Abstract

We present a novel swept source optical coherence tomography configuration, equipped with acousto-optic deflectors that can be used to simultaneously acquire multiple B-scans originating from different depths. The sensitivity range of the configuration is evaluated while acquiring five simultaneous B-scans. Then the configuration is employed to demonstrate long range B-scan imaging by combining two simultaneous B-scans from a mouse head sample.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. A. G. Podoleanu, “Optical coherence tomography,” J. Microsc.247(3), 209–219 (2012).
    [CrossRef] [PubMed]
  3. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
    [CrossRef] [PubMed]
  4. W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express3(10), 2647–2657 (2012).
    [CrossRef] [PubMed]
  5. V. Jayaraman, J. Jiang, H. Li, P. Heim, G. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760Khz axial scan rate using single-mode 1310nm MEMs-tunable VCSELs with >100nm tuning range,” in in CLEO: 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB2.
  6. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
    [CrossRef] [PubMed]
  7. B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer12(5), 363–368 (2012).
    [CrossRef] [PubMed]
  8. W. Kang, H. Wang, Y. Pan, M. W. Jenkins, G. A. Isenberg, A. Chak, M. Atkinson, D. Agrawal, Z. Hu, and A. M. Rollins, “Endoscopically guided spectral-domain OCT with double-balloon catheters,” Opt. Express18(16), 17364–17372 (2010).
    [CrossRef] [PubMed]
  9. S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy32(10), 796–803 (2000).
    [CrossRef] [PubMed]
  10. A. G. Podoleanu, “Unique interpretation of Talbot Bands and Fourier domain white light interferometry,” Opt. Express15(15), 9867–9876 (2007).
    [CrossRef] [PubMed]
  11. B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express17(1), 7–24 (2009).
    [CrossRef] [PubMed]
  12. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett.28(22), 2201–2203 (2003).
    [CrossRef] [PubMed]
  13. A. Bradu, L. Neagu, and A. Podoleanu, “Extra long imaging range swept source optical coherence tomography using re-circulation loops,” Opt. Express18(24), 25361–25370 (2010).
    [CrossRef] [PubMed]
  14. A. Bachmann, R. Leitgeb, and T. Lasser, “Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution,” Opt. Express14(4), 1487–1496 (2006).
    [CrossRef] [PubMed]
  15. M. Zurauskas, J. Rogers, and A. G. Podoleanu, “Simultaneous multiple-depths en-face optical coherence tomography using multiple signal excitation of acousto-optic deflectors,” Opt. Express21(2), 1925–1936 (2013).
    [CrossRef] [PubMed]
  16. N. A. Riza, “Acousto-optically switched optical delay lines,” Opt. Commun.145(1-6), 15–20 (1998).
    [CrossRef]
  17. H. C. Ho, E. H. Young, and W. Seale, “Microwave frequency translation with multiple Bragg cells,” Proc. SPIE1703, 37–42 (1992).
    [CrossRef]
  18. A. P. Goutzoulis and D. R. Pape, Design and Fabrication of Acousto-Optic Devices (Dekker, 1994), p. xv, 497 p.
  19. G. Liu, Z. Zhi, and R. K. Wang, “Digital focusing of OCT images based on scalar diffraction theory and information entropy,” Biomed. Opt. Express3(11), 2774–2783 (2012).
    [CrossRef] [PubMed]
  20. T. Xie, S. Guo, Z. Chen, D. Mukai, and M. Brenner, “GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking,” Opt. Express14(8), 3238–3246 (2006).
    [CrossRef] [PubMed]
  21. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett.27(4), 243–245 (2002).
    [CrossRef] [PubMed]
  22. L. Liu and N. Chen, “Dynamic focusing with radial gratings for in vivo high resolution imaging,” Proc. SPIE6847, 684718, 684718-8 (2008).
    [CrossRef]
  23. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
    [CrossRef] [PubMed]

2013 (1)

2012 (4)

G. Liu, Z. Zhi, and R. K. Wang, “Digital focusing of OCT images based on scalar diffraction theory and information entropy,” Biomed. Opt. Express3(11), 2774–2783 (2012).
[CrossRef] [PubMed]

A. G. Podoleanu, “Optical coherence tomography,” J. Microsc.247(3), 209–219 (2012).
[CrossRef] [PubMed]

W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express3(10), 2647–2657 (2012).
[CrossRef] [PubMed]

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer12(5), 363–368 (2012).
[CrossRef] [PubMed]

2010 (5)

2009 (1)

2008 (1)

L. Liu and N. Chen, “Dynamic focusing with radial gratings for in vivo high resolution imaging,” Proc. SPIE6847, 684718, 684718-8 (2008).
[CrossRef]

2007 (1)

2006 (2)

A. Bachmann, R. Leitgeb, and T. Lasser, “Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution,” Opt. Express14(4), 1487–1496 (2006).
[CrossRef] [PubMed]

T. Xie, S. Guo, Z. Chen, D. Mukai, and M. Brenner, “GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking,” Opt. Express14(8), 3238–3246 (2006).
[CrossRef] [PubMed]

2003 (1)

2002 (1)

2000 (1)

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy32(10), 796–803 (2000).
[CrossRef] [PubMed]

1998 (1)

N. A. Riza, “Acousto-optically switched optical delay lines,” Opt. Commun.145(1-6), 15–20 (1998).
[CrossRef]

1992 (1)

H. C. Ho, E. H. Young, and W. Seale, “Microwave frequency translation with multiple Bragg cells,” Proc. SPIE1703, 37–42 (1992).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Adler, D. C.

W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express3(10), 2647–2657 (2012).
[CrossRef] [PubMed]

Agrawal, D.

Atkinson, M.

Bachmann, A.

A. Bachmann, R. Leitgeb, and T. Lasser, “Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution,” Opt. Express14(4), 1487–1496 (2006).
[CrossRef] [PubMed]

Bajraszewski, T.

Barry, S.

Baumann, B.

Biedermann, B. R.

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

Bouma, B. E.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer12(5), 363–368 (2012).
[CrossRef] [PubMed]

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy32(10), 796–803 (2000).
[CrossRef] [PubMed]

Bradu, A.

Brand, S.

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy32(10), 796–803 (2000).
[CrossRef] [PubMed]

Brenner, M.

Cable, A. E.

Chak, A.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, N.

L. Liu and N. Chen, “Dynamic focusing with radial gratings for in vivo high resolution imaging,” Proc. SPIE6847, 684718, 684718-8 (2008).
[CrossRef]

Chen, Z.

Compton, C. C.

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy32(10), 796–803 (2000).
[CrossRef] [PubMed]

Ding, Z.

Drexler, W.

Duker, J. S.

Eigenwillig, C. M.

W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express3(10), 2647–2657 (2012).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fukumura, D.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer12(5), 363–368 (2012).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Guo, S.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

Hitzenberger, C. K.

Ho, H. C.

H. C. Ho, E. H. Young, and W. Seale, “Microwave frequency translation with multiple Bragg cells,” Proc. SPIE1703, 37–42 (1992).
[CrossRef]

Hofer, B.

Hu, Z.

Huang, D.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huber, R.

W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express3(10), 2647–2657 (2012).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

Isenberg, G. A.

Jain, R. K.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer12(5), 363–368 (2012).
[CrossRef] [PubMed]

Jenkins, M. W.

Kang, W.

Karpf, S.

W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express3(10), 2647–2657 (2012).
[CrossRef] [PubMed]

Klein, T.

W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express3(10), 2647–2657 (2012).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

Lasser, T.

A. Bachmann, R. Leitgeb, and T. Lasser, “Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution,” Opt. Express14(4), 1487–1496 (2006).
[CrossRef] [PubMed]

Leitgeb, R.

A. Bachmann, R. Leitgeb, and T. Lasser, “Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution,” Opt. Express14(4), 1487–1496 (2006).
[CrossRef] [PubMed]

Leitgeb, R. A.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, G.

G. Liu, Z. Zhi, and R. K. Wang, “Digital focusing of OCT images based on scalar diffraction theory and information entropy,” Biomed. Opt. Express3(11), 2774–2783 (2012).
[CrossRef] [PubMed]

Liu, L.

L. Liu and N. Chen, “Dynamic focusing with radial gratings for in vivo high resolution imaging,” Proc. SPIE6847, 684718, 684718-8 (2008).
[CrossRef]

Matz, G.

Mukai, D.

Neagu, L.

Nelson, J. S.

Nishioka, N. S.

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy32(10), 796–803 (2000).
[CrossRef] [PubMed]

Pan, Y.

Podoleanu, A.

Podoleanu, A. G.

Poneros, J. M.

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy32(10), 796–803 (2000).
[CrossRef] [PubMed]

Potsaid, B.

Považay, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ren, H.

Riza, N. A.

N. A. Riza, “Acousto-optically switched optical delay lines,” Opt. Commun.145(1-6), 15–20 (1998).
[CrossRef]

Rogers, J.

Rollins, A. M.

Schmitt, J. M.

W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express3(10), 2647–2657 (2012).
[CrossRef] [PubMed]

Schuman, J. S.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Seale, W.

H. C. Ho, E. H. Young, and W. Seale, “Microwave frequency translation with multiple Bragg cells,” Proc. SPIE1703, 37–42 (1992).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy32(10), 796–803 (2000).
[CrossRef] [PubMed]

Trépanier, F.

W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express3(10), 2647–2657 (2012).
[CrossRef] [PubMed]

Unterhuber, A.

Vakoc, B. J.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer12(5), 363–368 (2012).
[CrossRef] [PubMed]

Wang, H.

Wang, R. K.

G. Liu, Z. Zhi, and R. K. Wang, “Digital focusing of OCT images based on scalar diffraction theory and information entropy,” Biomed. Opt. Express3(11), 2774–2783 (2012).
[CrossRef] [PubMed]

Wieser, W.

W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express3(10), 2647–2657 (2012).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

Xie, T.

Young, E. H.

H. C. Ho, E. H. Young, and W. Seale, “Microwave frequency translation with multiple Bragg cells,” Proc. SPIE1703, 37–42 (1992).
[CrossRef]

Zhao, Y.

Zhi, Z.

G. Liu, Z. Zhi, and R. K. Wang, “Digital focusing of OCT images based on scalar diffraction theory and information entropy,” Biomed. Opt. Express3(11), 2774–2783 (2012).
[CrossRef] [PubMed]

Zurauskas, M.

Biomed. Opt. Express (2)

W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express3(10), 2647–2657 (2012).
[CrossRef] [PubMed]

G. Liu, Z. Zhi, and R. K. Wang, “Digital focusing of OCT images based on scalar diffraction theory and information entropy,” Biomed. Opt. Express3(11), 2774–2783 (2012).
[CrossRef] [PubMed]

Endoscopy (1)

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy32(10), 796–803 (2000).
[CrossRef] [PubMed]

J. Microsc. (1)

A. G. Podoleanu, “Optical coherence tomography,” J. Microsc.247(3), 209–219 (2012).
[CrossRef] [PubMed]

Nat. Rev. Cancer (1)

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer12(5), 363–368 (2012).
[CrossRef] [PubMed]

Opt. Express (3)

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

A. Bachmann, R. Leitgeb, and T. Lasser, “Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution,” Opt. Express14(4), 1487–1496 (2006).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

Opt. Commun. (1)

N. A. Riza, “Acousto-optically switched optical delay lines,” Opt. Commun.145(1-6), 15–20 (1998).
[CrossRef]

Opt. Express (7)

M. Zurauskas, J. Rogers, and A. G. Podoleanu, “Simultaneous multiple-depths en-face optical coherence tomography using multiple signal excitation of acousto-optic deflectors,” Opt. Express21(2), 1925–1936 (2013).
[CrossRef] [PubMed]

A. G. Podoleanu, “Unique interpretation of Talbot Bands and Fourier domain white light interferometry,” Opt. Express15(15), 9867–9876 (2007).
[CrossRef] [PubMed]

B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express17(1), 7–24 (2009).
[CrossRef] [PubMed]

W. Kang, H. Wang, Y. Pan, M. W. Jenkins, G. A. Isenberg, A. Chak, M. Atkinson, D. Agrawal, Z. Hu, and A. M. Rollins, “Endoscopically guided spectral-domain OCT with double-balloon catheters,” Opt. Express18(16), 17364–17372 (2010).
[CrossRef] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

A. Bradu, L. Neagu, and A. Podoleanu, “Extra long imaging range swept source optical coherence tomography using re-circulation loops,” Opt. Express18(24), 25361–25370 (2010).
[CrossRef] [PubMed]

T. Xie, S. Guo, Z. Chen, D. Mukai, and M. Brenner, “GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking,” Opt. Express14(8), 3238–3246 (2006).
[CrossRef] [PubMed]

Opt. Lett. (2)

Proc. SPIE (2)

H. C. Ho, E. H. Young, and W. Seale, “Microwave frequency translation with multiple Bragg cells,” Proc. SPIE1703, 37–42 (1992).
[CrossRef]

L. Liu and N. Chen, “Dynamic focusing with radial gratings for in vivo high resolution imaging,” Proc. SPIE6847, 684718, 684718-8 (2008).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other (2)

V. Jayaraman, J. Jiang, H. Li, P. Heim, G. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760Khz axial scan rate using single-mode 1310nm MEMs-tunable VCSELs with >100nm tuning range,” in in CLEO: 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB2.

A. P. Goutzoulis and D. R. Pape, Design and Fabrication of Acousto-Optic Devices (Dekker, 1994), p. xv, 497 p.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic layout of the long range SS-OCT system. SS: swept source; MO1,2,3,4: microscope objectives; AOD11, 12, 21, 22: acousto – optic deflectors; POLC: polarization controllers; GS: galvanometer scanner equipped with a mirror to scan along X direction; Tx: scanner controller; L1, L2: lenses; M: mirror; DFS1,2: digital frequency synthesizer; DCR: dispersion compensator rod; AL: achromatic lens; OL: Objective lens; BS: beam-splitter; PC: personal computer equipped with a NI-5124 digitizer to decode each axial scan and produce the image on the PC display.

Fig. 2
Fig. 2

Frequency division multiplexer. where each diffracted beam traverses a different delay step. The steps are made from glass plates of optical thickness δ.

Fig. 3
Fig. 3

Data processing algorithm.

Fig. 4
Fig. 4

a: Sensitivity curves in each channel versus optical path difference, each centered around a different carrier frequency, Cp; b: schematic illustration of combining the sensitivity of several channels versus OPD to obtain a more constant variation of sensitivity.

Fig. 5
Fig. 5

Sensitivity curve for P = 4 channels delayed relatively by δ = 4.2 mm.

Fig. 6
Fig. 6

B-scan images of a tilted mouse head obtained with a long-range constant sensitivity SS-OCT system. a: Conventional B-scan carried by C1; b: Conventional B-scan carried by C2; c): A long range B-scan produced by the long range imaging software; d: experimentally measured sensitivity curve in air representing the system sensitivity variation as a function of reference OPD. The curve is positioned so that OPD in the graph corresponds to the OPD in a, b and c; e a photo of the sample. The distance z in the object is OPD/2. Due to a long exposure time the scanning beam is visible as a white line across the eye and surrounding tissues.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

C p = C 0 + (p-1) Δ
F p = Δ k 2 π γ [ O P D ( p 1 ) δ ] + C p = S [ O P D ( p 1 ) δ ] + C p  
F p = C 0 + S O P D + (p-1)[ Δ F-S δ  ] 
δ i = Δ F S = 20 c m  
δ F = (p-1)[ Δ F-S δ  ] 
δ F = ( p 1 ) ( 18.75 0.57 ) = ( p 1 ) 18.18 M H z  
F p = C 0 + S O P D  
O P D =   F p C 0 S

Metrics