Abstract

Two kinds of individual eye models, involving and without involving the angle between visual axis and optical axis, are established by means of optical design. We use them to study the properties of the transverse chromatic aberration (TCA) and longitudinal chromatic aberration (LCA) over the visible spectrum. Then the effects of the LCA and TCA on the visual quality of human eyes are evaluated. The statistical averages of TCA and LCA over the visible spectrum for Chinese myopic eyes are obtained. Results show that both TCA and LCA restrict the visual performance, and LCA is more detrimental than TCA.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Sivak and T. Mandelman, “Chromatic dispersion of the ocular media,” Vision Res.22(8), 997–1003 (1982).
    [CrossRef] [PubMed]
  2. G. Wald and D. R. Griffin, “The change in refractive power of the human eye in dim and bright light,” J. Opt. Soc. Am.37(5), 321–336 (1947).
    [CrossRef] [PubMed]
  3. S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res.39(26), 4309–4323 (1999).
    [CrossRef] [PubMed]
  4. M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle psi in a population of young adult eyes,” J. Opt. Soc. Am. A12(10), 2348–2357 (1995).
    [CrossRef] [PubMed]
  5. J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A14(11), 2873–2883 (1997).
    [CrossRef] [PubMed]
  6. D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A22(1), 29–37 (2005).
    [CrossRef] [PubMed]
  7. H.-L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A14(8), 1684–1695 (1997).
    [CrossRef] [PubMed]
  8. Y. Zhang, Applied Optics (Publishing House of Electronics Industry, 2008), Chap. 14.
  9. R. Navarro, L. González, and J. L. Hernández, “Optics of the average normal cornea from general and canonical representations of its surface topography,” J. Opt. Soc. Am. A23(2), 219–232 (2006).
    [CrossRef]
  10. Zemax Optical Design Program User’s Guide (Zemax Development Corporation, 2005), Chap. 11, pp. 229–230.
  11. H. Guo, Z. Wang, Q. Zhao, W. Quan, and Y. Wang, “Individual eye model based on wavefront aberration,” Optik (Stuttg.)116(2), 80–85 (2005).
    [CrossRef]
  12. G. M. Dai, “Scaling Zernike expansion coefficients to smaller pupil sizes: a simpler formula,” J. Opt. Soc. Am. A23(3), 539–543 (2006).
    [CrossRef] [PubMed]
  13. R. Li, Z. Wang, Y. Liu, and G. Mu, “A method to design aspheric spectacles for correction of high-order aberrations of human eye,” Sci. China Technol. Sci.55(5), 1391–1401 (2012).
    [CrossRef]
  14. H. Burek and W. A. Douthwaite, “Mathematical models of the general corneal surface,” Ophthalmic Physiol. Opt.13(1), 68–72 (1993).
    [CrossRef] [PubMed]
  15. S. Ravikumar, L. N. Thibos, and A. Bradley, “Calculation of retinal image quality for polychromatic light,” J. Opt. Soc. Am. A25(10), 2395–2407 (2008).
    [CrossRef] [PubMed]

2012 (1)

R. Li, Z. Wang, Y. Liu, and G. Mu, “A method to design aspheric spectacles for correction of high-order aberrations of human eye,” Sci. China Technol. Sci.55(5), 1391–1401 (2012).
[CrossRef]

2008 (1)

2006 (2)

2005 (2)

H. Guo, Z. Wang, Q. Zhao, W. Quan, and Y. Wang, “Individual eye model based on wavefront aberration,” Optik (Stuttg.)116(2), 80–85 (2005).
[CrossRef]

D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A22(1), 29–37 (2005).
[CrossRef] [PubMed]

1999 (1)

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res.39(26), 4309–4323 (1999).
[CrossRef] [PubMed]

1997 (2)

1995 (1)

1993 (1)

H. Burek and W. A. Douthwaite, “Mathematical models of the general corneal surface,” Ophthalmic Physiol. Opt.13(1), 68–72 (1993).
[CrossRef] [PubMed]

1982 (1)

J. G. Sivak and T. Mandelman, “Chromatic dispersion of the ocular media,” Vision Res.22(8), 997–1003 (1982).
[CrossRef] [PubMed]

1947 (1)

Atchison, D. A.

Bradley, A.

Brennan, N. A.

Burek, H.

H. Burek and W. A. Douthwaite, “Mathematical models of the general corneal surface,” Ophthalmic Physiol. Opt.13(1), 68–72 (1993).
[CrossRef] [PubMed]

Burns, S. A.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res.39(26), 4309–4323 (1999).
[CrossRef] [PubMed]

Chisholm, W.

Dai, G. M.

Douthwaite, W. A.

H. Burek and W. A. Douthwaite, “Mathematical models of the general corneal surface,” Ophthalmic Physiol. Opt.13(1), 68–72 (1993).
[CrossRef] [PubMed]

González, L.

Griffin, D. R.

Guo, H.

H. Guo, Z. Wang, Q. Zhao, W. Quan, and Y. Wang, “Individual eye model based on wavefront aberration,” Optik (Stuttg.)116(2), 80–85 (2005).
[CrossRef]

Hernández, J. L.

Li, R.

R. Li, Z. Wang, Y. Liu, and G. Mu, “A method to design aspheric spectacles for correction of high-order aberrations of human eye,” Sci. China Technol. Sci.55(5), 1391–1401 (2012).
[CrossRef]

Liang, J.

Lidkea, B.

Liou, H.-L.

Liu, Y.

R. Li, Z. Wang, Y. Liu, and G. Mu, “A method to design aspheric spectacles for correction of high-order aberrations of human eye,” Sci. China Technol. Sci.55(5), 1391–1401 (2012).
[CrossRef]

Mandelman, T.

J. G. Sivak and T. Mandelman, “Chromatic dispersion of the ocular media,” Vision Res.22(8), 997–1003 (1982).
[CrossRef] [PubMed]

Marcos, S.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res.39(26), 4309–4323 (1999).
[CrossRef] [PubMed]

Moreno-Barriusop, E.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res.39(26), 4309–4323 (1999).
[CrossRef] [PubMed]

Mu, G.

R. Li, Z. Wang, Y. Liu, and G. Mu, “A method to design aspheric spectacles for correction of high-order aberrations of human eye,” Sci. China Technol. Sci.55(5), 1391–1401 (2012).
[CrossRef]

Navarro, R.

R. Navarro, L. González, and J. L. Hernández, “Optics of the average normal cornea from general and canonical representations of its surface topography,” J. Opt. Soc. Am. A23(2), 219–232 (2006).
[CrossRef]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res.39(26), 4309–4323 (1999).
[CrossRef] [PubMed]

Quan, W.

H. Guo, Z. Wang, Q. Zhao, W. Quan, and Y. Wang, “Individual eye model based on wavefront aberration,” Optik (Stuttg.)116(2), 80–85 (2005).
[CrossRef]

Ravikumar, S.

Rynders, M.

Sivak, J. G.

J. G. Sivak and T. Mandelman, “Chromatic dispersion of the ocular media,” Vision Res.22(8), 997–1003 (1982).
[CrossRef] [PubMed]

Smith, G.

Thibos, L. N.

Wald, G.

Wang, Y.

H. Guo, Z. Wang, Q. Zhao, W. Quan, and Y. Wang, “Individual eye model based on wavefront aberration,” Optik (Stuttg.)116(2), 80–85 (2005).
[CrossRef]

Wang, Z.

R. Li, Z. Wang, Y. Liu, and G. Mu, “A method to design aspheric spectacles for correction of high-order aberrations of human eye,” Sci. China Technol. Sci.55(5), 1391–1401 (2012).
[CrossRef]

H. Guo, Z. Wang, Q. Zhao, W. Quan, and Y. Wang, “Individual eye model based on wavefront aberration,” Optik (Stuttg.)116(2), 80–85 (2005).
[CrossRef]

Williams, D. R.

Zhao, Q.

H. Guo, Z. Wang, Q. Zhao, W. Quan, and Y. Wang, “Individual eye model based on wavefront aberration,” Optik (Stuttg.)116(2), 80–85 (2005).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (7)

Ophthalmic Physiol. Opt. (1)

H. Burek and W. A. Douthwaite, “Mathematical models of the general corneal surface,” Ophthalmic Physiol. Opt.13(1), 68–72 (1993).
[CrossRef] [PubMed]

Optik (Stuttg.) (1)

H. Guo, Z. Wang, Q. Zhao, W. Quan, and Y. Wang, “Individual eye model based on wavefront aberration,” Optik (Stuttg.)116(2), 80–85 (2005).
[CrossRef]

Sci. China Technol. Sci. (1)

R. Li, Z. Wang, Y. Liu, and G. Mu, “A method to design aspheric spectacles for correction of high-order aberrations of human eye,” Sci. China Technol. Sci.55(5), 1391–1401 (2012).
[CrossRef]

Vision Res. (2)

J. G. Sivak and T. Mandelman, “Chromatic dispersion of the ocular media,” Vision Res.22(8), 997–1003 (1982).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res.39(26), 4309–4323 (1999).
[CrossRef] [PubMed]

Other (2)

Zemax Optical Design Program User’s Guide (Zemax Development Corporation, 2005), Chap. 11, pp. 229–230.

Y. Zhang, Applied Optics (Publishing House of Electronics Industry, 2008), Chap. 14.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Individual eye model of visual axis coincident with optical axis.

Fig. 2
Fig. 2

LCA of the individual eye model.

Fig. 3
Fig. 3

Chromatic focal shift plot of individual eye model.

Fig. 4
Fig. 4

Individual eye model involving the angle.

Fig. 5
Fig. 5

Lateral color plot of individual eye model.

Fig. 6
Fig. 6

Lateral color plot of individual eye model, (a) 4.64°FOV in X-direction, (b) 1.5°FOV in Y-direction.

Fig. 7
Fig. 7

Distribution of the horizontal TCA and vertical TCA over the visible spectrum from 400nm to 760nm for 80 eyes.

Fig. 8
Fig. 8

MTF for the fundamental eye model, (a) with single wavelength.(b) with polychromatic light.

Fig. 9
Fig. 9

Spot diagram for the fundamental eye model, (a) and (b) with single wavelength, (c) and (d) with polychromatic light.

Fig. 10
Fig. 10

Spot diagrams of the eye with typical magnitude of monochromatic aberrations. (a) Without involving the angle, (b) involving the angle.

Fig. 11
Fig. 11

The relevance between refraction and chromatic aberration.

Tables (2)

Tables Icon

Table 1 Structural parameters of the fundamental eye model

Tables Icon

Table 2 Statistics of spherical refraction (Ps), cylinder (Pc), horizontal TCA in arcmin, vertical TCA in arcmin, absolute TCA in arcmin, absolute TCA in μm, diameters of airy disk, chromatic focal shift, LCA in D, and diameter of image spot caused by LCA over the visible spectrum under the photopic condition

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Z= z 0 + c( x 2 + y 2 ) 1+ [ 1- c 2 ( x 2 + y 2 ) ] 1 2 + i=1 N A i Z i (x,y)
ΔP= Δ x f f
d= LΔ x 1+fΔ x
Z(x,y)=S(x,y)+R(x,y)
a 11 x 2 + a 22 y 2 + a 33 z 2 + a 12 xy+ a 13 xz+ a 23 yz+ a 1 x+ a 2 y+ a 3 z+ a 0 =0
x 0 2 a 2 + y 0 2 b 2 + z 0 2 c 2 =1

Metrics