Abstract

A combined high-resolution reflectance confocal microscopy (RCM)/optical coherence tomography (OCT) instrument for assessing skin burn gravity has been built and tested. This instruments allows for visualizing skin intracellular details with submicron resolution in the RCM mode and morphological and birefringence modifications to depths on the order of 1.2 mm in the OCT mode. Preliminary testing of the dual modality imaging approach has been performed on the skin of volunteers with some burn scars and on normal and thermally-injured Epiderm FTTM skin constructs. The initial results show that these two optical technologies have complementary capabilities that can offer the clinician a set of clinically comprehensive parameters: OCT helps to visualize deeper burn injuries and possibly quantify collagen destruction by measuring skin birefringence, while RCM provides submicron details of the integrity of the epidermal layer and identifies the presence of the superficial blood flow in the upper dermis. Therefore, the combination of these two technologies within the same instrument may provide a more comprehensive set of parameters that may help clinicians to more objectively and nonivasively assess burn injury gravity by determining tissue structural integrity and viability.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Burn incidence fact sheet (American Burn Association 2011). http://www.ameriburn.org/resources_factsheet.php
  2. P. A. Brigham and E. McLoughlin, “Burn incidence and medical care use in the United States: estimates, trends, and data sources,” J. Burn Care Rehabil.17(2), 95–107 (1996).
    [CrossRef] [PubMed]
  3. R. Walls, J. J. Ratey, and R. I. Simon, Rosen's Emergency Medicine: Expert Consult Premium Edition - Enhanced Online Features and Print (Rosen's Emergency Medicine: Concepts & Clinical Practice (2v.)) (Mosby, 2009).
  4. D. Church, S. Elsayed, O. Reid, B. Winston, and R. Lindsay, “Burn wound infections,” Clin. Microbiol. Rev.19(2), 403–434 (2006).
    [CrossRef] [PubMed]
  5. M. S. Arons, “Burn wound infection—a review,” Conn. Med.29(10), 718–722 (1965).
    [PubMed]
  6. N. Agnihotri, V. Gupta, and R. M. Joshi, “Aerobic bacterial isolates from burn wound infections and their antibiograms—a five-year study,” Burns30(3), 241–243 (2004).
    [CrossRef] [PubMed]
  7. D. J. Dries, “Management of burn injuries—recent developments in resuscitation, infection control and outcomes research,” Scand. J. Trauma Resusc. Emerg. Med.17(1), 14–27 (2009).
    [CrossRef] [PubMed]
  8. R. M. Johnson and R. Richard, “Partial-thickness burns: identification and management,” Adv. Skin Wound Care16(4), 178–187 (2003).
    [CrossRef] [PubMed]
  9. B. S. Atiyeh, S. W. Gunn, and S. N. Hayek, “State of the art in burn treatment,” World J. Surg.29(2), 131–148 (2005).
    [CrossRef] [PubMed]
  10. A. M. Watts, M. P. Tyler, M. E. Perry, A. H. Roberts, and D. A. McGrouther, “Burn depth and its histological measurement,” Burns27(2), 154–160 (2001).
    [CrossRef] [PubMed]
  11. A. C. Roth, J. C. Reid, C. L. Puckett, and M. J. Concannon, “Digital images in the diagnosis of wound healing problems,” Plast. Reconstr. Surg.103(2), 483–486 (1999).
    [CrossRef] [PubMed]
  12. O. C. Jones, D. I. Wilson, and S. Andrews, “The reliability of digital images when used to assess burn wounds,” J. Telemed. Telecare9(Supplement 1), 22–24 (2003).
    [CrossRef] [PubMed]
  13. L. Roa, T. Gómez-Cía, B. Acha, and C. Serrano, “Digital imaging in remote diagnosis of burns,” Burns25(7), 617–623 (1999).
    [CrossRef] [PubMed]
  14. Z. B. Niazi, T. J. Essex, R. Papini, D. Scott, N. R. McLean, and M. J. Black, “New laser Doppler scanner, a valuable adjunct in burn depth assessment,” Burns19(6), 485–489 (1993).
    [CrossRef] [PubMed]
  15. M. G. Sowa, L. Leonardi, J. R. Payette, J. S. Fish, and H. H. Mantsch, “Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period,” Burns27(3), 241–249 (2001).
    [CrossRef] [PubMed]
  16. L. Leonardi, M. G. Sowa, J. R. Payette, and H. H. Mantsch, “Near-infrared spectroscopy and imaging: a new approach to assess burn injuries,” Am. Clin. Lab.19(8), 20–22 (2000).
    [PubMed]
  17. J. M. Still, E. J. Law, K. G. Klavuhn, T. C. Island, and J. Z. Holtz, “Diagnosis of burn depth using laser-induced indocyanine green fluorescence: a preliminary clinical trial,” Burns27(4), 364–371 (2001).
    [CrossRef] [PubMed]
  18. J. Micheels, B. Aisbjorn, and B. Sorensen, “Laser doppler flowmetry. A new non-invasive measurement of microcirculation in intensive care?” Resuscitation12(1), 31–39 (1984).
    [CrossRef] [PubMed]
  19. D. H. Park, J. W. Hwang, K. S. Jang, D. G. Han, K. Y. Ahn, and B. S. Baik, “Use of laser Doppler flowmetry for estimation of the depth of burns,” Plast. Reconstr. Surg.101(6), 1516–1523 (1998).
    [CrossRef] [PubMed]
  20. A. J. Holland, H. C. Martin, and D. T. Cass, “Laser Doppler imaging prediction of burn wound outcome in children,” Burns28(1), 11–17 (2002).
    [CrossRef] [PubMed]
  21. T. J. OʼReilly, R. J. Spence, R. M. Taylor, and J. J. Scheulen, “Laser Doppler flowmetry evaluation of burn wound depth,” J. Burn Care Rehabil.10(1), 1–6 (1989).
    [CrossRef] [PubMed]
  22. L. Atiles, W. Mileski, G. Purdue, J. Hunt, and C. Baxter, “Laser Doppler flowmetry in burn wounds,” J. Burn Care Rehabil.16(4), 388–393 (1995).
    [CrossRef] [PubMed]
  23. M. A. Altintas, A. A. Altintas, K. Knobloch, M. Guggenheim, C. J. Zweifel, and P. M. Vogt, “Differentiation of superficial-partial vs. deep-partial thickness burn injuries in vivo by confocal-laser-scanning microscopy,” Burns35(1), 80–86 (2009).
    [CrossRef] [PubMed]
  24. D. Terhorst, A. Maltusch, E. Stockfleth, S. Lange-Asschenfeldt, W. Sterry, M. Ulrich, and B. Lange-Asschenfeldt, “Reflectance confocal microscopy for the evaluation of acute epidermal wound healing,” Wound Repair Regen.19(6), 671–679 (2011).
    [CrossRef] [PubMed]
  25. Q. H. Le, W. T. Wang, J. X. Hong, X. H. Sun, T. Y. Zheng, W. Q. Zhu, and J. J. Xu, “An in vivo confocal microscopy and impression cytology analysis of goblet cells in patients with chemical burns,” Invest. Ophthalmol. Vis. Sci.51(3), 1397–1400 (2010).
    [CrossRef] [PubMed]
  26. S. Jiao, W. Yu, G. Stoica, and L. V. Wang, “Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging,” Appl. Opt.42(25), 5191–5197 (2003).
    [CrossRef] [PubMed]
  27. M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns30(6), 511–517 (2004).
    [CrossRef] [PubMed]
  28. S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt.9(1), 207–212 (2004).
    [CrossRef] [PubMed]
  29. M. Todorović, S. Jiao, J. Ai, D. Pereda-Cubián, G. Stoica, and L. V. Wang, “In vivo burn imaging using Mueller optical coherence tomography,” Opt. Express16(14), 10279–10284 (2008).
    [CrossRef] [PubMed]
  30. K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
    [CrossRef] [PubMed]
  31. A. T. Yeh, B. Kao, W. G. Jung, Z. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt.9(2), 248–253 (2004).
    [CrossRef] [PubMed]
  32. D. H. Park, J. W. Hwang, K. S. Jang, D. G. Han, K. Y. Ahn, and B. S. Baik, “Use of laser Doppler flowmetry for estimation of the depth of burns,” Plast. Reconstr. Surg.101(6), 1516–1523 (1998).
    [CrossRef] [PubMed]
  33. E. J. Droog, W. Steenbergen, and F. Sjöberg, “Measurement of depth of burns by laser Doppler perfusion imaging,” Burns27(6), 561–568 (2001).
    [CrossRef] [PubMed]
  34. A. J. Holland, H. C. Martin, and D. T. Cass, “Laser Doppler imaging prediction of burn wound outcome in children,” Burns28(1), 11–17 (2002).
    [CrossRef] [PubMed]
  35. L. Atiles, W. Mileski, G. Purdue, J. Hunt, and C. Baxter, “Laser Doppler flowmetry in burn wounds,” J. Burn Care Rehabil.16(4), 388–393 (1995).
    [CrossRef] [PubMed]
  36. S. A. Pape, C. A. Skouras, and P. O. Byrne, “An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth,” Burns27(3), 233–239 (2001).
    [CrossRef] [PubMed]
  37. V. J. Anselmo and B. E. Zawacki, “Multispectral photographic analysis. A new quantitative tool to assist in the early diagnosis of thermal burn depth,” Ann. Biomed. Eng.5(2), 179–193 (1977).
    [CrossRef] [PubMed]
  38. L. T. Vo, P. Anikijenko, W. J. McLaren, P. M. Delaney, D. H. Barkla, and R. G. King, “Autofluorescence of skin burns detected by fiber-optic confocal imaging: evidence that cool water treatment limits progressive thermal damage in anesthetized hairless mice,” J. Trauma51(1), 98–104 (2001).
    [CrossRef] [PubMed]
  39. S. M. Milner, S. Bhat, S. Gulati, G. Gherardini, C. E. Smith, and R. J. Bick, “Observations on the microcirculation of the human burn wound using orthogonal polarization spectral imaging,” Burns31(3), 316–319 (2005).
    [CrossRef] [PubMed]
  40. B. W. Graf and S. A. Boppart, “Multimodal in vivo skin imaging with integrated optical coherence and multiphoton microscopy,” IEEE J. Sel. Top. Quantum Electron.18(4), 1280–1286 (2012).
    [CrossRef]
  41. http://www.millipore.com/catalogue/item/ct02?cid=bios-x-goog-1007-9999-rc
  42. J. Thomsen, N. Bendsoe, K. Svanberg, S. Andersson-Engels, T. M. Jorgensen, L. Thrane, H. E. Larsen, F. Pedersen, and P. E. Andersen, “Optical Doppler tomography for monitoring vascularization during photodynamic therapy of skin cancer lesions,” Proc. SPIE6991, 699118, 699118-7 (2008).
    [CrossRef]
  43. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett.25(2), 114–116 (2000).
    [CrossRef] [PubMed]
  44. B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
    [CrossRef] [PubMed]
  45. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express18(8), 8220–8228 (2010).
    [CrossRef] [PubMed]
  46. J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med.43(2), 122–129 (2011).
    [CrossRef] [PubMed]
  47. E. Z. Zhang and B. J. Vakoc, “Polarimetry noise in fiber-based optical coherence tomography instrumentation,” Opt. Express19(18), 16830–16842 (2011).
    [CrossRef] [PubMed]
  48. D. Stifter, E. Leiss-Holzinger, Z. Major, B. Baumann, M. Pircher, E. Götzinger, C. K. Hitzenberger, and B. Heise, “Dynamic optical studies in materials testing with spectral-domain polarization-sensitive optical coherence tomography,” Opt. Express18(25), 25712–25725 (2010).
    [CrossRef] [PubMed]
  49. E. Z. Zhang, W. Y. Oh, M. L. Villiger, L. Chen, B. E. Bouma, and B. J. Vakoc, “Numerical compensation of system polarization mode dispersion in polarization-sensitive optical coherence tomography,” Opt. Express21(1), 1163–1180 (2013).
    [CrossRef] [PubMed]

2013

2012

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

B. W. Graf and S. A. Boppart, “Multimodal in vivo skin imaging with integrated optical coherence and multiphoton microscopy,” IEEE J. Sel. Top. Quantum Electron.18(4), 1280–1286 (2012).
[CrossRef]

2011

D. Terhorst, A. Maltusch, E. Stockfleth, S. Lange-Asschenfeldt, W. Sterry, M. Ulrich, and B. Lange-Asschenfeldt, “Reflectance confocal microscopy for the evaluation of acute epidermal wound healing,” Wound Repair Regen.19(6), 671–679 (2011).
[CrossRef] [PubMed]

E. Z. Zhang and B. J. Vakoc, “Polarimetry noise in fiber-based optical coherence tomography instrumentation,” Opt. Express19(18), 16830–16842 (2011).
[CrossRef] [PubMed]

J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med.43(2), 122–129 (2011).
[CrossRef] [PubMed]

2010

2009

M. A. Altintas, A. A. Altintas, K. Knobloch, M. Guggenheim, C. J. Zweifel, and P. M. Vogt, “Differentiation of superficial-partial vs. deep-partial thickness burn injuries in vivo by confocal-laser-scanning microscopy,” Burns35(1), 80–86 (2009).
[CrossRef] [PubMed]

D. J. Dries, “Management of burn injuries—recent developments in resuscitation, infection control and outcomes research,” Scand. J. Trauma Resusc. Emerg. Med.17(1), 14–27 (2009).
[CrossRef] [PubMed]

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

2008

M. Todorović, S. Jiao, J. Ai, D. Pereda-Cubián, G. Stoica, and L. V. Wang, “In vivo burn imaging using Mueller optical coherence tomography,” Opt. Express16(14), 10279–10284 (2008).
[CrossRef] [PubMed]

J. Thomsen, N. Bendsoe, K. Svanberg, S. Andersson-Engels, T. M. Jorgensen, L. Thrane, H. E. Larsen, F. Pedersen, and P. E. Andersen, “Optical Doppler tomography for monitoring vascularization during photodynamic therapy of skin cancer lesions,” Proc. SPIE6991, 699118, 699118-7 (2008).
[CrossRef]

2006

D. Church, S. Elsayed, O. Reid, B. Winston, and R. Lindsay, “Burn wound infections,” Clin. Microbiol. Rev.19(2), 403–434 (2006).
[CrossRef] [PubMed]

2005

B. S. Atiyeh, S. W. Gunn, and S. N. Hayek, “State of the art in burn treatment,” World J. Surg.29(2), 131–148 (2005).
[CrossRef] [PubMed]

S. M. Milner, S. Bhat, S. Gulati, G. Gherardini, C. E. Smith, and R. J. Bick, “Observations on the microcirculation of the human burn wound using orthogonal polarization spectral imaging,” Burns31(3), 316–319 (2005).
[CrossRef] [PubMed]

2004

N. Agnihotri, V. Gupta, and R. M. Joshi, “Aerobic bacterial isolates from burn wound infections and their antibiograms—a five-year study,” Burns30(3), 241–243 (2004).
[CrossRef] [PubMed]

M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns30(6), 511–517 (2004).
[CrossRef] [PubMed]

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt.9(1), 207–212 (2004).
[CrossRef] [PubMed]

A. T. Yeh, B. Kao, W. G. Jung, Z. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt.9(2), 248–253 (2004).
[CrossRef] [PubMed]

2003

R. M. Johnson and R. Richard, “Partial-thickness burns: identification and management,” Adv. Skin Wound Care16(4), 178–187 (2003).
[CrossRef] [PubMed]

O. C. Jones, D. I. Wilson, and S. Andrews, “The reliability of digital images when used to assess burn wounds,” J. Telemed. Telecare9(Supplement 1), 22–24 (2003).
[CrossRef] [PubMed]

S. Jiao, W. Yu, G. Stoica, and L. V. Wang, “Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging,” Appl. Opt.42(25), 5191–5197 (2003).
[CrossRef] [PubMed]

2002

A. J. Holland, H. C. Martin, and D. T. Cass, “Laser Doppler imaging prediction of burn wound outcome in children,” Burns28(1), 11–17 (2002).
[CrossRef] [PubMed]

A. J. Holland, H. C. Martin, and D. T. Cass, “Laser Doppler imaging prediction of burn wound outcome in children,” Burns28(1), 11–17 (2002).
[CrossRef] [PubMed]

2001

S. A. Pape, C. A. Skouras, and P. O. Byrne, “An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth,” Burns27(3), 233–239 (2001).
[CrossRef] [PubMed]

E. J. Droog, W. Steenbergen, and F. Sjöberg, “Measurement of depth of burns by laser Doppler perfusion imaging,” Burns27(6), 561–568 (2001).
[CrossRef] [PubMed]

J. M. Still, E. J. Law, K. G. Klavuhn, T. C. Island, and J. Z. Holtz, “Diagnosis of burn depth using laser-induced indocyanine green fluorescence: a preliminary clinical trial,” Burns27(4), 364–371 (2001).
[CrossRef] [PubMed]

M. G. Sowa, L. Leonardi, J. R. Payette, J. S. Fish, and H. H. Mantsch, “Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period,” Burns27(3), 241–249 (2001).
[CrossRef] [PubMed]

A. M. Watts, M. P. Tyler, M. E. Perry, A. H. Roberts, and D. A. McGrouther, “Burn depth and its histological measurement,” Burns27(2), 154–160 (2001).
[CrossRef] [PubMed]

L. T. Vo, P. Anikijenko, W. J. McLaren, P. M. Delaney, D. H. Barkla, and R. G. King, “Autofluorescence of skin burns detected by fiber-optic confocal imaging: evidence that cool water treatment limits progressive thermal damage in anesthetized hairless mice,” J. Trauma51(1), 98–104 (2001).
[CrossRef] [PubMed]

2000

1999

L. Roa, T. Gómez-Cía, B. Acha, and C. Serrano, “Digital imaging in remote diagnosis of burns,” Burns25(7), 617–623 (1999).
[CrossRef] [PubMed]

A. C. Roth, J. C. Reid, C. L. Puckett, and M. J. Concannon, “Digital images in the diagnosis of wound healing problems,” Plast. Reconstr. Surg.103(2), 483–486 (1999).
[CrossRef] [PubMed]

1998

D. H. Park, J. W. Hwang, K. S. Jang, D. G. Han, K. Y. Ahn, and B. S. Baik, “Use of laser Doppler flowmetry for estimation of the depth of burns,” Plast. Reconstr. Surg.101(6), 1516–1523 (1998).
[CrossRef] [PubMed]

D. H. Park, J. W. Hwang, K. S. Jang, D. G. Han, K. Y. Ahn, and B. S. Baik, “Use of laser Doppler flowmetry for estimation of the depth of burns,” Plast. Reconstr. Surg.101(6), 1516–1523 (1998).
[CrossRef] [PubMed]

1996

P. A. Brigham and E. McLoughlin, “Burn incidence and medical care use in the United States: estimates, trends, and data sources,” J. Burn Care Rehabil.17(2), 95–107 (1996).
[CrossRef] [PubMed]

1995

L. Atiles, W. Mileski, G. Purdue, J. Hunt, and C. Baxter, “Laser Doppler flowmetry in burn wounds,” J. Burn Care Rehabil.16(4), 388–393 (1995).
[CrossRef] [PubMed]

L. Atiles, W. Mileski, G. Purdue, J. Hunt, and C. Baxter, “Laser Doppler flowmetry in burn wounds,” J. Burn Care Rehabil.16(4), 388–393 (1995).
[CrossRef] [PubMed]

1993

Z. B. Niazi, T. J. Essex, R. Papini, D. Scott, N. R. McLean, and M. J. Black, “New laser Doppler scanner, a valuable adjunct in burn depth assessment,” Burns19(6), 485–489 (1993).
[CrossRef] [PubMed]

1989

T. J. OʼReilly, R. J. Spence, R. M. Taylor, and J. J. Scheulen, “Laser Doppler flowmetry evaluation of burn wound depth,” J. Burn Care Rehabil.10(1), 1–6 (1989).
[CrossRef] [PubMed]

1984

J. Micheels, B. Aisbjorn, and B. Sorensen, “Laser doppler flowmetry. A new non-invasive measurement of microcirculation in intensive care?” Resuscitation12(1), 31–39 (1984).
[CrossRef] [PubMed]

1977

V. J. Anselmo and B. E. Zawacki, “Multispectral photographic analysis. A new quantitative tool to assist in the early diagnosis of thermal burn depth,” Ann. Biomed. Eng.5(2), 179–193 (1977).
[CrossRef] [PubMed]

1965

M. S. Arons, “Burn wound infection—a review,” Conn. Med.29(10), 718–722 (1965).
[PubMed]

Acha, B.

L. Roa, T. Gómez-Cía, B. Acha, and C. Serrano, “Digital imaging in remote diagnosis of burns,” Burns25(7), 617–623 (1999).
[CrossRef] [PubMed]

Agnihotri, N.

N. Agnihotri, V. Gupta, and R. M. Joshi, “Aerobic bacterial isolates from burn wound infections and their antibiograms—a five-year study,” Burns30(3), 241–243 (2004).
[CrossRef] [PubMed]

Ahn, K. Y.

D. H. Park, J. W. Hwang, K. S. Jang, D. G. Han, K. Y. Ahn, and B. S. Baik, “Use of laser Doppler flowmetry for estimation of the depth of burns,” Plast. Reconstr. Surg.101(6), 1516–1523 (1998).
[CrossRef] [PubMed]

D. H. Park, J. W. Hwang, K. S. Jang, D. G. Han, K. Y. Ahn, and B. S. Baik, “Use of laser Doppler flowmetry for estimation of the depth of burns,” Plast. Reconstr. Surg.101(6), 1516–1523 (1998).
[CrossRef] [PubMed]

Ai, J.

Aisbjorn, B.

J. Micheels, B. Aisbjorn, and B. Sorensen, “Laser doppler flowmetry. A new non-invasive measurement of microcirculation in intensive care?” Resuscitation12(1), 31–39 (1984).
[CrossRef] [PubMed]

Altintas, A. A.

M. A. Altintas, A. A. Altintas, K. Knobloch, M. Guggenheim, C. J. Zweifel, and P. M. Vogt, “Differentiation of superficial-partial vs. deep-partial thickness burn injuries in vivo by confocal-laser-scanning microscopy,” Burns35(1), 80–86 (2009).
[CrossRef] [PubMed]

Altintas, M. A.

M. A. Altintas, A. A. Altintas, K. Knobloch, M. Guggenheim, C. J. Zweifel, and P. M. Vogt, “Differentiation of superficial-partial vs. deep-partial thickness burn injuries in vivo by confocal-laser-scanning microscopy,” Burns35(1), 80–86 (2009).
[CrossRef] [PubMed]

An, L.

J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med.43(2), 122–129 (2011).
[CrossRef] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express18(8), 8220–8228 (2010).
[CrossRef] [PubMed]

Andersen, P. E.

J. Thomsen, N. Bendsoe, K. Svanberg, S. Andersson-Engels, T. M. Jorgensen, L. Thrane, H. E. Larsen, F. Pedersen, and P. E. Andersen, “Optical Doppler tomography for monitoring vascularization during photodynamic therapy of skin cancer lesions,” Proc. SPIE6991, 699118, 699118-7 (2008).
[CrossRef]

Andersson-Engels, S.

J. Thomsen, N. Bendsoe, K. Svanberg, S. Andersson-Engels, T. M. Jorgensen, L. Thrane, H. E. Larsen, F. Pedersen, and P. E. Andersen, “Optical Doppler tomography for monitoring vascularization during photodynamic therapy of skin cancer lesions,” Proc. SPIE6991, 699118, 699118-7 (2008).
[CrossRef]

Andrews, S.

O. C. Jones, D. I. Wilson, and S. Andrews, “The reliability of digital images when used to assess burn wounds,” J. Telemed. Telecare9(Supplement 1), 22–24 (2003).
[CrossRef] [PubMed]

Anikijenko, P.

L. T. Vo, P. Anikijenko, W. J. McLaren, P. M. Delaney, D. H. Barkla, and R. G. King, “Autofluorescence of skin burns detected by fiber-optic confocal imaging: evidence that cool water treatment limits progressive thermal damage in anesthetized hairless mice,” J. Trauma51(1), 98–104 (2001).
[CrossRef] [PubMed]

Anselmo, V. J.

V. J. Anselmo and B. E. Zawacki, “Multispectral photographic analysis. A new quantitative tool to assist in the early diagnosis of thermal burn depth,” Ann. Biomed. Eng.5(2), 179–193 (1977).
[CrossRef] [PubMed]

Arons, M. S.

M. S. Arons, “Burn wound infection—a review,” Conn. Med.29(10), 718–722 (1965).
[PubMed]

Atiles, L.

L. Atiles, W. Mileski, G. Purdue, J. Hunt, and C. Baxter, “Laser Doppler flowmetry in burn wounds,” J. Burn Care Rehabil.16(4), 388–393 (1995).
[CrossRef] [PubMed]

L. Atiles, W. Mileski, G. Purdue, J. Hunt, and C. Baxter, “Laser Doppler flowmetry in burn wounds,” J. Burn Care Rehabil.16(4), 388–393 (1995).
[CrossRef] [PubMed]

Atiyeh, B. S.

B. S. Atiyeh, S. W. Gunn, and S. N. Hayek, “State of the art in burn treatment,” World J. Surg.29(2), 131–148 (2005).
[CrossRef] [PubMed]

Baik, B. S.

D. H. Park, J. W. Hwang, K. S. Jang, D. G. Han, K. Y. Ahn, and B. S. Baik, “Use of laser Doppler flowmetry for estimation of the depth of burns,” Plast. Reconstr. Surg.101(6), 1516–1523 (1998).
[CrossRef] [PubMed]

D. H. Park, J. W. Hwang, K. S. Jang, D. G. Han, K. Y. Ahn, and B. S. Baik, “Use of laser Doppler flowmetry for estimation of the depth of burns,” Plast. Reconstr. Surg.101(6), 1516–1523 (1998).
[CrossRef] [PubMed]

Barkla, D. H.

L. T. Vo, P. Anikijenko, W. J. McLaren, P. M. Delaney, D. H. Barkla, and R. G. King, “Autofluorescence of skin burns detected by fiber-optic confocal imaging: evidence that cool water treatment limits progressive thermal damage in anesthetized hairless mice,” J. Trauma51(1), 98–104 (2001).
[CrossRef] [PubMed]

Bartlett, L. A.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Baumann, B.

Baxter, C.

L. Atiles, W. Mileski, G. Purdue, J. Hunt, and C. Baxter, “Laser Doppler flowmetry in burn wounds,” J. Burn Care Rehabil.16(4), 388–393 (1995).
[CrossRef] [PubMed]

L. Atiles, W. Mileski, G. Purdue, J. Hunt, and C. Baxter, “Laser Doppler flowmetry in burn wounds,” J. Burn Care Rehabil.16(4), 388–393 (1995).
[CrossRef] [PubMed]

Bendsoe, N.

J. Thomsen, N. Bendsoe, K. Svanberg, S. Andersson-Engels, T. M. Jorgensen, L. Thrane, H. E. Larsen, F. Pedersen, and P. E. Andersen, “Optical Doppler tomography for monitoring vascularization during photodynamic therapy of skin cancer lesions,” Proc. SPIE6991, 699118, 699118-7 (2008).
[CrossRef]

Bhat, S.

S. M. Milner, S. Bhat, S. Gulati, G. Gherardini, C. E. Smith, and R. J. Bick, “Observations on the microcirculation of the human burn wound using orthogonal polarization spectral imaging,” Burns31(3), 316–319 (2005).
[CrossRef] [PubMed]

Bick, R. J.

S. M. Milner, S. Bhat, S. Gulati, G. Gherardini, C. E. Smith, and R. J. Bick, “Observations on the microcirculation of the human burn wound using orthogonal polarization spectral imaging,” Burns31(3), 316–319 (2005).
[CrossRef] [PubMed]

Black, M. J.

Z. B. Niazi, T. J. Essex, R. Papini, D. Scott, N. R. McLean, and M. J. Black, “New laser Doppler scanner, a valuable adjunct in burn depth assessment,” Burns19(6), 485–489 (1993).
[CrossRef] [PubMed]

Boppart, S. A.

B. W. Graf and S. A. Boppart, “Multimodal in vivo skin imaging with integrated optical coherence and multiphoton microscopy,” IEEE J. Sel. Top. Quantum Electron.18(4), 1280–1286 (2012).
[CrossRef]

Bouma, B. E.

E. Z. Zhang, W. Y. Oh, M. L. Villiger, L. Chen, B. E. Bouma, and B. J. Vakoc, “Numerical compensation of system polarization mode dispersion in polarization-sensitive optical coherence tomography,” Opt. Express21(1), 1163–1180 (2013).
[CrossRef] [PubMed]

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Brigham, P. A.

P. A. Brigham and E. McLoughlin, “Burn incidence and medical care use in the United States: estimates, trends, and data sources,” J. Burn Care Rehabil.17(2), 95–107 (1996).
[CrossRef] [PubMed]

Byrne, P. O.

S. A. Pape, C. A. Skouras, and P. O. Byrne, “An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth,” Burns27(3), 233–239 (2001).
[CrossRef] [PubMed]

Cass, D. T.

A. J. Holland, H. C. Martin, and D. T. Cass, “Laser Doppler imaging prediction of burn wound outcome in children,” Burns28(1), 11–17 (2002).
[CrossRef] [PubMed]

A. J. Holland, H. C. Martin, and D. T. Cass, “Laser Doppler imaging prediction of burn wound outcome in children,” Burns28(1), 11–17 (2002).
[CrossRef] [PubMed]

Cense, B.

M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns30(6), 511–517 (2004).
[CrossRef] [PubMed]

Chen, L.

Chen, Z.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt.9(1), 207–212 (2004).
[CrossRef] [PubMed]

A. T. Yeh, B. Kao, W. G. Jung, Z. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt.9(2), 248–253 (2004).
[CrossRef] [PubMed]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett.25(2), 114–116 (2000).
[CrossRef] [PubMed]

Church, D.

D. Church, S. Elsayed, O. Reid, B. Winston, and R. Lindsay, “Burn wound infections,” Clin. Microbiol. Rev.19(2), 403–434 (2006).
[CrossRef] [PubMed]

Concannon, M. J.

A. C. Roth, J. C. Reid, C. L. Puckett, and M. J. Concannon, “Digital images in the diagnosis of wound healing problems,” Plast. Reconstr. Surg.103(2), 483–486 (1999).
[CrossRef] [PubMed]

de Boer, J. F.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt.9(1), 207–212 (2004).
[CrossRef] [PubMed]

M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns30(6), 511–517 (2004).
[CrossRef] [PubMed]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett.25(2), 114–116 (2000).
[CrossRef] [PubMed]

Delaney, P. M.

L. T. Vo, P. Anikijenko, W. J. McLaren, P. M. Delaney, D. H. Barkla, and R. G. King, “Autofluorescence of skin burns detected by fiber-optic confocal imaging: evidence that cool water treatment limits progressive thermal damage in anesthetized hairless mice,” J. Trauma51(1), 98–104 (2001).
[CrossRef] [PubMed]

Dries, D. J.

D. J. Dries, “Management of burn injuries—recent developments in resuscitation, infection control and outcomes research,” Scand. J. Trauma Resusc. Emerg. Med.17(1), 14–27 (2009).
[CrossRef] [PubMed]

Droog, E. J.

E. J. Droog, W. Steenbergen, and F. Sjöberg, “Measurement of depth of burns by laser Doppler perfusion imaging,” Burns27(6), 561–568 (2001).
[CrossRef] [PubMed]

Elsayed, S.

D. Church, S. Elsayed, O. Reid, B. Winston, and R. Lindsay, “Burn wound infections,” Clin. Microbiol. Rev.19(2), 403–434 (2006).
[CrossRef] [PubMed]

Essex, T. J.

Z. B. Niazi, T. J. Essex, R. Papini, D. Scott, N. R. McLean, and M. J. Black, “New laser Doppler scanner, a valuable adjunct in burn depth assessment,” Burns19(6), 485–489 (1993).
[CrossRef] [PubMed]

Fish, J. S.

M. G. Sowa, L. Leonardi, J. R. Payette, J. S. Fish, and H. H. Mantsch, “Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period,” Burns27(3), 241–249 (2001).
[CrossRef] [PubMed]

Fukumura, D.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Gareau, D.

J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med.43(2), 122–129 (2011).
[CrossRef] [PubMed]

Gherardini, G.

S. M. Milner, S. Bhat, S. Gulati, G. Gherardini, C. E. Smith, and R. J. Bick, “Observations on the microcirculation of the human burn wound using orthogonal polarization spectral imaging,” Burns31(3), 316–319 (2005).
[CrossRef] [PubMed]

Gómez-Cía, T.

L. Roa, T. Gómez-Cía, B. Acha, and C. Serrano, “Digital imaging in remote diagnosis of burns,” Burns25(7), 617–623 (1999).
[CrossRef] [PubMed]

Götzinger, E.

Graf, B. W.

B. W. Graf and S. A. Boppart, “Multimodal in vivo skin imaging with integrated optical coherence and multiphoton microscopy,” IEEE J. Sel. Top. Quantum Electron.18(4), 1280–1286 (2012).
[CrossRef]

Guggenheim, M.

M. A. Altintas, A. A. Altintas, K. Knobloch, M. Guggenheim, C. J. Zweifel, and P. M. Vogt, “Differentiation of superficial-partial vs. deep-partial thickness burn injuries in vivo by confocal-laser-scanning microscopy,” Burns35(1), 80–86 (2009).
[CrossRef] [PubMed]

Gulati, S.

S. M. Milner, S. Bhat, S. Gulati, G. Gherardini, C. E. Smith, and R. J. Bick, “Observations on the microcirculation of the human burn wound using orthogonal polarization spectral imaging,” Burns31(3), 316–319 (2005).
[CrossRef] [PubMed]

Gunn, S. W.

B. S. Atiyeh, S. W. Gunn, and S. N. Hayek, “State of the art in burn treatment,” World J. Surg.29(2), 131–148 (2005).
[CrossRef] [PubMed]

Gupta, V.

N. Agnihotri, V. Gupta, and R. M. Joshi, “Aerobic bacterial isolates from burn wound infections and their antibiograms—a five-year study,” Burns30(3), 241–243 (2004).
[CrossRef] [PubMed]

Han, D. G.

D. H. Park, J. W. Hwang, K. S. Jang, D. G. Han, K. Y. Ahn, and B. S. Baik, “Use of laser Doppler flowmetry for estimation of the depth of burns,” Plast. Reconstr. Surg.101(6), 1516–1523 (1998).
[CrossRef] [PubMed]

D. H. Park, J. W. Hwang, K. S. Jang, D. G. Han, K. Y. Ahn, and B. S. Baik, “Use of laser Doppler flowmetry for estimation of the depth of burns,” Plast. Reconstr. Surg.101(6), 1516–1523 (1998).
[CrossRef] [PubMed]

Hayek, S. N.

B. S. Atiyeh, S. W. Gunn, and S. N. Hayek, “State of the art in burn treatment,” World J. Surg.29(2), 131–148 (2005).
[CrossRef] [PubMed]

Heise, B.

Hitzenberger, C. K.

Holland, A. J.

A. J. Holland, H. C. Martin, and D. T. Cass, “Laser Doppler imaging prediction of burn wound outcome in children,” Burns28(1), 11–17 (2002).
[CrossRef] [PubMed]

A. J. Holland, H. C. Martin, and D. T. Cass, “Laser Doppler imaging prediction of burn wound outcome in children,” Burns28(1), 11–17 (2002).
[CrossRef] [PubMed]

Holtz, J. Z.

J. M. Still, E. J. Law, K. G. Klavuhn, T. C. Island, and J. Z. Holtz, “Diagnosis of burn depth using laser-induced indocyanine green fluorescence: a preliminary clinical trial,” Burns27(4), 364–371 (2001).
[CrossRef] [PubMed]

Hong, J. X.

Q. H. Le, W. T. Wang, J. X. Hong, X. H. Sun, T. Y. Zheng, W. Q. Zhu, and J. J. Xu, “An in vivo confocal microscopy and impression cytology analysis of goblet cells in patients with chemical burns,” Invest. Ophthalmol. Vis. Sci.51(3), 1397–1400 (2010).
[CrossRef] [PubMed]

Huang, H. E.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt.9(1), 207–212 (2004).
[CrossRef] [PubMed]

Hunt, J.

L. Atiles, W. Mileski, G. Purdue, J. Hunt, and C. Baxter, “Laser Doppler flowmetry in burn wounds,” J. Burn Care Rehabil.16(4), 388–393 (1995).
[CrossRef] [PubMed]

L. Atiles, W. Mileski, G. Purdue, J. Hunt, and C. Baxter, “Laser Doppler flowmetry in burn wounds,” J. Burn Care Rehabil.16(4), 388–393 (1995).
[CrossRef] [PubMed]

Hwang, J. W.

D. H. Park, J. W. Hwang, K. S. Jang, D. G. Han, K. Y. Ahn, and B. S. Baik, “Use of laser Doppler flowmetry for estimation of the depth of burns,” Plast. Reconstr. Surg.101(6), 1516–1523 (1998).
[CrossRef] [PubMed]

D. H. Park, J. W. Hwang, K. S. Jang, D. G. Han, K. Y. Ahn, and B. S. Baik, “Use of laser Doppler flowmetry for estimation of the depth of burns,” Plast. Reconstr. Surg.101(6), 1516–1523 (1998).
[CrossRef] [PubMed]

Hyle Park, B.

M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns30(6), 511–517 (2004).
[CrossRef] [PubMed]

Island, T. C.

J. M. Still, E. J. Law, K. G. Klavuhn, T. C. Island, and J. Z. Holtz, “Diagnosis of burn depth using laser-induced indocyanine green fluorescence: a preliminary clinical trial,” Burns27(4), 364–371 (2001).
[CrossRef] [PubMed]

Jain, R. K.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Jang, K. S.

D. H. Park, J. W. Hwang, K. S. Jang, D. G. Han, K. Y. Ahn, and B. S. Baik, “Use of laser Doppler flowmetry for estimation of the depth of burns,” Plast. Reconstr. Surg.101(6), 1516–1523 (1998).
[CrossRef] [PubMed]

D. H. Park, J. W. Hwang, K. S. Jang, D. G. Han, K. Y. Ahn, and B. S. Baik, “Use of laser Doppler flowmetry for estimation of the depth of burns,” Plast. Reconstr. Surg.101(6), 1516–1523 (1998).
[CrossRef] [PubMed]

Jiang, J.

J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med.43(2), 122–129 (2011).
[CrossRef] [PubMed]

Jiao, S.

Johnson, R. M.

R. M. Johnson and R. Richard, “Partial-thickness burns: identification and management,” Adv. Skin Wound Care16(4), 178–187 (2003).
[CrossRef] [PubMed]

Jones, O. C.

O. C. Jones, D. I. Wilson, and S. Andrews, “The reliability of digital images when used to assess burn wounds,” J. Telemed. Telecare9(Supplement 1), 22–24 (2003).
[CrossRef] [PubMed]

Jorgensen, T. M.

J. Thomsen, N. Bendsoe, K. Svanberg, S. Andersson-Engels, T. M. Jorgensen, L. Thrane, H. E. Larsen, F. Pedersen, and P. E. Andersen, “Optical Doppler tomography for monitoring vascularization during photodynamic therapy of skin cancer lesions,” Proc. SPIE6991, 699118, 699118-7 (2008).
[CrossRef]

Joshi, R. M.

N. Agnihotri, V. Gupta, and R. M. Joshi, “Aerobic bacterial isolates from burn wound infections and their antibiograms—a five-year study,” Burns30(3), 241–243 (2004).
[CrossRef] [PubMed]

Jung, W. G.

A. T. Yeh, B. Kao, W. G. Jung, Z. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt.9(2), 248–253 (2004).
[CrossRef] [PubMed]

Jung, W. Q.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt.9(1), 207–212 (2004).
[CrossRef] [PubMed]

Kao, B.

A. T. Yeh, B. Kao, W. G. Jung, Z. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt.9(2), 248–253 (2004).
[CrossRef] [PubMed]

Keikhanzadeh, K.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt.9(1), 207–212 (2004).
[CrossRef] [PubMed]

Kim, K. H.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

King, R. G.

L. T. Vo, P. Anikijenko, W. J. McLaren, P. M. Delaney, D. H. Barkla, and R. G. King, “Autofluorescence of skin burns detected by fiber-optic confocal imaging: evidence that cool water treatment limits progressive thermal damage in anesthetized hairless mice,” J. Trauma51(1), 98–104 (2001).
[CrossRef] [PubMed]

Klavuhn, K. G.

J. M. Still, E. J. Law, K. G. Klavuhn, T. C. Island, and J. Z. Holtz, “Diagnosis of burn depth using laser-induced indocyanine green fluorescence: a preliminary clinical trial,” Burns27(4), 364–371 (2001).
[CrossRef] [PubMed]

Knobloch, K.

M. A. Altintas, A. A. Altintas, K. Knobloch, M. Guggenheim, C. J. Zweifel, and P. M. Vogt, “Differentiation of superficial-partial vs. deep-partial thickness burn injuries in vivo by confocal-laser-scanning microscopy,” Burns35(1), 80–86 (2009).
[CrossRef] [PubMed]

Lange-Asschenfeldt, B.

D. Terhorst, A. Maltusch, E. Stockfleth, S. Lange-Asschenfeldt, W. Sterry, M. Ulrich, and B. Lange-Asschenfeldt, “Reflectance confocal microscopy for the evaluation of acute epidermal wound healing,” Wound Repair Regen.19(6), 671–679 (2011).
[CrossRef] [PubMed]

Lange-Asschenfeldt, S.

D. Terhorst, A. Maltusch, E. Stockfleth, S. Lange-Asschenfeldt, W. Sterry, M. Ulrich, and B. Lange-Asschenfeldt, “Reflectance confocal microscopy for the evaluation of acute epidermal wound healing,” Wound Repair Regen.19(6), 671–679 (2011).
[CrossRef] [PubMed]

Lanning, R. M.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Larsen, H. E.

J. Thomsen, N. Bendsoe, K. Svanberg, S. Andersson-Engels, T. M. Jorgensen, L. Thrane, H. E. Larsen, F. Pedersen, and P. E. Andersen, “Optical Doppler tomography for monitoring vascularization during photodynamic therapy of skin cancer lesions,” Proc. SPIE6991, 699118, 699118-7 (2008).
[CrossRef]

Law, E. J.

J. M. Still, E. J. Law, K. G. Klavuhn, T. C. Island, and J. Z. Holtz, “Diagnosis of burn depth using laser-induced indocyanine green fluorescence: a preliminary clinical trial,” Burns27(4), 364–371 (2001).
[CrossRef] [PubMed]

Le, Q. H.

Q. H. Le, W. T. Wang, J. X. Hong, X. H. Sun, T. Y. Zheng, W. Q. Zhu, and J. J. Xu, “An in vivo confocal microscopy and impression cytology analysis of goblet cells in patients with chemical burns,” Invest. Ophthalmol. Vis. Sci.51(3), 1397–1400 (2010).
[CrossRef] [PubMed]

Leiss-Holzinger, E.

Leonardi, L.

M. G. Sowa, L. Leonardi, J. R. Payette, J. S. Fish, and H. H. Mantsch, “Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period,” Burns27(3), 241–249 (2001).
[CrossRef] [PubMed]

L. Leonardi, M. G. Sowa, J. R. Payette, and H. H. Mantsch, “Near-infrared spectroscopy and imaging: a new approach to assess burn injuries,” Am. Clin. Lab.19(8), 20–22 (2000).
[PubMed]

Lindsay, R.

D. Church, S. Elsayed, O. Reid, B. Winston, and R. Lindsay, “Burn wound infections,” Clin. Microbiol. Rev.19(2), 403–434 (2006).
[CrossRef] [PubMed]

Lydon, M.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

Maguluri, G.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

Major, Z.

Maltusch, A.

D. Terhorst, A. Maltusch, E. Stockfleth, S. Lange-Asschenfeldt, W. Sterry, M. Ulrich, and B. Lange-Asschenfeldt, “Reflectance confocal microscopy for the evaluation of acute epidermal wound healing,” Wound Repair Regen.19(6), 671–679 (2011).
[CrossRef] [PubMed]

Mantsch, H. H.

M. G. Sowa, L. Leonardi, J. R. Payette, J. S. Fish, and H. H. Mantsch, “Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period,” Burns27(3), 241–249 (2001).
[CrossRef] [PubMed]

L. Leonardi, M. G. Sowa, J. R. Payette, and H. H. Mantsch, “Near-infrared spectroscopy and imaging: a new approach to assess burn injuries,” Am. Clin. Lab.19(8), 20–22 (2000).
[PubMed]

Martin, H. C.

A. J. Holland, H. C. Martin, and D. T. Cass, “Laser Doppler imaging prediction of burn wound outcome in children,” Burns28(1), 11–17 (2002).
[CrossRef] [PubMed]

A. J. Holland, H. C. Martin, and D. T. Cass, “Laser Doppler imaging prediction of burn wound outcome in children,” Burns28(1), 11–17 (2002).
[CrossRef] [PubMed]

McGrouther, D. A.

A. M. Watts, M. P. Tyler, M. E. Perry, A. H. Roberts, and D. A. McGrouther, “Burn depth and its histological measurement,” Burns27(2), 154–160 (2001).
[CrossRef] [PubMed]

McLaren, W. J.

L. T. Vo, P. Anikijenko, W. J. McLaren, P. M. Delaney, D. H. Barkla, and R. G. King, “Autofluorescence of skin burns detected by fiber-optic confocal imaging: evidence that cool water treatment limits progressive thermal damage in anesthetized hairless mice,” J. Trauma51(1), 98–104 (2001).
[CrossRef] [PubMed]

McLean, N. R.

Z. B. Niazi, T. J. Essex, R. Papini, D. Scott, N. R. McLean, and M. J. Black, “New laser Doppler scanner, a valuable adjunct in burn depth assessment,” Burns19(6), 485–489 (1993).
[CrossRef] [PubMed]

McLoughlin, E.

P. A. Brigham and E. McLoughlin, “Burn incidence and medical care use in the United States: estimates, trends, and data sources,” J. Burn Care Rehabil.17(2), 95–107 (1996).
[CrossRef] [PubMed]

Micheels, J.

J. Micheels, B. Aisbjorn, and B. Sorensen, “Laser doppler flowmetry. A new non-invasive measurement of microcirculation in intensive care?” Resuscitation12(1), 31–39 (1984).
[CrossRef] [PubMed]

Mileski, W.

L. Atiles, W. Mileski, G. Purdue, J. Hunt, and C. Baxter, “Laser Doppler flowmetry in burn wounds,” J. Burn Care Rehabil.16(4), 388–393 (1995).
[CrossRef] [PubMed]

L. Atiles, W. Mileski, G. Purdue, J. Hunt, and C. Baxter, “Laser Doppler flowmetry in burn wounds,” J. Burn Care Rehabil.16(4), 388–393 (1995).
[CrossRef] [PubMed]

Milner, S. M.

S. M. Milner, S. Bhat, S. Gulati, G. Gherardini, C. E. Smith, and R. J. Bick, “Observations on the microcirculation of the human burn wound using orthogonal polarization spectral imaging,” Burns31(3), 316–319 (2005).
[CrossRef] [PubMed]

Munn, L. L.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Nelson, J. S.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt.9(1), 207–212 (2004).
[CrossRef] [PubMed]

A. T. Yeh, B. Kao, W. G. Jung, Z. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt.9(2), 248–253 (2004).
[CrossRef] [PubMed]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett.25(2), 114–116 (2000).
[CrossRef] [PubMed]

Niazi, Z. B.

Z. B. Niazi, T. J. Essex, R. Papini, D. Scott, N. R. McLean, and M. J. Black, “New laser Doppler scanner, a valuable adjunct in burn depth assessment,” Burns19(6), 485–489 (1993).
[CrossRef] [PubMed]

Oh, W. Y.

O'Reilly, T. J.

T. J. OʼReilly, R. J. Spence, R. M. Taylor, and J. J. Scheulen, “Laser Doppler flowmetry evaluation of burn wound depth,” J. Burn Care Rehabil.10(1), 1–6 (1989).
[CrossRef] [PubMed]

Padera, T. P.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Pape, S. A.

S. A. Pape, C. A. Skouras, and P. O. Byrne, “An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth,” Burns27(3), 233–239 (2001).
[CrossRef] [PubMed]

Papini, R.

Z. B. Niazi, T. J. Essex, R. Papini, D. Scott, N. R. McLean, and M. J. Black, “New laser Doppler scanner, a valuable adjunct in burn depth assessment,” Burns19(6), 485–489 (1993).
[CrossRef] [PubMed]

Park, B. H.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

Park, D. H.

D. H. Park, J. W. Hwang, K. S. Jang, D. G. Han, K. Y. Ahn, and B. S. Baik, “Use of laser Doppler flowmetry for estimation of the depth of burns,” Plast. Reconstr. Surg.101(6), 1516–1523 (1998).
[CrossRef] [PubMed]

D. H. Park, J. W. Hwang, K. S. Jang, D. G. Han, K. Y. Ahn, and B. S. Baik, “Use of laser Doppler flowmetry for estimation of the depth of burns,” Plast. Reconstr. Surg.101(6), 1516–1523 (1998).
[CrossRef] [PubMed]

Park, H.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt.9(1), 207–212 (2004).
[CrossRef] [PubMed]

Payette, J. R.

M. G. Sowa, L. Leonardi, J. R. Payette, J. S. Fish, and H. H. Mantsch, “Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period,” Burns27(3), 241–249 (2001).
[CrossRef] [PubMed]

L. Leonardi, M. G. Sowa, J. R. Payette, and H. H. Mantsch, “Near-infrared spectroscopy and imaging: a new approach to assess burn injuries,” Am. Clin. Lab.19(8), 20–22 (2000).
[PubMed]

Pedersen, F.

J. Thomsen, N. Bendsoe, K. Svanberg, S. Andersson-Engels, T. M. Jorgensen, L. Thrane, H. E. Larsen, F. Pedersen, and P. E. Andersen, “Optical Doppler tomography for monitoring vascularization during photodynamic therapy of skin cancer lesions,” Proc. SPIE6991, 699118, 699118-7 (2008).
[CrossRef]

Pereda-Cubián, D.

Perry, M. E.

A. M. Watts, M. P. Tyler, M. E. Perry, A. H. Roberts, and D. A. McGrouther, “Burn depth and its histological measurement,” Burns27(2), 154–160 (2001).
[CrossRef] [PubMed]

Pierce, M. C.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns30(6), 511–517 (2004).
[CrossRef] [PubMed]

Pircher, M.

Puckett, C. L.

A. C. Roth, J. C. Reid, C. L. Puckett, and M. J. Concannon, “Digital images in the diagnosis of wound healing problems,” Plast. Reconstr. Surg.103(2), 483–486 (1999).
[CrossRef] [PubMed]

Purdue, G.

L. Atiles, W. Mileski, G. Purdue, J. Hunt, and C. Baxter, “Laser Doppler flowmetry in burn wounds,” J. Burn Care Rehabil.16(4), 388–393 (1995).
[CrossRef] [PubMed]

L. Atiles, W. Mileski, G. Purdue, J. Hunt, and C. Baxter, “Laser Doppler flowmetry in burn wounds,” J. Burn Care Rehabil.16(4), 388–393 (1995).
[CrossRef] [PubMed]

Qin, J.

J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med.43(2), 122–129 (2011).
[CrossRef] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express18(8), 8220–8228 (2010).
[CrossRef] [PubMed]

Reid, J. C.

A. C. Roth, J. C. Reid, C. L. Puckett, and M. J. Concannon, “Digital images in the diagnosis of wound healing problems,” Plast. Reconstr. Surg.103(2), 483–486 (1999).
[CrossRef] [PubMed]

Reid, O.

D. Church, S. Elsayed, O. Reid, B. Winston, and R. Lindsay, “Burn wound infections,” Clin. Microbiol. Rev.19(2), 403–434 (2006).
[CrossRef] [PubMed]

Richard, R.

R. M. Johnson and R. Richard, “Partial-thickness burns: identification and management,” Adv. Skin Wound Care16(4), 178–187 (2003).
[CrossRef] [PubMed]

Roa, L.

L. Roa, T. Gómez-Cía, B. Acha, and C. Serrano, “Digital imaging in remote diagnosis of burns,” Burns25(7), 617–623 (1999).
[CrossRef] [PubMed]

Roberts, A. H.

A. M. Watts, M. P. Tyler, M. E. Perry, A. H. Roberts, and D. A. McGrouther, “Burn depth and its histological measurement,” Burns27(2), 154–160 (2001).
[CrossRef] [PubMed]

Roth, A. C.

A. C. Roth, J. C. Reid, C. L. Puckett, and M. J. Concannon, “Digital images in the diagnosis of wound healing problems,” Plast. Reconstr. Surg.103(2), 483–486 (1999).
[CrossRef] [PubMed]

Saxer, C.

Scheulen, J. J.

T. J. OʼReilly, R. J. Spence, R. M. Taylor, and J. J. Scheulen, “Laser Doppler flowmetry evaluation of burn wound depth,” J. Burn Care Rehabil.10(1), 1–6 (1989).
[CrossRef] [PubMed]

Scott, D.

Z. B. Niazi, T. J. Essex, R. Papini, D. Scott, N. R. McLean, and M. J. Black, “New laser Doppler scanner, a valuable adjunct in burn depth assessment,” Burns19(6), 485–489 (1993).
[CrossRef] [PubMed]

Serrano, C.

L. Roa, T. Gómez-Cía, B. Acha, and C. Serrano, “Digital imaging in remote diagnosis of burns,” Burns25(7), 617–623 (1999).
[CrossRef] [PubMed]

Sheridan, R.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

Sheridan, R. L.

M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns30(6), 511–517 (2004).
[CrossRef] [PubMed]

Sjöberg, F.

E. J. Droog, W. Steenbergen, and F. Sjöberg, “Measurement of depth of burns by laser Doppler perfusion imaging,” Burns27(6), 561–568 (2001).
[CrossRef] [PubMed]

Skouras, C. A.

S. A. Pape, C. A. Skouras, and P. O. Byrne, “An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth,” Burns27(3), 233–239 (2001).
[CrossRef] [PubMed]

Smith, C. E.

S. M. Milner, S. Bhat, S. Gulati, G. Gherardini, C. E. Smith, and R. J. Bick, “Observations on the microcirculation of the human burn wound using orthogonal polarization spectral imaging,” Burns31(3), 316–319 (2005).
[CrossRef] [PubMed]

Sorensen, B.

J. Micheels, B. Aisbjorn, and B. Sorensen, “Laser doppler flowmetry. A new non-invasive measurement of microcirculation in intensive care?” Resuscitation12(1), 31–39 (1984).
[CrossRef] [PubMed]

Sowa, M. G.

M. G. Sowa, L. Leonardi, J. R. Payette, J. S. Fish, and H. H. Mantsch, “Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period,” Burns27(3), 241–249 (2001).
[CrossRef] [PubMed]

L. Leonardi, M. G. Sowa, J. R. Payette, and H. H. Mantsch, “Near-infrared spectroscopy and imaging: a new approach to assess burn injuries,” Am. Clin. Lab.19(8), 20–22 (2000).
[PubMed]

Spence, R. J.

T. J. OʼReilly, R. J. Spence, R. M. Taylor, and J. J. Scheulen, “Laser Doppler flowmetry evaluation of burn wound depth,” J. Burn Care Rehabil.10(1), 1–6 (1989).
[CrossRef] [PubMed]

Srinivas, S. M.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt.9(1), 207–212 (2004).
[CrossRef] [PubMed]

Steenbergen, W.

E. J. Droog, W. Steenbergen, and F. Sjöberg, “Measurement of depth of burns by laser Doppler perfusion imaging,” Burns27(6), 561–568 (2001).
[CrossRef] [PubMed]

Sterry, W.

D. Terhorst, A. Maltusch, E. Stockfleth, S. Lange-Asschenfeldt, W. Sterry, M. Ulrich, and B. Lange-Asschenfeldt, “Reflectance confocal microscopy for the evaluation of acute epidermal wound healing,” Wound Repair Regen.19(6), 671–679 (2011).
[CrossRef] [PubMed]

Stifter, D.

Still, J. M.

J. M. Still, E. J. Law, K. G. Klavuhn, T. C. Island, and J. Z. Holtz, “Diagnosis of burn depth using laser-induced indocyanine green fluorescence: a preliminary clinical trial,” Burns27(4), 364–371 (2001).
[CrossRef] [PubMed]

Stockfleth, E.

D. Terhorst, A. Maltusch, E. Stockfleth, S. Lange-Asschenfeldt, W. Sterry, M. Ulrich, and B. Lange-Asschenfeldt, “Reflectance confocal microscopy for the evaluation of acute epidermal wound healing,” Wound Repair Regen.19(6), 671–679 (2011).
[CrossRef] [PubMed]

Stoica, G.

Stylianopoulos, T.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Sun, X. H.

Q. H. Le, W. T. Wang, J. X. Hong, X. H. Sun, T. Y. Zheng, W. Q. Zhu, and J. J. Xu, “An in vivo confocal microscopy and impression cytology analysis of goblet cells in patients with chemical burns,” Invest. Ophthalmol. Vis. Sci.51(3), 1397–1400 (2010).
[CrossRef] [PubMed]

Svanberg, K.

J. Thomsen, N. Bendsoe, K. Svanberg, S. Andersson-Engels, T. M. Jorgensen, L. Thrane, H. E. Larsen, F. Pedersen, and P. E. Andersen, “Optical Doppler tomography for monitoring vascularization during photodynamic therapy of skin cancer lesions,” Proc. SPIE6991, 699118, 699118-7 (2008).
[CrossRef]

Taylor, R. M.

T. J. OʼReilly, R. J. Spence, R. M. Taylor, and J. J. Scheulen, “Laser Doppler flowmetry evaluation of burn wound depth,” J. Burn Care Rehabil.10(1), 1–6 (1989).
[CrossRef] [PubMed]

Tearney, G. J.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Terhorst, D.

D. Terhorst, A. Maltusch, E. Stockfleth, S. Lange-Asschenfeldt, W. Sterry, M. Ulrich, and B. Lange-Asschenfeldt, “Reflectance confocal microscopy for the evaluation of acute epidermal wound healing,” Wound Repair Regen.19(6), 671–679 (2011).
[CrossRef] [PubMed]

Thomsen, J.

J. Thomsen, N. Bendsoe, K. Svanberg, S. Andersson-Engels, T. M. Jorgensen, L. Thrane, H. E. Larsen, F. Pedersen, and P. E. Andersen, “Optical Doppler tomography for monitoring vascularization during photodynamic therapy of skin cancer lesions,” Proc. SPIE6991, 699118, 699118-7 (2008).
[CrossRef]

Thrane, L.

J. Thomsen, N. Bendsoe, K. Svanberg, S. Andersson-Engels, T. M. Jorgensen, L. Thrane, H. E. Larsen, F. Pedersen, and P. E. Andersen, “Optical Doppler tomography for monitoring vascularization during photodynamic therapy of skin cancer lesions,” Proc. SPIE6991, 699118, 699118-7 (2008).
[CrossRef]

Todorovic, M.

Tromberg, B. J.

A. T. Yeh, B. Kao, W. G. Jung, Z. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt.9(2), 248–253 (2004).
[CrossRef] [PubMed]

Tyler, M. P.

A. M. Watts, M. P. Tyler, M. E. Perry, A. H. Roberts, and D. A. McGrouther, “Burn depth and its histological measurement,” Burns27(2), 154–160 (2001).
[CrossRef] [PubMed]

Tyrrell, J. A.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Ulrich, M.

D. Terhorst, A. Maltusch, E. Stockfleth, S. Lange-Asschenfeldt, W. Sterry, M. Ulrich, and B. Lange-Asschenfeldt, “Reflectance confocal microscopy for the evaluation of acute epidermal wound healing,” Wound Repair Regen.19(6), 671–679 (2011).
[CrossRef] [PubMed]

Vakoc, B. J.

E. Z. Zhang, W. Y. Oh, M. L. Villiger, L. Chen, B. E. Bouma, and B. J. Vakoc, “Numerical compensation of system polarization mode dispersion in polarization-sensitive optical coherence tomography,” Opt. Express21(1), 1163–1180 (2013).
[CrossRef] [PubMed]

E. Z. Zhang and B. J. Vakoc, “Polarimetry noise in fiber-based optical coherence tomography instrumentation,” Opt. Express19(18), 16830–16842 (2011).
[CrossRef] [PubMed]

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Villiger, M. L.

Vo, L. T.

L. T. Vo, P. Anikijenko, W. J. McLaren, P. M. Delaney, D. H. Barkla, and R. G. King, “Autofluorescence of skin burns detected by fiber-optic confocal imaging: evidence that cool water treatment limits progressive thermal damage in anesthetized hairless mice,” J. Trauma51(1), 98–104 (2001).
[CrossRef] [PubMed]

Vogt, P. M.

M. A. Altintas, A. A. Altintas, K. Knobloch, M. Guggenheim, C. J. Zweifel, and P. M. Vogt, “Differentiation of superficial-partial vs. deep-partial thickness burn injuries in vivo by confocal-laser-scanning microscopy,” Burns35(1), 80–86 (2009).
[CrossRef] [PubMed]

Wang, L. V.

Wang, R. K.

J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med.43(2), 122–129 (2011).
[CrossRef] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express18(8), 8220–8228 (2010).
[CrossRef] [PubMed]

Wang, W. T.

Q. H. Le, W. T. Wang, J. X. Hong, X. H. Sun, T. Y. Zheng, W. Q. Zhu, and J. J. Xu, “An in vivo confocal microscopy and impression cytology analysis of goblet cells in patients with chemical burns,” Invest. Ophthalmol. Vis. Sci.51(3), 1397–1400 (2010).
[CrossRef] [PubMed]

Watts, A. M.

A. M. Watts, M. P. Tyler, M. E. Perry, A. H. Roberts, and D. A. McGrouther, “Burn depth and its histological measurement,” Burns27(2), 154–160 (2001).
[CrossRef] [PubMed]

Wilson, D. I.

O. C. Jones, D. I. Wilson, and S. Andrews, “The reliability of digital images when used to assess burn wounds,” J. Telemed. Telecare9(Supplement 1), 22–24 (2003).
[CrossRef] [PubMed]

Winston, B.

D. Church, S. Elsayed, O. Reid, B. Winston, and R. Lindsay, “Burn wound infections,” Clin. Microbiol. Rev.19(2), 403–434 (2006).
[CrossRef] [PubMed]

Xiang, S.

Xu, J. J.

Q. H. Le, W. T. Wang, J. X. Hong, X. H. Sun, T. Y. Zheng, W. Q. Zhu, and J. J. Xu, “An in vivo confocal microscopy and impression cytology analysis of goblet cells in patients with chemical burns,” Invest. Ophthalmol. Vis. Sci.51(3), 1397–1400 (2010).
[CrossRef] [PubMed]

Yeh, A. T.

A. T. Yeh, B. Kao, W. G. Jung, Z. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt.9(2), 248–253 (2004).
[CrossRef] [PubMed]

Yoon, S. J.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

Yu, W.

Zawacki, B. E.

V. J. Anselmo and B. E. Zawacki, “Multispectral photographic analysis. A new quantitative tool to assist in the early diagnosis of thermal burn depth,” Ann. Biomed. Eng.5(2), 179–193 (1977).
[CrossRef] [PubMed]

Zhang, E. Z.

Zhang, J.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt.9(1), 207–212 (2004).
[CrossRef] [PubMed]

Zhao, Y.

Zheng, T. Y.

Q. H. Le, W. T. Wang, J. X. Hong, X. H. Sun, T. Y. Zheng, W. Q. Zhu, and J. J. Xu, “An in vivo confocal microscopy and impression cytology analysis of goblet cells in patients with chemical burns,” Invest. Ophthalmol. Vis. Sci.51(3), 1397–1400 (2010).
[CrossRef] [PubMed]

Zhu, W. Q.

Q. H. Le, W. T. Wang, J. X. Hong, X. H. Sun, T. Y. Zheng, W. Q. Zhu, and J. J. Xu, “An in vivo confocal microscopy and impression cytology analysis of goblet cells in patients with chemical burns,” Invest. Ophthalmol. Vis. Sci.51(3), 1397–1400 (2010).
[CrossRef] [PubMed]

Zweifel, C. J.

M. A. Altintas, A. A. Altintas, K. Knobloch, M. Guggenheim, C. J. Zweifel, and P. M. Vogt, “Differentiation of superficial-partial vs. deep-partial thickness burn injuries in vivo by confocal-laser-scanning microscopy,” Burns35(1), 80–86 (2009).
[CrossRef] [PubMed]

Adv. Skin Wound Care

R. M. Johnson and R. Richard, “Partial-thickness burns: identification and management,” Adv. Skin Wound Care16(4), 178–187 (2003).
[CrossRef] [PubMed]

Am. Clin. Lab.

L. Leonardi, M. G. Sowa, J. R. Payette, and H. H. Mantsch, “Near-infrared spectroscopy and imaging: a new approach to assess burn injuries,” Am. Clin. Lab.19(8), 20–22 (2000).
[PubMed]

Ann. Biomed. Eng.

V. J. Anselmo and B. E. Zawacki, “Multispectral photographic analysis. A new quantitative tool to assist in the early diagnosis of thermal burn depth,” Ann. Biomed. Eng.5(2), 179–193 (1977).
[CrossRef] [PubMed]

Appl. Opt.

Burns

M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns30(6), 511–517 (2004).
[CrossRef] [PubMed]

S. M. Milner, S. Bhat, S. Gulati, G. Gherardini, C. E. Smith, and R. J. Bick, “Observations on the microcirculation of the human burn wound using orthogonal polarization spectral imaging,” Burns31(3), 316–319 (2005).
[CrossRef] [PubMed]

E. J. Droog, W. Steenbergen, and F. Sjöberg, “Measurement of depth of burns by laser Doppler perfusion imaging,” Burns27(6), 561–568 (2001).
[CrossRef] [PubMed]

A. J. Holland, H. C. Martin, and D. T. Cass, “Laser Doppler imaging prediction of burn wound outcome in children,” Burns28(1), 11–17 (2002).
[CrossRef] [PubMed]

S. A. Pape, C. A. Skouras, and P. O. Byrne, “An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth,” Burns27(3), 233–239 (2001).
[CrossRef] [PubMed]

A. J. Holland, H. C. Martin, and D. T. Cass, “Laser Doppler imaging prediction of burn wound outcome in children,” Burns28(1), 11–17 (2002).
[CrossRef] [PubMed]

M. A. Altintas, A. A. Altintas, K. Knobloch, M. Guggenheim, C. J. Zweifel, and P. M. Vogt, “Differentiation of superficial-partial vs. deep-partial thickness burn injuries in vivo by confocal-laser-scanning microscopy,” Burns35(1), 80–86 (2009).
[CrossRef] [PubMed]

J. M. Still, E. J. Law, K. G. Klavuhn, T. C. Island, and J. Z. Holtz, “Diagnosis of burn depth using laser-induced indocyanine green fluorescence: a preliminary clinical trial,” Burns27(4), 364–371 (2001).
[CrossRef] [PubMed]

L. Roa, T. Gómez-Cía, B. Acha, and C. Serrano, “Digital imaging in remote diagnosis of burns,” Burns25(7), 617–623 (1999).
[CrossRef] [PubMed]

Z. B. Niazi, T. J. Essex, R. Papini, D. Scott, N. R. McLean, and M. J. Black, “New laser Doppler scanner, a valuable adjunct in burn depth assessment,” Burns19(6), 485–489 (1993).
[CrossRef] [PubMed]

M. G. Sowa, L. Leonardi, J. R. Payette, J. S. Fish, and H. H. Mantsch, “Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period,” Burns27(3), 241–249 (2001).
[CrossRef] [PubMed]

A. M. Watts, M. P. Tyler, M. E. Perry, A. H. Roberts, and D. A. McGrouther, “Burn depth and its histological measurement,” Burns27(2), 154–160 (2001).
[CrossRef] [PubMed]

N. Agnihotri, V. Gupta, and R. M. Joshi, “Aerobic bacterial isolates from burn wound infections and their antibiograms—a five-year study,” Burns30(3), 241–243 (2004).
[CrossRef] [PubMed]

Clin. Microbiol. Rev.

D. Church, S. Elsayed, O. Reid, B. Winston, and R. Lindsay, “Burn wound infections,” Clin. Microbiol. Rev.19(2), 403–434 (2006).
[CrossRef] [PubMed]

Conn. Med.

M. S. Arons, “Burn wound infection—a review,” Conn. Med.29(10), 718–722 (1965).
[PubMed]

IEEE J. Sel. Top. Quantum Electron.

B. W. Graf and S. A. Boppart, “Multimodal in vivo skin imaging with integrated optical coherence and multiphoton microscopy,” IEEE J. Sel. Top. Quantum Electron.18(4), 1280–1286 (2012).
[CrossRef]

Invest. Ophthalmol. Vis. Sci.

Q. H. Le, W. T. Wang, J. X. Hong, X. H. Sun, T. Y. Zheng, W. Q. Zhu, and J. J. Xu, “An in vivo confocal microscopy and impression cytology analysis of goblet cells in patients with chemical burns,” Invest. Ophthalmol. Vis. Sci.51(3), 1397–1400 (2010).
[CrossRef] [PubMed]

J. Biomed. Opt.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

A. T. Yeh, B. Kao, W. G. Jung, Z. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt.9(2), 248–253 (2004).
[CrossRef] [PubMed]

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt.9(1), 207–212 (2004).
[CrossRef] [PubMed]

J. Burn Care Rehabil.

T. J. OʼReilly, R. J. Spence, R. M. Taylor, and J. J. Scheulen, “Laser Doppler flowmetry evaluation of burn wound depth,” J. Burn Care Rehabil.10(1), 1–6 (1989).
[CrossRef] [PubMed]

L. Atiles, W. Mileski, G. Purdue, J. Hunt, and C. Baxter, “Laser Doppler flowmetry in burn wounds,” J. Burn Care Rehabil.16(4), 388–393 (1995).
[CrossRef] [PubMed]

L. Atiles, W. Mileski, G. Purdue, J. Hunt, and C. Baxter, “Laser Doppler flowmetry in burn wounds,” J. Burn Care Rehabil.16(4), 388–393 (1995).
[CrossRef] [PubMed]

P. A. Brigham and E. McLoughlin, “Burn incidence and medical care use in the United States: estimates, trends, and data sources,” J. Burn Care Rehabil.17(2), 95–107 (1996).
[CrossRef] [PubMed]

J. Telemed. Telecare

O. C. Jones, D. I. Wilson, and S. Andrews, “The reliability of digital images when used to assess burn wounds,” J. Telemed. Telecare9(Supplement 1), 22–24 (2003).
[CrossRef] [PubMed]

J. Trauma

L. T. Vo, P. Anikijenko, W. J. McLaren, P. M. Delaney, D. H. Barkla, and R. G. King, “Autofluorescence of skin burns detected by fiber-optic confocal imaging: evidence that cool water treatment limits progressive thermal damage in anesthetized hairless mice,” J. Trauma51(1), 98–104 (2001).
[CrossRef] [PubMed]

Lasers Surg. Med.

J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med.43(2), 122–129 (2011).
[CrossRef] [PubMed]

Nat. Med.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Plast. Reconstr. Surg.

D. H. Park, J. W. Hwang, K. S. Jang, D. G. Han, K. Y. Ahn, and B. S. Baik, “Use of laser Doppler flowmetry for estimation of the depth of burns,” Plast. Reconstr. Surg.101(6), 1516–1523 (1998).
[CrossRef] [PubMed]

D. H. Park, J. W. Hwang, K. S. Jang, D. G. Han, K. Y. Ahn, and B. S. Baik, “Use of laser Doppler flowmetry for estimation of the depth of burns,” Plast. Reconstr. Surg.101(6), 1516–1523 (1998).
[CrossRef] [PubMed]

A. C. Roth, J. C. Reid, C. L. Puckett, and M. J. Concannon, “Digital images in the diagnosis of wound healing problems,” Plast. Reconstr. Surg.103(2), 483–486 (1999).
[CrossRef] [PubMed]

Proc. SPIE

J. Thomsen, N. Bendsoe, K. Svanberg, S. Andersson-Engels, T. M. Jorgensen, L. Thrane, H. E. Larsen, F. Pedersen, and P. E. Andersen, “Optical Doppler tomography for monitoring vascularization during photodynamic therapy of skin cancer lesions,” Proc. SPIE6991, 699118, 699118-7 (2008).
[CrossRef]

Resuscitation

J. Micheels, B. Aisbjorn, and B. Sorensen, “Laser doppler flowmetry. A new non-invasive measurement of microcirculation in intensive care?” Resuscitation12(1), 31–39 (1984).
[CrossRef] [PubMed]

Scand. J. Trauma Resusc. Emerg. Med.

D. J. Dries, “Management of burn injuries—recent developments in resuscitation, infection control and outcomes research,” Scand. J. Trauma Resusc. Emerg. Med.17(1), 14–27 (2009).
[CrossRef] [PubMed]

World J. Surg.

B. S. Atiyeh, S. W. Gunn, and S. N. Hayek, “State of the art in burn treatment,” World J. Surg.29(2), 131–148 (2005).
[CrossRef] [PubMed]

Wound Repair Regen.

D. Terhorst, A. Maltusch, E. Stockfleth, S. Lange-Asschenfeldt, W. Sterry, M. Ulrich, and B. Lange-Asschenfeldt, “Reflectance confocal microscopy for the evaluation of acute epidermal wound healing,” Wound Repair Regen.19(6), 671–679 (2011).
[CrossRef] [PubMed]

Other

http://www.millipore.com/catalogue/item/ct02?cid=bios-x-goog-1007-9999-rc

R. Walls, J. J. Ratey, and R. I. Simon, Rosen's Emergency Medicine: Expert Consult Premium Edition - Enhanced Online Features and Print (Rosen's Emergency Medicine: Concepts & Clinical Practice (2v.)) (Mosby, 2009).

Burn incidence fact sheet (American Burn Association 2011). http://www.ameriburn.org/resources_factsheet.php

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Basic skin anatomy, showing the depth of injury for first-, second-, and third-degree burns. Source: http://www.childrenshospital.org/az/Site784/mainpageS784P0.html (modified and reprinted with permission).

Fig. 2
Fig. 2

Schematic of the RCM/OCT instrument.

Fig. 3
Fig. 3

Optical imaging port of the RCM/OCT instrument. (A, B): Zemax design of the common path optical imaging channel of the RCM/OCT instrument. (C): Through focus spot diagram of the OCT channel.

Fig. 4
Fig. 4

(A): Photograph of the RCM/OCT imaging instrument. (B): Top view of the imaging probe. (C,D): Side views of the imaging probe.

Fig. 5
Fig. 5

(A): Enface OCT image of a 2 x 2 mm area from the resolution target. (B): Co-localized RCM image. (C-D): RCM images of the high-resolution UASF 1951 target. (E): Cross-sectional OCT image OCT of the thumb area. (F): 3D rendering of an OCT raster scan. (G,H): Enface RCM images of two skin areas marked in red in (E).

Fig. 6
Fig. 6

Cross-sectional OCT and en face RCM images of the EpiDermFT Skin Model. (A): Cross-sectional OCT image; all three layers (corneum, epidermal, and dermal) were resolved by OCT. (B): PS OCT image showing some moderate birefringence of the dermal layer. (C): Histology showing the detailed morphology of the skin layers. 100x magnified images show the cobblestone cells in the corneum, larger cells with visible nuclei in the epidermis, and the collagen fibers in the dermis. (D-G): RCM images showing tissue morphology at different depths: Cobblestone appearance of the corneum layer (D), polygonal cells in the epidermis (E), Dermal papillae at the dermal-epidermal junction (F), and collagen fibers in the upper dermis (G).

Fig. 7
Fig. 7

Cross-sectional OCT and en face RCM images of the EpiDermFT Skin Model after injury. (A): OCT image. (B): PS OCT image showing very low birefringence of the dermal layer. (C): Histology confirming tissue degradation at all depths; cells are no longer differentiated. (D-G): RCM images showing tissue morphology at different depths. The heat has killed the cells and neither the cobblestone appearance of the corneum layer (D) and the polygonal shape of the epidermal cells (E), or the dermal papillae (F) and collagen fibers in the upper dermis (G) are well distinguishable.

Fig. 8
Fig. 8

Testing of the skin construct viability using the MTT assay. The tissue specimens were kept in a 6-well bioreactor. Healthy specimens turn purple, while the dead ones tend to remain almost not colored.

Fig. 9
Fig. 9

OCT/RCM images from the palm of the principal investigator. (A): cross-sectional OCT image; (B): birefringence map; Area I (C to F): RCM images at various depths on the scar location, showing complete degradation of cell morphology in the upper epidermis, to a depth of about 50 μm, and normal skin in the lower epidermis and upper dermis. Well differentiated polygonal cells, 10 to 20 μm in size, with dark nuclei and bright and thin cytoplasm are visible at 100 μm depth in (E), while dermal papillae are shown in F. Area II (G to J): RCM images at various depths on the normal skin. Cobblestone appearance of the corneum layer cells is readable in (G), while well differentiated polygonal cells, 10 to 20 μm in size, with dark nuclei and bright and thin cytoplasm are shown in H and I. Yellow arrows indicate the presence of the sweat glands.

Fig. 10
Fig. 10

(A): Cartoon of the skin structure highlighting the vascular network. The yellow marked areasuggests the RCM measurement site. (B): Selected movie frame showing an RCM image of the upper dermis; (C): Processed RCM frames highlighting the presence of microcapillary blood flow (see magnified ROI in (C)).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

l z =0.44 λ 0 2 n ¯ Δλ ,

Metrics