Optical coherence tomography,” J. Microsc. 247(3), 209–219 (2012).
    [CrossRef] [PubMed]
  3. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
    [CrossRef] [PubMed]
  4. W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express 3(10), 2647–2657 (2012).
    [CrossRef] [PubMed]
  5. V. Jayaraman, J. Jiang, H. Li, P. Heim, G. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760Khz axial scan rate using single-mode 1310nm MEMs-tunable VCSELs with >100nm tuning range,” in in CLEO: 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB2.
  6. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
    [CrossRef] [PubMed]
  7. B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
    [CrossRef] [PubMed]
  8. W. Kang, H. Wang, Y. Pan, M. W. Jenkins, G. A. Isenberg, A. Chak, M. Atkinson, D. Agrawal, Z. Hu, and A. M. Rollins, “Endoscopically guided spectral-domain OCT with double-balloon catheters,” Opt. Express 18(16), 17364–17372 (2010).
    [CrossRef] [PubMed]
  9. S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 32(10), 796–803 (2000).
    [CrossRef] [PubMed]
  10. A. G. Podoleanu, “Unique interpretation of Talbot Bands and Fourier domain white light interferometry,” Opt. Express 15(15), 9867–9876 (2007).
    [CrossRef] [PubMed]
  11. B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express 17(1), 7–24 (2009).
    [CrossRef] [PubMed]
  12. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett. 28(22), 2201–2203 (2003).
    [CrossRef] [PubMed]
  13. A. Bradu, L. Neagu, and A. Podoleanu, “Extra long imaging range swept source optical coherence tomography using re-circulation loops,” Opt. Express 18(24), 25361–25370 (2010).
    [CrossRef] [PubMed]
  14. A. Bachmann, R. Leitgeb, and T. Lasser, “Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution,” Opt. Express 14(4), 1487–1496 (2006).
    [CrossRef] [PubMed]
  15. M. Zurauskas, J. Rogers, and A. G. Podoleanu, “Simultaneous multiple-depths en-face optical coherence tomography using multiple signal excitation of acousto-optic deflectors,” Opt. Express 21(2), 1925–1936 (2013).
    [CrossRef] [PubMed]
  16. N. A. Riza, “Acousto-optically switched optical delay lines,” Opt. Commun. 145(1-6), 15–20 (1998).
    [CrossRef]
  17. H. C. Ho, E. H. Young, and W. Seale, “Microwave frequency translation with multiple Bragg cells,” Proc. SPIE 1703, 37–42 (1992).
    [CrossRef]
  18. A. P. Goutzoulis and D. R. Pape, Design and Fabrication of Acousto-Optic Devices (Dekker, 1994), p. xv, 497 p.
  19. G. Liu, Z. Zhi, and R. K. Wang, “Digital focusing of OCT images based on scalar diffraction theory and information entropy,” Biomed. Opt. Express 3(11), 2774–2783 (2012).
    [CrossRef] [PubMed]
  20. T. Xie, S. Guo, Z. Chen, D. Mukai, and M. Brenner, “GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking,” Opt. Express 14(8), 3238–3246 (2006).
    [CrossRef] [PubMed]
  21. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27(4), 243–245 (2002).
    [CrossRef] [PubMed]
  22. L. Liu and N. Chen, “Dynamic focusing with radial gratings for in vivo high resolution imaging,” Proc. SPIE 6847, 684718, 684718-8 (2008).
    [CrossRef]
  23. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
    [CrossRef] [PubMed]

2013 (1)

2012 (4)

2010 (5)

2009 (1)

2008 (1)

L. Liu and N. Chen, “Dynamic focusing with radial gratings for in vivo high resolution imaging,” Proc. SPIE 6847, 684718, 684718-8 (2008).
[CrossRef]

2007 (1)

2006 (2)

2003 (1)

2002 (1)

2000 (1)

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 32(10), 796–803 (2000).
[CrossRef] [PubMed]

1998 (1)

N. A. Riza, “Acousto-optically switched optical delay lines,” Opt. Commun. 145(1-6), 15–20 (1998).
[CrossRef]

1992 (1)

H. C. Ho, E. H. Young, and W. Seale, “Microwave frequency translation with multiple Bragg cells,” Proc. SPIE 1703, 37–42 (1992).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Adler, D. C.

Agrawal, D.

Atkinson, M.

Bachmann, A.

Bajraszewski, T.

Barry, S.

Baumann, B.

Biedermann, B. R.

Bouma, B. E.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[CrossRef] [PubMed]

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 32(10), 796–803 (2000).
[CrossRef] [PubMed]

Bradu, A.

Brand, S.

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 32(10), 796–803 (2000).
[CrossRef] [PubMed]

Brenner, M.

Cable, A. E.

Chak, A.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, N.

L. Liu and N. Chen, “Dynamic focusing with radial gratings for in vivo high resolution imaging,” Proc. SPIE 6847, 684718, 684718-8 (2008).
[CrossRef]

Chen, Z.

Compton, C. C.

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 32(10), 796–803 (2000).
[CrossRef] [PubMed]

Ding, Z.

Drexler, W.

Duker, J. S.

Eigenwillig, C. M.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fukumura, D.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Guo, S.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

Hitzenberger, C. K.

Ho, H. C.

H. C. Ho, E. H. Young, and W. Seale, “Microwave frequency translation with multiple Bragg cells,” Proc. SPIE 1703, 37–42 (1992).
[CrossRef]

Hofer, B.

Hu, Z.

Huang, D.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huber, R.

Isenberg, G. A.

Jain, R. K.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[CrossRef] [PubMed]

Jenkins, M. W.

Kang, W.

Karpf, S.

Klein, T.

Lasser, T.

Leitgeb, R.

Leitgeb, R. A.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, G.

Liu, L.

L. Liu and N. Chen, “Dynamic focusing with radial gratings for in vivo high resolution imaging,” Proc. SPIE 6847, 684718, 684718-8 (2008).
[CrossRef]

Matz, G.

Mukai, D.

Neagu, L.

Nelson, J. S.

Nishioka, N. S.

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 32(10), 796–803 (2000).
[CrossRef] [PubMed]

Pan, Y.

Podoleanu, A.

Podoleanu, A. G.

Poneros, J. M.

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 32(10), 796–803 (2000).
[CrossRef] [PubMed]

Potsaid, B.

Považay, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ren, H.

Riza, N. A.

N. A. Riza, “Acousto-optically switched optical delay lines,” Opt. Commun. 145(1-6), 15–20 (1998).
[CrossRef]

Rogers, J.

Rollins, A. M.

Schmitt, J. M.

Schuman, J. S.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Seale, W.

H. C. Ho, E. H. Young, and W. Seale, “Microwave frequency translation with multiple Bragg cells,” Proc. SPIE 1703, 37–42 (1992).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 32(10), 796–803 (2000).
[CrossRef] [PubMed]

Trépanier, F.

Unterhuber, A.

Vakoc, B. J.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[CrossRef] [PubMed]

Wang, H.

Wang, R. K.

Wieser, W.

Xie, T.

Young, E. H.

H. C. Ho, E. H. Young, and W. Seale, “Microwave frequency translation with multiple Bragg cells,” Proc. SPIE 1703, 37–42 (1992).
[CrossRef]

Zhao, Y.

Zhi, Z.

Zurauskas, M.

Biomed. Opt. Express (2)

Endoscopy (1)

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 32(10), 796–803 (2000).
[CrossRef] [PubMed]

J. Microsc. (1)

A. G. Podoleanu, “Optical coherence tomography,” J. Microsc. 247(3), 209–219 (2012).
[CrossRef] [PubMed]

Nat. Rev. Cancer (1)

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[CrossRef] [PubMed]

Opt. Commun. (1)

N. A. Riza, “Acousto-optically switched optical delay lines,” Opt. Commun. 145(1-6), 15–20 (1998).
[CrossRef]

Opt. Express (10)

A. Bachmann, R. Leitgeb, and T. Lasser, “Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution,” Opt. Express 14(4), 1487–1496 (2006).
[CrossRef] [PubMed]

T. Xie, S. Guo, Z. Chen, D. Mukai, and M. Brenner, “GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking,” Opt. Express 14(8), 3238–3246 (2006).
[CrossRef] [PubMed]

A. G. Podoleanu, “Unique interpretation of Talbot Bands and Fourier domain white light interferometry,” Opt. Express 15(15), 9867–9876 (2007).
[CrossRef] [PubMed]

B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express 17(1), 7–24 (2009).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

W. Kang, H. Wang, Y. Pan, M. W. Jenkins, G. A. Isenberg, A. Chak, M. Atkinson, D. Agrawal, Z. Hu, and A. M. Rollins, “Endoscopically guided spectral-domain OCT with double-balloon catheters,” Opt. Express 18(16), 17364–17372 (2010).
[CrossRef] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

A. Bradu, L. Neagu, and A. Podoleanu, “Extra long imaging range swept source optical coherence tomography using re-circulation loops,” Opt. Express 18(24), 25361–25370 (2010).
[CrossRef] [PubMed]

M. Zurauskas, J. Rogers, and A. G. Podoleanu, “Simultaneous multiple-depths en-face optical coherence tomography using multiple signal excitation of acousto-optic deflectors,” Opt. Express 21(2), 1925–1936 (2013).
[CrossRef] [PubMed]

Opt. Lett. (2)

Proc. SPIE (2)

L. Liu and N. Chen, “Dynamic focusing with radial gratings for in vivo high resolution imaging,” Proc. SPIE 6847, 684718, 684718-8 (2008).
[CrossRef]

H. C. Ho, E. H. Young, and W. Seale, “Microwave frequency translation with multiple Bragg cells,” Proc. SPIE 1703, 37–42 (1992).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other (2)

V. Jayaraman, J. Jiang, H. Li, P. Heim, G. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760Khz axial scan rate using single-mode 1310nm MEMs-tunable VCSELs with >100nm tuning range,” in in CLEO: 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB2.

A. P. Goutzoulis and D. R. Pape, Design and Fabrication of Acousto-Optic Devices (Dekker, 1994), p. xv, 497 p.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic layout of the long range SS-OCT system. SS: swept source; MO1,2,3,4: microscope objectives; AOD11, 12, 21, 22: acousto – optic deflectors; POLC: polarization controllers; GS: galvanometer scanner equipped with a mirror to scan along X direction; Tx: scanner controller; L1, L2: lenses; M: mirror; DFS1,2: digital frequency synthesizer; DCR: dispersion compensator rod; AL: achromatic lens; OL: Objective lens; BS: beam-splitter; PC: personal computer equipped with a NI-5124 digitizer to decode each axial scan and produce the image on the PC display.

Fig. 2
Fig. 2

Frequency division multiplexer. where each diffracted beam traverses a different delay step. The steps are made from glass plates of optical thickness δ.

Fig. 3
Fig. 3

Data processing algorithm.

Fig. 4
Fig. 4

a: Sensitivity curves in each channel versus optical path difference, each centered around a different carrier frequency, Cp; b: schematic illustration of combining the sensitivity of several channels versus OPD to obtain a more constant variation of sensitivity.

Fig. 5
Fig. 5

Sensitivity curve for P = 4 channels delayed relatively by δ = 4.2 mm.

Fig. 6
Fig. 6

B-scan images of a tilted mouse head obtained with a long-range constant sensitivity SS-OCT system. a: Conventional B-scan carried by C1; b: Conventional B-scan carried by C2; c): A long range B-scan produced by the long range imaging software; d: experimentally measured sensitivity curve in air representing the system sensitivity variation as a function of reference OPD. The curve is positioned so that OPD in the graph corresponds to the OPD in a, b and c; e a photo of the sample. The distance z in the object is OPD/2. Due to a long exposure time the scanning beam is visible as a white line across the eye and surrounding tissues.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

C p = C 0 + (p-1) Δ
F p = Δ k 2 π γ [ O P D ( p 1 ) δ ] + C p = S [ O P D ( p 1 ) δ ] + C p  
F p = C 0 + S O P D + (p-1)[ Δ F-S δ  ] 
δ i = Δ F S = 20 c m  
δ F = (p-1)[ Δ F-S δ  ] 
δ F = ( p 1 ) ( 18.75 0.57 ) = ( p 1 ) 18.18 M H z  
F p = C 0 + S O P D  
O P D =   F p C 0 S

Metrics