Abstract

Subsurface hydrothermal degradation of yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) is presented. Evaluation of low temperature degradation (LTD) phase transformation induced by aging in 3Y-TZP is experimentally studied by Raman confocal microspectroscopy. A non-linear distribution of monoclinic volume fraction is determined in depth by using different pinhole sizes. A theoretical simulation is proposed based on the convolution of the excitation intensity profile and the Beer-Lambert law (optical properties of zirconia) to compare between experiment and theory. The calculated theoretical degradation curves matche closely to the experimental ones. Surface transformation (V0) and transformation factor in depth (T) are obtained by comparing simulation and experience for each sample with nondestructive optical sectioning.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Hisbergues, S. Vendeville, and P. Vendeville, “Zirconia: established facts and perspectives for a biomaterial in dental implantology,” J. Biomed. Mater. Res. B88B(2), 519–529 (2009).
    [CrossRef]
  2. C. Piconi and G. Maccauro, “Zirconia as a ceramic biomaterial,” Biomaterials20(1), 1–25 (1999).
    [CrossRef] [PubMed]
  3. H. Luthy, F. Filser, O. Loeffel, M. Schumacher, L. J. Gauckler, and C. H. F. Hammerle, “Strength and reliability of four-unit all-ceramic posterior bridges,” Dent. Mater.21(10), 930–937 (2005).
    [CrossRef] [PubMed]
  4. J. S. Schley, N. Heussen, S. Reich, J. Fischer, K. Haselhuhn, and S. Wolfart, “Survival probability of zirconia-based fixed dental prostheses up to 5 yr: a systematic review of the literature,” Eur. J. Oral Sci.118(5), 443–450 (2010).
    [CrossRef] [PubMed]
  5. K. Kobayashi, H. Kuwajima, and T. Masaki, “Phase-change and mechanical properties of ZrO2-Y2O3 solid electrolyte after aging,” Solid State Ionics3–4 (AUG), 489–493 (1981).
    [CrossRef]
  6. S. S. Brown, D. D. Green, G. Pezzotti, T. K. Donaldson, and I. C. Clarke, “Possible triggers for phase transformation in zirconia hip balls,” J. Biomed. Mater. Res. B85B(2), 444–452 (2008).
    [CrossRef]
  7. J. A. Munoz-Tabares, E. Jimenez-Pique, and M. Anglada, “Subsurface evaluation of hydrothermal degradation of zirconia,” Acta Mater.59(2), 473–484 (2011).
    [CrossRef]
  8. H. Toraya, M. Yoshimura, and S. Somiya, “Quantitative-analysis of monoclicnic-stabilized cubic ZrO2 systems by X-ray-diffraction,” J. Am. Ceram. Soc.67(9), C183–C184 (1984).
    [CrossRef]
  9. S. Deville, L. Gremillard, J. Chevalier, and G. Fantozzi, “A critical comparison of methods for the determination of the aging sensitivity in biomedical grade yttria-stabilized zirconia,” J. Biomed. Mater. Res. B72B(2), 239–245 (2005).
    [CrossRef]
  10. C. Wulfman, N. Djaker, N. Dupont, D. Ruse, M. Sadoun, and M. Lamy de la Chapelle, “Raman spectroscopy evaluation of subsurface hydrothermal degradation of zirconia,” J. Am. Ceram. Soc.95(7), 2347–2351 (2012).
    [CrossRef]
  11. C. Wulfman, M. Sadoun, and M. Lamy de la Chapelle, “Interest of Raman spectroscopy for the study of dental material: the zirconia material example,” IRBM31(5–6), 257–262 (2010).
    [CrossRef]
  12. D. Casellas, F. L. Cumbrera, F. Sanchez-Bajo, W. Forsling, L. Llanes, and M. Anglada, “On the transformation toughening of Y-ZrO2 ceramics with mixed Y-TZP/PSZ microstructures,” J. Am. Ceram. Soc.21(6), 765–777 (2001).
    [CrossRef]
  13. J. A. Munoz-Tabares and M. J. Anglada, “Quantitative analysis of monoclinic phase in 3Y-TZP by Raman spectroscopy,” J. Am. Ceram. Soc.93(6), 1790–1795 (2010).
  14. J. Barbillat, P. Dhamelincourt, M. Delhaye, and E. Dasilva, “Raman confocal microprobing, imaging and fiber-optic remote sensing: a further step in molecular analysis,” J. Raman Spectrosc.25(1), 3–11 (1994).
    [CrossRef]
  15. G. Pezzotti and A. A. Porporati, “Raman spectroscopic analysis of phase-transformation and stress patterns in zirconia hip joints,” J. Biomed. Opt.9(2), 372–384 (2004).
    [CrossRef] [PubMed]
  16. V. Presser, M. Keuper, C. Berthold, and K. G. Nickel, “Experimental determination of the Raman sampling depth in zirconia ceramics,” Appl. Spectrosc.63(11), 1288–1292 (2009).
    [CrossRef] [PubMed]
  17. G. Pezzotti, K. Yamada, A. A. Porporati, M. Kuntz, and K. Yamamoto, “Fracture toughness analysis of advanced ceramic composite for hip prosthesis,” J. Am. Ceram. Soc.92(8), 1817–1822 (2009).
    [CrossRef]
  18. A. Gallardo, S. Spells, R. Navarro, and H. Reinecke, “Confocal Raman microscopy: how to correct depth profiles considering diffraction and refraction effects,” J. Raman Spectrosc.38(7), 880–884 (2007).
    [CrossRef]
  19. A. M. Macdonald and A. S. Vaughan, “Numerical simulations of confocal Raman spectroscopic depth profiles of materials: a photon scattering approach,” J. Raman Spectrosc.38(5), 584–592 (2007).
    [CrossRef]
  20. S. L. Jacques, B. Wang, and R. Samatham, “Reflectance confocal microscopy of optical phantoms,” Biomed. Opt. Express3(6), 1162–1172 (2012).
  21. W. Song, J. Lee, and H. S. Kwon, “Enhancement of imaging depth of two-photon microscopy using pinholes: analytical simulation and experiments,” Opt. Express20(18), 20605–20622 (2012).
    [CrossRef] [PubMed]
  22. http://www.zeiss.de/C1256D18002CC306/0/F99A7F3E8944EEE3C1256E5C0045F68B/$file/60-1-0030_confocal-principles.pdf
  23. J. Salem and D. Zhu, Ceramic Coatings and Interfaces II, U. Schulz and H. T. Lin eds. (Wiley-Interscience, 2007).
  24. D. Wang, Y. Chen, and J. T. C. Liu, “A liquid optical phantom with tissue-like heterogeneities for confocal microscopy,” Biomed. Opt. Express3(12), 3153–3160 (2012).

2012 (4)

2011 (1)

J. A. Munoz-Tabares, E. Jimenez-Pique, and M. Anglada, “Subsurface evaluation of hydrothermal degradation of zirconia,” Acta Mater.59(2), 473–484 (2011).
[CrossRef]

2010 (3)

J. S. Schley, N. Heussen, S. Reich, J. Fischer, K. Haselhuhn, and S. Wolfart, “Survival probability of zirconia-based fixed dental prostheses up to 5 yr: a systematic review of the literature,” Eur. J. Oral Sci.118(5), 443–450 (2010).
[CrossRef] [PubMed]

C. Wulfman, M. Sadoun, and M. Lamy de la Chapelle, “Interest of Raman spectroscopy for the study of dental material: the zirconia material example,” IRBM31(5–6), 257–262 (2010).
[CrossRef]

J. A. Munoz-Tabares and M. J. Anglada, “Quantitative analysis of monoclinic phase in 3Y-TZP by Raman spectroscopy,” J. Am. Ceram. Soc.93(6), 1790–1795 (2010).

2009 (3)

G. Pezzotti, K. Yamada, A. A. Porporati, M. Kuntz, and K. Yamamoto, “Fracture toughness analysis of advanced ceramic composite for hip prosthesis,” J. Am. Ceram. Soc.92(8), 1817–1822 (2009).
[CrossRef]

M. Hisbergues, S. Vendeville, and P. Vendeville, “Zirconia: established facts and perspectives for a biomaterial in dental implantology,” J. Biomed. Mater. Res. B88B(2), 519–529 (2009).
[CrossRef]

V. Presser, M. Keuper, C. Berthold, and K. G. Nickel, “Experimental determination of the Raman sampling depth in zirconia ceramics,” Appl. Spectrosc.63(11), 1288–1292 (2009).
[CrossRef] [PubMed]

2008 (1)

S. S. Brown, D. D. Green, G. Pezzotti, T. K. Donaldson, and I. C. Clarke, “Possible triggers for phase transformation in zirconia hip balls,” J. Biomed. Mater. Res. B85B(2), 444–452 (2008).
[CrossRef]

2007 (2)

A. Gallardo, S. Spells, R. Navarro, and H. Reinecke, “Confocal Raman microscopy: how to correct depth profiles considering diffraction and refraction effects,” J. Raman Spectrosc.38(7), 880–884 (2007).
[CrossRef]

A. M. Macdonald and A. S. Vaughan, “Numerical simulations of confocal Raman spectroscopic depth profiles of materials: a photon scattering approach,” J. Raman Spectrosc.38(5), 584–592 (2007).
[CrossRef]

2005 (2)

S. Deville, L. Gremillard, J. Chevalier, and G. Fantozzi, “A critical comparison of methods for the determination of the aging sensitivity in biomedical grade yttria-stabilized zirconia,” J. Biomed. Mater. Res. B72B(2), 239–245 (2005).
[CrossRef]

H. Luthy, F. Filser, O. Loeffel, M. Schumacher, L. J. Gauckler, and C. H. F. Hammerle, “Strength and reliability of four-unit all-ceramic posterior bridges,” Dent. Mater.21(10), 930–937 (2005).
[CrossRef] [PubMed]

2004 (1)

G. Pezzotti and A. A. Porporati, “Raman spectroscopic analysis of phase-transformation and stress patterns in zirconia hip joints,” J. Biomed. Opt.9(2), 372–384 (2004).
[CrossRef] [PubMed]

2001 (1)

D. Casellas, F. L. Cumbrera, F. Sanchez-Bajo, W. Forsling, L. Llanes, and M. Anglada, “On the transformation toughening of Y-ZrO2 ceramics with mixed Y-TZP/PSZ microstructures,” J. Am. Ceram. Soc.21(6), 765–777 (2001).
[CrossRef]

1999 (1)

C. Piconi and G. Maccauro, “Zirconia as a ceramic biomaterial,” Biomaterials20(1), 1–25 (1999).
[CrossRef] [PubMed]

1994 (1)

J. Barbillat, P. Dhamelincourt, M. Delhaye, and E. Dasilva, “Raman confocal microprobing, imaging and fiber-optic remote sensing: a further step in molecular analysis,” J. Raman Spectrosc.25(1), 3–11 (1994).
[CrossRef]

1984 (1)

H. Toraya, M. Yoshimura, and S. Somiya, “Quantitative-analysis of monoclicnic-stabilized cubic ZrO2 systems by X-ray-diffraction,” J. Am. Ceram. Soc.67(9), C183–C184 (1984).
[CrossRef]

1981 (1)

K. Kobayashi, H. Kuwajima, and T. Masaki, “Phase-change and mechanical properties of ZrO2-Y2O3 solid electrolyte after aging,” Solid State Ionics3–4 (AUG), 489–493 (1981).
[CrossRef]

Anglada, M.

J. A. Munoz-Tabares, E. Jimenez-Pique, and M. Anglada, “Subsurface evaluation of hydrothermal degradation of zirconia,” Acta Mater.59(2), 473–484 (2011).
[CrossRef]

D. Casellas, F. L. Cumbrera, F. Sanchez-Bajo, W. Forsling, L. Llanes, and M. Anglada, “On the transformation toughening of Y-ZrO2 ceramics with mixed Y-TZP/PSZ microstructures,” J. Am. Ceram. Soc.21(6), 765–777 (2001).
[CrossRef]

Anglada, M. J.

J. A. Munoz-Tabares and M. J. Anglada, “Quantitative analysis of monoclinic phase in 3Y-TZP by Raman spectroscopy,” J. Am. Ceram. Soc.93(6), 1790–1795 (2010).

Barbillat, J.

J. Barbillat, P. Dhamelincourt, M. Delhaye, and E. Dasilva, “Raman confocal microprobing, imaging and fiber-optic remote sensing: a further step in molecular analysis,” J. Raman Spectrosc.25(1), 3–11 (1994).
[CrossRef]

Berthold, C.

Brown, S. S.

S. S. Brown, D. D. Green, G. Pezzotti, T. K. Donaldson, and I. C. Clarke, “Possible triggers for phase transformation in zirconia hip balls,” J. Biomed. Mater. Res. B85B(2), 444–452 (2008).
[CrossRef]

Casellas, D.

D. Casellas, F. L. Cumbrera, F. Sanchez-Bajo, W. Forsling, L. Llanes, and M. Anglada, “On the transformation toughening of Y-ZrO2 ceramics with mixed Y-TZP/PSZ microstructures,” J. Am. Ceram. Soc.21(6), 765–777 (2001).
[CrossRef]

Chen, Y.

Chevalier, J.

S. Deville, L. Gremillard, J. Chevalier, and G. Fantozzi, “A critical comparison of methods for the determination of the aging sensitivity in biomedical grade yttria-stabilized zirconia,” J. Biomed. Mater. Res. B72B(2), 239–245 (2005).
[CrossRef]

Clarke, I. C.

S. S. Brown, D. D. Green, G. Pezzotti, T. K. Donaldson, and I. C. Clarke, “Possible triggers for phase transformation in zirconia hip balls,” J. Biomed. Mater. Res. B85B(2), 444–452 (2008).
[CrossRef]

Cumbrera, F. L.

D. Casellas, F. L. Cumbrera, F. Sanchez-Bajo, W. Forsling, L. Llanes, and M. Anglada, “On the transformation toughening of Y-ZrO2 ceramics with mixed Y-TZP/PSZ microstructures,” J. Am. Ceram. Soc.21(6), 765–777 (2001).
[CrossRef]

Dasilva, E.

J. Barbillat, P. Dhamelincourt, M. Delhaye, and E. Dasilva, “Raman confocal microprobing, imaging and fiber-optic remote sensing: a further step in molecular analysis,” J. Raman Spectrosc.25(1), 3–11 (1994).
[CrossRef]

Delhaye, M.

J. Barbillat, P. Dhamelincourt, M. Delhaye, and E. Dasilva, “Raman confocal microprobing, imaging and fiber-optic remote sensing: a further step in molecular analysis,” J. Raman Spectrosc.25(1), 3–11 (1994).
[CrossRef]

Deville, S.

S. Deville, L. Gremillard, J. Chevalier, and G. Fantozzi, “A critical comparison of methods for the determination of the aging sensitivity in biomedical grade yttria-stabilized zirconia,” J. Biomed. Mater. Res. B72B(2), 239–245 (2005).
[CrossRef]

Dhamelincourt, P.

J. Barbillat, P. Dhamelincourt, M. Delhaye, and E. Dasilva, “Raman confocal microprobing, imaging and fiber-optic remote sensing: a further step in molecular analysis,” J. Raman Spectrosc.25(1), 3–11 (1994).
[CrossRef]

Djaker, N.

C. Wulfman, N. Djaker, N. Dupont, D. Ruse, M. Sadoun, and M. Lamy de la Chapelle, “Raman spectroscopy evaluation of subsurface hydrothermal degradation of zirconia,” J. Am. Ceram. Soc.95(7), 2347–2351 (2012).
[CrossRef]

Donaldson, T. K.

S. S. Brown, D. D. Green, G. Pezzotti, T. K. Donaldson, and I. C. Clarke, “Possible triggers for phase transformation in zirconia hip balls,” J. Biomed. Mater. Res. B85B(2), 444–452 (2008).
[CrossRef]

Dupont, N.

C. Wulfman, N. Djaker, N. Dupont, D. Ruse, M. Sadoun, and M. Lamy de la Chapelle, “Raman spectroscopy evaluation of subsurface hydrothermal degradation of zirconia,” J. Am. Ceram. Soc.95(7), 2347–2351 (2012).
[CrossRef]

Fantozzi, G.

S. Deville, L. Gremillard, J. Chevalier, and G. Fantozzi, “A critical comparison of methods for the determination of the aging sensitivity in biomedical grade yttria-stabilized zirconia,” J. Biomed. Mater. Res. B72B(2), 239–245 (2005).
[CrossRef]

Filser, F.

H. Luthy, F. Filser, O. Loeffel, M. Schumacher, L. J. Gauckler, and C. H. F. Hammerle, “Strength and reliability of four-unit all-ceramic posterior bridges,” Dent. Mater.21(10), 930–937 (2005).
[CrossRef] [PubMed]

Fischer, J.

J. S. Schley, N. Heussen, S. Reich, J. Fischer, K. Haselhuhn, and S. Wolfart, “Survival probability of zirconia-based fixed dental prostheses up to 5 yr: a systematic review of the literature,” Eur. J. Oral Sci.118(5), 443–450 (2010).
[CrossRef] [PubMed]

Forsling, W.

D. Casellas, F. L. Cumbrera, F. Sanchez-Bajo, W. Forsling, L. Llanes, and M. Anglada, “On the transformation toughening of Y-ZrO2 ceramics with mixed Y-TZP/PSZ microstructures,” J. Am. Ceram. Soc.21(6), 765–777 (2001).
[CrossRef]

Gallardo, A.

A. Gallardo, S. Spells, R. Navarro, and H. Reinecke, “Confocal Raman microscopy: how to correct depth profiles considering diffraction and refraction effects,” J. Raman Spectrosc.38(7), 880–884 (2007).
[CrossRef]

Gauckler, L. J.

H. Luthy, F. Filser, O. Loeffel, M. Schumacher, L. J. Gauckler, and C. H. F. Hammerle, “Strength and reliability of four-unit all-ceramic posterior bridges,” Dent. Mater.21(10), 930–937 (2005).
[CrossRef] [PubMed]

Green, D. D.

S. S. Brown, D. D. Green, G. Pezzotti, T. K. Donaldson, and I. C. Clarke, “Possible triggers for phase transformation in zirconia hip balls,” J. Biomed. Mater. Res. B85B(2), 444–452 (2008).
[CrossRef]

Gremillard, L.

S. Deville, L. Gremillard, J. Chevalier, and G. Fantozzi, “A critical comparison of methods for the determination of the aging sensitivity in biomedical grade yttria-stabilized zirconia,” J. Biomed. Mater. Res. B72B(2), 239–245 (2005).
[CrossRef]

Hammerle, C. H. F.

H. Luthy, F. Filser, O. Loeffel, M. Schumacher, L. J. Gauckler, and C. H. F. Hammerle, “Strength and reliability of four-unit all-ceramic posterior bridges,” Dent. Mater.21(10), 930–937 (2005).
[CrossRef] [PubMed]

Haselhuhn, K.

J. S. Schley, N. Heussen, S. Reich, J. Fischer, K. Haselhuhn, and S. Wolfart, “Survival probability of zirconia-based fixed dental prostheses up to 5 yr: a systematic review of the literature,” Eur. J. Oral Sci.118(5), 443–450 (2010).
[CrossRef] [PubMed]

Heussen, N.

J. S. Schley, N. Heussen, S. Reich, J. Fischer, K. Haselhuhn, and S. Wolfart, “Survival probability of zirconia-based fixed dental prostheses up to 5 yr: a systematic review of the literature,” Eur. J. Oral Sci.118(5), 443–450 (2010).
[CrossRef] [PubMed]

Hisbergues, M.

M. Hisbergues, S. Vendeville, and P. Vendeville, “Zirconia: established facts and perspectives for a biomaterial in dental implantology,” J. Biomed. Mater. Res. B88B(2), 519–529 (2009).
[CrossRef]

Jacques, S. L.

Jimenez-Pique, E.

J. A. Munoz-Tabares, E. Jimenez-Pique, and M. Anglada, “Subsurface evaluation of hydrothermal degradation of zirconia,” Acta Mater.59(2), 473–484 (2011).
[CrossRef]

Keuper, M.

Kobayashi, K.

K. Kobayashi, H. Kuwajima, and T. Masaki, “Phase-change and mechanical properties of ZrO2-Y2O3 solid electrolyte after aging,” Solid State Ionics3–4 (AUG), 489–493 (1981).
[CrossRef]

Kuntz, M.

G. Pezzotti, K. Yamada, A. A. Porporati, M. Kuntz, and K. Yamamoto, “Fracture toughness analysis of advanced ceramic composite for hip prosthesis,” J. Am. Ceram. Soc.92(8), 1817–1822 (2009).
[CrossRef]

Kuwajima, H.

K. Kobayashi, H. Kuwajima, and T. Masaki, “Phase-change and mechanical properties of ZrO2-Y2O3 solid electrolyte after aging,” Solid State Ionics3–4 (AUG), 489–493 (1981).
[CrossRef]

Kwon, H. S.

Lamy de la Chapelle, M.

C. Wulfman, N. Djaker, N. Dupont, D. Ruse, M. Sadoun, and M. Lamy de la Chapelle, “Raman spectroscopy evaluation of subsurface hydrothermal degradation of zirconia,” J. Am. Ceram. Soc.95(7), 2347–2351 (2012).
[CrossRef]

C. Wulfman, M. Sadoun, and M. Lamy de la Chapelle, “Interest of Raman spectroscopy for the study of dental material: the zirconia material example,” IRBM31(5–6), 257–262 (2010).
[CrossRef]

Lee, J.

Liu, J. T. C.

Llanes, L.

D. Casellas, F. L. Cumbrera, F. Sanchez-Bajo, W. Forsling, L. Llanes, and M. Anglada, “On the transformation toughening of Y-ZrO2 ceramics with mixed Y-TZP/PSZ microstructures,” J. Am. Ceram. Soc.21(6), 765–777 (2001).
[CrossRef]

Loeffel, O.

H. Luthy, F. Filser, O. Loeffel, M. Schumacher, L. J. Gauckler, and C. H. F. Hammerle, “Strength and reliability of four-unit all-ceramic posterior bridges,” Dent. Mater.21(10), 930–937 (2005).
[CrossRef] [PubMed]

Luthy, H.

H. Luthy, F. Filser, O. Loeffel, M. Schumacher, L. J. Gauckler, and C. H. F. Hammerle, “Strength and reliability of four-unit all-ceramic posterior bridges,” Dent. Mater.21(10), 930–937 (2005).
[CrossRef] [PubMed]

Maccauro, G.

C. Piconi and G. Maccauro, “Zirconia as a ceramic biomaterial,” Biomaterials20(1), 1–25 (1999).
[CrossRef] [PubMed]

Macdonald, A. M.

A. M. Macdonald and A. S. Vaughan, “Numerical simulations of confocal Raman spectroscopic depth profiles of materials: a photon scattering approach,” J. Raman Spectrosc.38(5), 584–592 (2007).
[CrossRef]

Masaki, T.

K. Kobayashi, H. Kuwajima, and T. Masaki, “Phase-change and mechanical properties of ZrO2-Y2O3 solid electrolyte after aging,” Solid State Ionics3–4 (AUG), 489–493 (1981).
[CrossRef]

Munoz-Tabares, J. A.

J. A. Munoz-Tabares, E. Jimenez-Pique, and M. Anglada, “Subsurface evaluation of hydrothermal degradation of zirconia,” Acta Mater.59(2), 473–484 (2011).
[CrossRef]

J. A. Munoz-Tabares and M. J. Anglada, “Quantitative analysis of monoclinic phase in 3Y-TZP by Raman spectroscopy,” J. Am. Ceram. Soc.93(6), 1790–1795 (2010).

Navarro, R.

A. Gallardo, S. Spells, R. Navarro, and H. Reinecke, “Confocal Raman microscopy: how to correct depth profiles considering diffraction and refraction effects,” J. Raman Spectrosc.38(7), 880–884 (2007).
[CrossRef]

Nickel, K. G.

Pezzotti, G.

G. Pezzotti, K. Yamada, A. A. Porporati, M. Kuntz, and K. Yamamoto, “Fracture toughness analysis of advanced ceramic composite for hip prosthesis,” J. Am. Ceram. Soc.92(8), 1817–1822 (2009).
[CrossRef]

S. S. Brown, D. D. Green, G. Pezzotti, T. K. Donaldson, and I. C. Clarke, “Possible triggers for phase transformation in zirconia hip balls,” J. Biomed. Mater. Res. B85B(2), 444–452 (2008).
[CrossRef]

G. Pezzotti and A. A. Porporati, “Raman spectroscopic analysis of phase-transformation and stress patterns in zirconia hip joints,” J. Biomed. Opt.9(2), 372–384 (2004).
[CrossRef] [PubMed]

Piconi, C.

C. Piconi and G. Maccauro, “Zirconia as a ceramic biomaterial,” Biomaterials20(1), 1–25 (1999).
[CrossRef] [PubMed]

Porporati, A. A.

G. Pezzotti, K. Yamada, A. A. Porporati, M. Kuntz, and K. Yamamoto, “Fracture toughness analysis of advanced ceramic composite for hip prosthesis,” J. Am. Ceram. Soc.92(8), 1817–1822 (2009).
[CrossRef]

G. Pezzotti and A. A. Porporati, “Raman spectroscopic analysis of phase-transformation and stress patterns in zirconia hip joints,” J. Biomed. Opt.9(2), 372–384 (2004).
[CrossRef] [PubMed]

Presser, V.

Reich, S.

J. S. Schley, N. Heussen, S. Reich, J. Fischer, K. Haselhuhn, and S. Wolfart, “Survival probability of zirconia-based fixed dental prostheses up to 5 yr: a systematic review of the literature,” Eur. J. Oral Sci.118(5), 443–450 (2010).
[CrossRef] [PubMed]

Reinecke, H.

A. Gallardo, S. Spells, R. Navarro, and H. Reinecke, “Confocal Raman microscopy: how to correct depth profiles considering diffraction and refraction effects,” J. Raman Spectrosc.38(7), 880–884 (2007).
[CrossRef]

Ruse, D.

C. Wulfman, N. Djaker, N. Dupont, D. Ruse, M. Sadoun, and M. Lamy de la Chapelle, “Raman spectroscopy evaluation of subsurface hydrothermal degradation of zirconia,” J. Am. Ceram. Soc.95(7), 2347–2351 (2012).
[CrossRef]

Sadoun, M.

C. Wulfman, N. Djaker, N. Dupont, D. Ruse, M. Sadoun, and M. Lamy de la Chapelle, “Raman spectroscopy evaluation of subsurface hydrothermal degradation of zirconia,” J. Am. Ceram. Soc.95(7), 2347–2351 (2012).
[CrossRef]

C. Wulfman, M. Sadoun, and M. Lamy de la Chapelle, “Interest of Raman spectroscopy for the study of dental material: the zirconia material example,” IRBM31(5–6), 257–262 (2010).
[CrossRef]

Salem, J.

J. Salem and D. Zhu, Ceramic Coatings and Interfaces II, U. Schulz and H. T. Lin eds. (Wiley-Interscience, 2007).

Samatham, R.

Sanchez-Bajo, F.

D. Casellas, F. L. Cumbrera, F. Sanchez-Bajo, W. Forsling, L. Llanes, and M. Anglada, “On the transformation toughening of Y-ZrO2 ceramics with mixed Y-TZP/PSZ microstructures,” J. Am. Ceram. Soc.21(6), 765–777 (2001).
[CrossRef]

Schley, J. S.

J. S. Schley, N. Heussen, S. Reich, J. Fischer, K. Haselhuhn, and S. Wolfart, “Survival probability of zirconia-based fixed dental prostheses up to 5 yr: a systematic review of the literature,” Eur. J. Oral Sci.118(5), 443–450 (2010).
[CrossRef] [PubMed]

Schumacher, M.

H. Luthy, F. Filser, O. Loeffel, M. Schumacher, L. J. Gauckler, and C. H. F. Hammerle, “Strength and reliability of four-unit all-ceramic posterior bridges,” Dent. Mater.21(10), 930–937 (2005).
[CrossRef] [PubMed]

Somiya, S.

H. Toraya, M. Yoshimura, and S. Somiya, “Quantitative-analysis of monoclicnic-stabilized cubic ZrO2 systems by X-ray-diffraction,” J. Am. Ceram. Soc.67(9), C183–C184 (1984).
[CrossRef]

Song, W.

Spells, S.

A. Gallardo, S. Spells, R. Navarro, and H. Reinecke, “Confocal Raman microscopy: how to correct depth profiles considering diffraction and refraction effects,” J. Raman Spectrosc.38(7), 880–884 (2007).
[CrossRef]

Toraya, H.

H. Toraya, M. Yoshimura, and S. Somiya, “Quantitative-analysis of monoclicnic-stabilized cubic ZrO2 systems by X-ray-diffraction,” J. Am. Ceram. Soc.67(9), C183–C184 (1984).
[CrossRef]

Vaughan, A. S.

A. M. Macdonald and A. S. Vaughan, “Numerical simulations of confocal Raman spectroscopic depth profiles of materials: a photon scattering approach,” J. Raman Spectrosc.38(5), 584–592 (2007).
[CrossRef]

Vendeville, P.

M. Hisbergues, S. Vendeville, and P. Vendeville, “Zirconia: established facts and perspectives for a biomaterial in dental implantology,” J. Biomed. Mater. Res. B88B(2), 519–529 (2009).
[CrossRef]

Vendeville, S.

M. Hisbergues, S. Vendeville, and P. Vendeville, “Zirconia: established facts and perspectives for a biomaterial in dental implantology,” J. Biomed. Mater. Res. B88B(2), 519–529 (2009).
[CrossRef]

Wang, B.

Wang, D.

Wolfart, S.

J. S. Schley, N. Heussen, S. Reich, J. Fischer, K. Haselhuhn, and S. Wolfart, “Survival probability of zirconia-based fixed dental prostheses up to 5 yr: a systematic review of the literature,” Eur. J. Oral Sci.118(5), 443–450 (2010).
[CrossRef] [PubMed]

Wulfman, C.

C. Wulfman, N. Djaker, N. Dupont, D. Ruse, M. Sadoun, and M. Lamy de la Chapelle, “Raman spectroscopy evaluation of subsurface hydrothermal degradation of zirconia,” J. Am. Ceram. Soc.95(7), 2347–2351 (2012).
[CrossRef]

C. Wulfman, M. Sadoun, and M. Lamy de la Chapelle, “Interest of Raman spectroscopy for the study of dental material: the zirconia material example,” IRBM31(5–6), 257–262 (2010).
[CrossRef]

Yamada, K.

G. Pezzotti, K. Yamada, A. A. Porporati, M. Kuntz, and K. Yamamoto, “Fracture toughness analysis of advanced ceramic composite for hip prosthesis,” J. Am. Ceram. Soc.92(8), 1817–1822 (2009).
[CrossRef]

Yamamoto, K.

G. Pezzotti, K. Yamada, A. A. Porporati, M. Kuntz, and K. Yamamoto, “Fracture toughness analysis of advanced ceramic composite for hip prosthesis,” J. Am. Ceram. Soc.92(8), 1817–1822 (2009).
[CrossRef]

Yoshimura, M.

H. Toraya, M. Yoshimura, and S. Somiya, “Quantitative-analysis of monoclicnic-stabilized cubic ZrO2 systems by X-ray-diffraction,” J. Am. Ceram. Soc.67(9), C183–C184 (1984).
[CrossRef]

Zhu, D.

J. Salem and D. Zhu, Ceramic Coatings and Interfaces II, U. Schulz and H. T. Lin eds. (Wiley-Interscience, 2007).

Acta Mater. (1)

J. A. Munoz-Tabares, E. Jimenez-Pique, and M. Anglada, “Subsurface evaluation of hydrothermal degradation of zirconia,” Acta Mater.59(2), 473–484 (2011).
[CrossRef]

Appl. Spectrosc. (1)

Biomaterials (1)

C. Piconi and G. Maccauro, “Zirconia as a ceramic biomaterial,” Biomaterials20(1), 1–25 (1999).
[CrossRef] [PubMed]

Biomed. Opt. Express (2)

Dent. Mater. (1)

H. Luthy, F. Filser, O. Loeffel, M. Schumacher, L. J. Gauckler, and C. H. F. Hammerle, “Strength and reliability of four-unit all-ceramic posterior bridges,” Dent. Mater.21(10), 930–937 (2005).
[CrossRef] [PubMed]

Eur. J. Oral Sci. (1)

J. S. Schley, N. Heussen, S. Reich, J. Fischer, K. Haselhuhn, and S. Wolfart, “Survival probability of zirconia-based fixed dental prostheses up to 5 yr: a systematic review of the literature,” Eur. J. Oral Sci.118(5), 443–450 (2010).
[CrossRef] [PubMed]

IRBM (1)

C. Wulfman, M. Sadoun, and M. Lamy de la Chapelle, “Interest of Raman spectroscopy for the study of dental material: the zirconia material example,” IRBM31(5–6), 257–262 (2010).
[CrossRef]

J. Am. Ceram. Soc. (5)

D. Casellas, F. L. Cumbrera, F. Sanchez-Bajo, W. Forsling, L. Llanes, and M. Anglada, “On the transformation toughening of Y-ZrO2 ceramics with mixed Y-TZP/PSZ microstructures,” J. Am. Ceram. Soc.21(6), 765–777 (2001).
[CrossRef]

J. A. Munoz-Tabares and M. J. Anglada, “Quantitative analysis of monoclinic phase in 3Y-TZP by Raman spectroscopy,” J. Am. Ceram. Soc.93(6), 1790–1795 (2010).

G. Pezzotti, K. Yamada, A. A. Porporati, M. Kuntz, and K. Yamamoto, “Fracture toughness analysis of advanced ceramic composite for hip prosthesis,” J. Am. Ceram. Soc.92(8), 1817–1822 (2009).
[CrossRef]

H. Toraya, M. Yoshimura, and S. Somiya, “Quantitative-analysis of monoclicnic-stabilized cubic ZrO2 systems by X-ray-diffraction,” J. Am. Ceram. Soc.67(9), C183–C184 (1984).
[CrossRef]

C. Wulfman, N. Djaker, N. Dupont, D. Ruse, M. Sadoun, and M. Lamy de la Chapelle, “Raman spectroscopy evaluation of subsurface hydrothermal degradation of zirconia,” J. Am. Ceram. Soc.95(7), 2347–2351 (2012).
[CrossRef]

J. Biomed. Mater. Res. B (3)

S. Deville, L. Gremillard, J. Chevalier, and G. Fantozzi, “A critical comparison of methods for the determination of the aging sensitivity in biomedical grade yttria-stabilized zirconia,” J. Biomed. Mater. Res. B72B(2), 239–245 (2005).
[CrossRef]

M. Hisbergues, S. Vendeville, and P. Vendeville, “Zirconia: established facts and perspectives for a biomaterial in dental implantology,” J. Biomed. Mater. Res. B88B(2), 519–529 (2009).
[CrossRef]

S. S. Brown, D. D. Green, G. Pezzotti, T. K. Donaldson, and I. C. Clarke, “Possible triggers for phase transformation in zirconia hip balls,” J. Biomed. Mater. Res. B85B(2), 444–452 (2008).
[CrossRef]

J. Biomed. Opt. (1)

G. Pezzotti and A. A. Porporati, “Raman spectroscopic analysis of phase-transformation and stress patterns in zirconia hip joints,” J. Biomed. Opt.9(2), 372–384 (2004).
[CrossRef] [PubMed]

J. Raman Spectrosc. (3)

A. Gallardo, S. Spells, R. Navarro, and H. Reinecke, “Confocal Raman microscopy: how to correct depth profiles considering diffraction and refraction effects,” J. Raman Spectrosc.38(7), 880–884 (2007).
[CrossRef]

A. M. Macdonald and A. S. Vaughan, “Numerical simulations of confocal Raman spectroscopic depth profiles of materials: a photon scattering approach,” J. Raman Spectrosc.38(5), 584–592 (2007).
[CrossRef]

J. Barbillat, P. Dhamelincourt, M. Delhaye, and E. Dasilva, “Raman confocal microprobing, imaging and fiber-optic remote sensing: a further step in molecular analysis,” J. Raman Spectrosc.25(1), 3–11 (1994).
[CrossRef]

Opt. Express (1)

Solid State Ionics (1)

K. Kobayashi, H. Kuwajima, and T. Masaki, “Phase-change and mechanical properties of ZrO2-Y2O3 solid electrolyte after aging,” Solid State Ionics3–4 (AUG), 489–493 (1981).
[CrossRef]

Other (2)

http://www.zeiss.de/C1256D18002CC306/0/F99A7F3E8944EEE3C1256E5C0045F68B/$file/60-1-0030_confocal-principles.pdf

J. Salem and D. Zhu, Ceramic Coatings and Interfaces II, U. Schulz and H. T. Lin eds. (Wiley-Interscience, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic presentation of confocal detection principal in the confocal Raman micro-spectroscopy.

Fig. 2
Fig. 2

Calculated optical slice thickness given by the optical objective and measured axial depths in zirconia for each pinhole size (left) Ratio between calculated and measured depths.

Fig. 3
Fig. 3

Measured and calculated averaged monoclinical fraction in depth.

Fig. 4
Fig. 4

Calculated monoclinic fraction in depth for two different aging times.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

z opt = ( 0.88 λ Raman 1 1 N A 2 ) 2 + ( 2 P H 2 N A ) 2
V f m = I m 178 + I m 189 0.33 ( I t 145 + I t 256 ) + I m 178 + I m 189
O F ( z ) = e z 2 0.4 D z 2 × e μ z × ( V 0 × 1 + e T . z 0 1 + e T ( z z 0 ) )
A F ( z ) = 0 z O F ( z ) d z z exp

Metrics