Abstract

Gold nanorods can be internalized by macrophages (an important early cellular marker in atherosclerosis and cancer) and used as an imaging contrast agent for macrophage targeting. Objective of this study is to compare two-photon luminescence (TPL) properties of four aspect ratios of gold nanorods with surface plasmon resonance at 700, 756, 844 and 1060 nm respectively. TPL from single nanorods and Rhodamine 6G particles was measured using a laser-scanning TPL microscope. Nanorod TPL emission spectrum was recorded by a spectrometer. Quadratic dependence of luminescence intensity on excitation power (confirming a TPL process) was observed below a threshold (e.g., <1.6 mW), followed by photobleaching at higher power levels. Dependence of nanorod TPL intensity on excitation wavelength indicated that the two-photon action cross section (TPACS) is plasmon-enhanced. Largest TPACS of a single nanorod (12271 GM) was substantially larger than a single Rhodamine 6G particle (25 GM) at 760 nm excitation. Characteristics of nanorod TPL emission spectrum can be explained by plasmon-enhanced interband transition of gold. Comparison results of TPL brightness, TPACS and emission spectrum of nanorods can guide selection of optimal contrast agent for selected imaging applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
    [CrossRef] [PubMed]
  2. E. Falk, P. K. Shah, and V. Fuster, “Coronary plaque disruption,” Circulation92(3), 657–671 (1995).
    [CrossRef] [PubMed]
  3. F. D. Kolodgie, R. Virmani, A. P. Burke, A. Farb, D. K. Weber, R. Kutys, A. V. Finn, and H. K. Gold, “Pathologic assessment of the vulnerable human coronary plaque,” Heart90(12), 1385–1391 (2004).
    [CrossRef] [PubMed]
  4. N. B. Hao, M. H. Lü, Y. H. Fan, Y. L. Cao, Z. R. Zhang, and S. M. Yang, “Macrophages in tumor microenvironments and the progression of tumors,” Clin. Dev. Immunol.2012, 948098 (2012).
    [CrossRef] [PubMed]
  5. B. Ruffell, N. I. Affara, and L. M. Coussens, “Differential macrophage programming in the tumor microenvironment,” Trends Immunol.33(3), 119–126 (2012).
    [CrossRef] [PubMed]
  6. R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, and M. Sastry, “Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview,” Langmuir21(23), 10644–10654 (2005).
    [CrossRef] [PubMed]
  7. M. M. Arnida, A. Janát-Amsbury, C. M. Ray, C. M. Peterson, and H. Ghandehari, “Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages,” Eur. J. Pharm. Biopharm.77(3), 417–423 (2011).
    [CrossRef] [PubMed]
  8. S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: impending clinical impact,” Acc. Chem. Res.41(12), 1842–1851 (2008).
    [CrossRef] [PubMed]
  9. X. Ji, R. Shao, A. M. Elliott, R. J. Stafford, E. Esparza-Coss, J. A. Bankson, G. Liang, Z.-P. Luo, K. Park, J. T. Markert, and C. Li, “Bifunctional Gold Nanoshells with a Superparamagnetic Iron Oxide-Silica Core Suitable for Both MR Imaging and Photothermal Therapy,” J Phys Chem C Nanomater Interfaces111(17), 6245–6251 (2007).
    [CrossRef] [PubMed]
  10. S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for cancer detection and treatment,” Nanomedicine (Lond)2(5), 657–668 (2007).
    [CrossRef] [PubMed]
  11. M. Longmire, P. L. Choyke, and H. Kobayashi, “Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats,” Nanomedicine (Lond)3(5), 703–717 (2008).
    [CrossRef] [PubMed]
  12. L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano3(9), 2686–2696 (2009).
    [CrossRef] [PubMed]
  13. T. Wang, J. J. Mancuso, S. M. Kazmi, J. Dwelle, V. Sapozhnikova, B. Willsey, L. L. Ma, J. Qiu, X. Li, A. K. Dunn, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Combined two-photon luminescence microscopy and OCT for macrophage detection in the hypercholesterolemic rabbit aorta using plasmonic gold nanorose,” Lasers Surg. Med.44(1), 49–59 (2012).
    [CrossRef] [PubMed]
  14. T. S. Hauck, A. A. Ghazani, and W. C. W. Chan, “Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells,” Small4(1), 153–159 (2008).
    [CrossRef] [PubMed]
  15. T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release114(3), 343–347 (2006).
    [CrossRef] [PubMed]
  16. A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett.22(5), 185–187 (1969).
    [CrossRef]
  17. J. Zheng, C. Zhang, and R. M. Dickson, “Highly fluorescent, water-soluble, size-tunable gold quantum dots,” Phys. Rev. Lett.93(7), 077402–077405 (2004).
    [CrossRef] [PubMed]
  18. G. Wang, T. Huang, R. W. Murray, L. Menard, and R. G. Nuzzo, “Near-IR luminescence of monolayer-protected metal clusters,” J. Am. Chem. Soc.127(3), 812–813 (2005).
    [CrossRef] [PubMed]
  19. J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys.108(21), 9137–9143 (1998).
    [CrossRef]
  20. Y. Fang, W. S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio,” ACS Nano6(8), 7177–7184 (2012).
    [CrossRef] [PubMed]
  21. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics2(3), 107–118 (2007).
    [CrossRef]
  22. M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res.34(4), 257–264 (2001).
    [CrossRef] [PubMed]
  23. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88(7), 077402–077405 (2002).
    [CrossRef] [PubMed]
  24. M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett.317(6), 517–523 (2000).
    [CrossRef]
  25. S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B103(16), 3073–3077 (1999).
    [CrossRef]
  26. S. S. Verma and J. S. Sekhon, “Influence of aspect ratio and surrounding medium on localized surface plasmon resonance (LSPR) of gold nanorod,” J. Opt.41(2), 89–93 (2012).
    [CrossRef]
  27. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res.41(12), 1578–1586 (2008).
    [CrossRef] [PubMed]
  28. E. T. Castellana, R. C. Gamez, M. E. Gómez, and D. H. Russell, “Longitudinal surface plasmon resonance based gold nanorod biosensors for mass spectrometry,” Langmuir26(8), 6066–6070 (2010).
    [CrossRef] [PubMed]
  29. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
    [CrossRef] [PubMed]
  30. L. Tong, Q. Wei, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol.85(1), 21–32 (2009).
    [CrossRef] [PubMed]
  31. T. Y. Ohulchanskyy, I. Roy, K. T. Yong, H. E. Pudavar, and P. N. Prasad, “High-resolution light microscopy using luminescent nanoparticles,” Wiley Interdiscip Rev Nanomed Nanobiotechnol2(2), 162–175 (2010).
    [CrossRef] [PubMed]
  32. D. Nagesha, G. S. Laevsky, P. Lampton, R. Banyal, C. Warner, C. DiMarzio, and S. Sridhar, “In vitro imaging of embryonic stem cells using multiphoton luminescence of gold nanoparticles,” Int. J. Nanomedicine2(4), 813–819 (2007).
    [PubMed]
  33. Y. Zhang, J. Yu, D. J. S. Birch, and Y. Chen, “Gold nanorods for fluorescence lifetime imaging in biology,” J. Biomed. Opt.15(2), 020504 (2010).
    [CrossRef] [PubMed]
  34. C. L. Chen, L. R. Kuo, C. L. Chang, Y. K. Hwu, C. K. Huang, S. Y. Lee, K. Chen, S. J. Lin, J. D. Huang, and Y. Y. Chen, “In situ real-time investigation of cancer cell photothermolysis mediated by excited gold nanorod surface plasmons,” Biomaterials31(14), 4104–4112 (2010).
    [CrossRef] [PubMed]
  35. H. Okamoto and K. Imura, “Near-field imaging of optical field and plasmon wavefunctions in metal nanoparticles,” J. Mater. Chem.16(40), 3920–3928 (2006).
    [CrossRef]
  36. K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B109(27), 13214–13220 (2005).
    [CrossRef] [PubMed]
  37. W. H. Ni, X. S. Kou, Z. Yang, and J. F. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano2(4), 677–686 (2008).
    [CrossRef] [PubMed]
  38. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B13(3), 481–491 (1996).
    [CrossRef]
  39. R. Gans, “Form of ultramicroscopic particles of silver,” Ann. Phys.47(10), 270–284 (1915).
    [CrossRef]
  40. M. A. Albota, C. Xu, and W. W. Webb, “Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm,” Appl. Opt.37(31), 7352–7356 (1998).
    [CrossRef] [PubMed]
  41. G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter33(12), 7923–7936 (1986).
    [CrossRef] [PubMed]
  42. S. Eustis and M. A. El-Sayed, “Aspect ratio dependence of the enhanced fluorescence intensity of gold nanorods: experimental and simulation study,” J. Phys. Chem. B109(34), 16350–16356 (2005).
    [CrossRef] [PubMed]
  43. M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B12(2), 557–563 (1975).
    [CrossRef]
  44. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
    [CrossRef]
  45. K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B109(43), 20331–20338 (2005).
    [CrossRef] [PubMed]
  46. C. Sönnichsen and A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett.5(2), 301–304 (2005).
    [CrossRef] [PubMed]
  47. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B104(26), 6152–6163 (2000).
    [CrossRef]
  48. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett.95(26), 267405 (2005).
    [CrossRef] [PubMed]
  49. K. Imura and H. Okamoto, “Properties of photoluminescence from single gold nanorods induced by near-field two-photon excitation,” J. Phys. Chem. C113(27), 11756–11759 (2009).
    [CrossRef]
  50. M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H. J. Eisler, “Highly localized non-linear optical white-light response at nanorod ends from non-resonant excitation,” Nanoscale2(6), 1018–1020 (2010).
    [CrossRef] [PubMed]
  51. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B68(11), 115433 (2003).
    [CrossRef]
  52. E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. Von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B70(20), 205424 (2004).
    [CrossRef]
  53. R. E. Hummel, Electronic Properties of Materials, 4th ed. (Springer, New York, 2011), pp. 37–61.
  54. M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B12(2), 557–563 (1975).
    [CrossRef]

2012 (5)

N. B. Hao, M. H. Lü, Y. H. Fan, Y. L. Cao, Z. R. Zhang, and S. M. Yang, “Macrophages in tumor microenvironments and the progression of tumors,” Clin. Dev. Immunol.2012, 948098 (2012).
[CrossRef] [PubMed]

B. Ruffell, N. I. Affara, and L. M. Coussens, “Differential macrophage programming in the tumor microenvironment,” Trends Immunol.33(3), 119–126 (2012).
[CrossRef] [PubMed]

T. Wang, J. J. Mancuso, S. M. Kazmi, J. Dwelle, V. Sapozhnikova, B. Willsey, L. L. Ma, J. Qiu, X. Li, A. K. Dunn, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Combined two-photon luminescence microscopy and OCT for macrophage detection in the hypercholesterolemic rabbit aorta using plasmonic gold nanorose,” Lasers Surg. Med.44(1), 49–59 (2012).
[CrossRef] [PubMed]

Y. Fang, W. S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio,” ACS Nano6(8), 7177–7184 (2012).
[CrossRef] [PubMed]

S. S. Verma and J. S. Sekhon, “Influence of aspect ratio and surrounding medium on localized surface plasmon resonance (LSPR) of gold nanorod,” J. Opt.41(2), 89–93 (2012).
[CrossRef]

2011 (2)

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

M. M. Arnida, A. Janát-Amsbury, C. M. Ray, C. M. Peterson, and H. Ghandehari, “Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages,” Eur. J. Pharm. Biopharm.77(3), 417–423 (2011).
[CrossRef] [PubMed]

2010 (5)

E. T. Castellana, R. C. Gamez, M. E. Gómez, and D. H. Russell, “Longitudinal surface plasmon resonance based gold nanorod biosensors for mass spectrometry,” Langmuir26(8), 6066–6070 (2010).
[CrossRef] [PubMed]

T. Y. Ohulchanskyy, I. Roy, K. T. Yong, H. E. Pudavar, and P. N. Prasad, “High-resolution light microscopy using luminescent nanoparticles,” Wiley Interdiscip Rev Nanomed Nanobiotechnol2(2), 162–175 (2010).
[CrossRef] [PubMed]

Y. Zhang, J. Yu, D. J. S. Birch, and Y. Chen, “Gold nanorods for fluorescence lifetime imaging in biology,” J. Biomed. Opt.15(2), 020504 (2010).
[CrossRef] [PubMed]

C. L. Chen, L. R. Kuo, C. L. Chang, Y. K. Hwu, C. K. Huang, S. Y. Lee, K. Chen, S. J. Lin, J. D. Huang, and Y. Y. Chen, “In situ real-time investigation of cancer cell photothermolysis mediated by excited gold nanorod surface plasmons,” Biomaterials31(14), 4104–4112 (2010).
[CrossRef] [PubMed]

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H. J. Eisler, “Highly localized non-linear optical white-light response at nanorod ends from non-resonant excitation,” Nanoscale2(6), 1018–1020 (2010).
[CrossRef] [PubMed]

2009 (4)

L. Tong, Q. Wei, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol.85(1), 21–32 (2009).
[CrossRef] [PubMed]

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
[CrossRef]

K. Imura and H. Okamoto, “Properties of photoluminescence from single gold nanorods induced by near-field two-photon excitation,” J. Phys. Chem. C113(27), 11756–11759 (2009).
[CrossRef]

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

2008 (5)

M. Longmire, P. L. Choyke, and H. Kobayashi, “Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats,” Nanomedicine (Lond)3(5), 703–717 (2008).
[CrossRef] [PubMed]

T. S. Hauck, A. A. Ghazani, and W. C. W. Chan, “Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells,” Small4(1), 153–159 (2008).
[CrossRef] [PubMed]

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: impending clinical impact,” Acc. Chem. Res.41(12), 1842–1851 (2008).
[CrossRef] [PubMed]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res.41(12), 1578–1586 (2008).
[CrossRef] [PubMed]

W. H. Ni, X. S. Kou, Z. Yang, and J. F. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano2(4), 677–686 (2008).
[CrossRef] [PubMed]

2007 (4)

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics2(3), 107–118 (2007).
[CrossRef]

D. Nagesha, G. S. Laevsky, P. Lampton, R. Banyal, C. Warner, C. DiMarzio, and S. Sridhar, “In vitro imaging of embryonic stem cells using multiphoton luminescence of gold nanoparticles,” Int. J. Nanomedicine2(4), 813–819 (2007).
[PubMed]

X. Ji, R. Shao, A. M. Elliott, R. J. Stafford, E. Esparza-Coss, J. A. Bankson, G. Liang, Z.-P. Luo, K. Park, J. T. Markert, and C. Li, “Bifunctional Gold Nanoshells with a Superparamagnetic Iron Oxide-Silica Core Suitable for Both MR Imaging and Photothermal Therapy,” J Phys Chem C Nanomater Interfaces111(17), 6245–6251 (2007).
[CrossRef] [PubMed]

S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for cancer detection and treatment,” Nanomedicine (Lond)2(5), 657–668 (2007).
[CrossRef] [PubMed]

2006 (2)

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release114(3), 343–347 (2006).
[CrossRef] [PubMed]

H. Okamoto and K. Imura, “Near-field imaging of optical field and plasmon wavefunctions in metal nanoparticles,” J. Mater. Chem.16(40), 3920–3928 (2006).
[CrossRef]

2005 (8)

K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B109(27), 13214–13220 (2005).
[CrossRef] [PubMed]

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

G. Wang, T. Huang, R. W. Murray, L. Menard, and R. G. Nuzzo, “Near-IR luminescence of monolayer-protected metal clusters,” J. Am. Chem. Soc.127(3), 812–813 (2005).
[CrossRef] [PubMed]

R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, and M. Sastry, “Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview,” Langmuir21(23), 10644–10654 (2005).
[CrossRef] [PubMed]

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B109(43), 20331–20338 (2005).
[CrossRef] [PubMed]

C. Sönnichsen and A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett.5(2), 301–304 (2005).
[CrossRef] [PubMed]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett.95(26), 267405 (2005).
[CrossRef] [PubMed]

S. Eustis and M. A. El-Sayed, “Aspect ratio dependence of the enhanced fluorescence intensity of gold nanorods: experimental and simulation study,” J. Phys. Chem. B109(34), 16350–16356 (2005).
[CrossRef] [PubMed]

2004 (3)

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. Von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B70(20), 205424 (2004).
[CrossRef]

F. D. Kolodgie, R. Virmani, A. P. Burke, A. Farb, D. K. Weber, R. Kutys, A. V. Finn, and H. K. Gold, “Pathologic assessment of the vulnerable human coronary plaque,” Heart90(12), 1385–1391 (2004).
[CrossRef] [PubMed]

J. Zheng, C. Zhang, and R. M. Dickson, “Highly fluorescent, water-soluble, size-tunable gold quantum dots,” Phys. Rev. Lett.93(7), 077402–077405 (2004).
[CrossRef] [PubMed]

2003 (1)

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B68(11), 115433 (2003).
[CrossRef]

2002 (1)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88(7), 077402–077405 (2002).
[CrossRef] [PubMed]

2001 (1)

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res.34(4), 257–264 (2001).
[CrossRef] [PubMed]

2000 (2)

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett.317(6), 517–523 (2000).
[CrossRef]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B104(26), 6152–6163 (2000).
[CrossRef]

1999 (1)

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B103(16), 3073–3077 (1999).
[CrossRef]

1998 (2)

J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys.108(21), 9137–9143 (1998).
[CrossRef]

M. A. Albota, C. Xu, and W. W. Webb, “Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm,” Appl. Opt.37(31), 7352–7356 (1998).
[CrossRef] [PubMed]

1996 (1)

1995 (1)

E. Falk, P. K. Shah, and V. Fuster, “Coronary plaque disruption,” Circulation92(3), 657–671 (1995).
[CrossRef] [PubMed]

1986 (1)

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

1975 (2)

M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B12(2), 557–563 (1975).
[CrossRef]

M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B12(2), 557–563 (1975).
[CrossRef]

1969 (1)

A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett.22(5), 185–187 (1969).
[CrossRef]

1915 (1)

R. Gans, “Form of ultramicroscopic particles of silver,” Ann. Phys.47(10), 270–284 (1915).
[CrossRef]

Adams, R. J.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Affara, N. I.

B. Ruffell, N. I. Affara, and L. M. Coussens, “Differential macrophage programming in the tumor microenvironment,” Trends Immunol.33(3), 119–126 (2012).
[CrossRef] [PubMed]

Akiyama, Y.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release114(3), 343–347 (2006).
[CrossRef] [PubMed]

Albota, M. A.

Alivisatos, A. P.

C. Sönnichsen and A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett.5(2), 301–304 (2005).
[CrossRef] [PubMed]

Arnida, M. M.

M. M. Arnida, A. Janát-Amsbury, C. M. Ray, C. M. Peterson, and H. Ghandehari, “Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages,” Eur. J. Pharm. Biopharm.77(3), 417–423 (2011).
[CrossRef] [PubMed]

Asmis, R.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Au, L.

S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for cancer detection and treatment,” Nanomedicine (Lond)2(5), 657–668 (2007).
[CrossRef] [PubMed]

Bachelot, R.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett.95(26), 267405 (2005).
[CrossRef] [PubMed]

Bankson, J. A.

X. Ji, R. Shao, A. M. Elliott, R. J. Stafford, E. Esparza-Coss, J. A. Bankson, G. Liang, Z.-P. Luo, K. Park, J. T. Markert, and C. Li, “Bifunctional Gold Nanoshells with a Superparamagnetic Iron Oxide-Silica Core Suitable for Both MR Imaging and Photothermal Therapy,” J Phys Chem C Nanomater Interfaces111(17), 6245–6251 (2007).
[CrossRef] [PubMed]

Bansal, V.

R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, and M. Sastry, “Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview,” Langmuir21(23), 10644–10654 (2005).
[CrossRef] [PubMed]

Banyal, R.

D. Nagesha, G. S. Laevsky, P. Lampton, R. Banyal, C. Warner, C. DiMarzio, and S. Sridhar, “In vitro imaging of embryonic stem cells using multiphoton luminescence of gold nanoparticles,” Int. J. Nanomedicine2(4), 813–819 (2007).
[PubMed]

Basu, A.

R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, and M. Sastry, “Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview,” Langmuir21(23), 10644–10654 (2005).
[CrossRef] [PubMed]

Berry, J. D.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Beversluis, M. R.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B68(11), 115433 (2003).
[CrossRef]

Bhonde, R. R.

R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, and M. Sastry, “Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview,” Langmuir21(23), 10644–10654 (2005).
[CrossRef] [PubMed]

Birch, D. J. S.

Y. Zhang, J. Yu, D. J. S. Birch, and Y. Chen, “Gold nanorods for fluorescence lifetime imaging in biology,” J. Biomed. Opt.15(2), 020504 (2010).
[CrossRef] [PubMed]

Bouhelier, A.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett.95(26), 267405 (2005).
[CrossRef] [PubMed]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B68(11), 115433 (2003).
[CrossRef]

Boyd, G. T.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

Brown, T. M.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Burda, C.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B104(26), 6152–6163 (2000).
[CrossRef]

Burke, A. P.

F. D. Kolodgie, R. Virmani, A. P. Burke, A. Farb, D. K. Weber, R. Kutys, A. V. Finn, and H. K. Gold, “Pathologic assessment of the vulnerable human coronary plaque,” Heart90(12), 1385–1391 (2004).
[CrossRef] [PubMed]

Cao, Y. L.

N. B. Hao, M. H. Lü, Y. H. Fan, Y. L. Cao, Z. R. Zhang, and S. M. Yang, “Macrophages in tumor microenvironments and the progression of tumors,” Clin. Dev. Immunol.2012, 948098 (2012).
[CrossRef] [PubMed]

Carnethon, M. R.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Caruso, F.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. Von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B70(20), 205424 (2004).
[CrossRef]

Castellana, E. T.

E. T. Castellana, R. C. Gamez, M. E. Gómez, and D. H. Russell, “Longitudinal surface plasmon resonance based gold nanorod biosensors for mass spectrometry,” Langmuir26(8), 6066–6070 (2010).
[CrossRef] [PubMed]

Chan, W. C. W.

T. S. Hauck, A. A. Ghazani, and W. C. W. Chan, “Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells,” Small4(1), 153–159 (2008).
[CrossRef] [PubMed]

Chandrasekar, B.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Chang, C. L.

C. L. Chen, L. R. Kuo, C. L. Chang, Y. K. Hwu, C. K. Huang, S. Y. Lee, K. Chen, S. J. Lin, J. D. Huang, and Y. Y. Chen, “In situ real-time investigation of cancer cell photothermolysis mediated by excited gold nanorod surface plasmons,” Biomaterials31(14), 4104–4112 (2010).
[CrossRef] [PubMed]

Chang, W. S.

Y. Fang, W. S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio,” ACS Nano6(8), 7177–7184 (2012).
[CrossRef] [PubMed]

Chaudhary, M.

R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, and M. Sastry, “Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview,” Langmuir21(23), 10644–10654 (2005).
[CrossRef] [PubMed]

Chen, C. L.

C. L. Chen, L. R. Kuo, C. L. Chang, Y. K. Hwu, C. K. Huang, S. Y. Lee, K. Chen, S. J. Lin, J. D. Huang, and Y. Y. Chen, “In situ real-time investigation of cancer cell photothermolysis mediated by excited gold nanorod surface plasmons,” Biomaterials31(14), 4104–4112 (2010).
[CrossRef] [PubMed]

Chen, K.

C. L. Chen, L. R. Kuo, C. L. Chang, Y. K. Hwu, C. K. Huang, S. Y. Lee, K. Chen, S. J. Lin, J. D. Huang, and Y. Y. Chen, “In situ real-time investigation of cancer cell photothermolysis mediated by excited gold nanorod surface plasmons,” Biomaterials31(14), 4104–4112 (2010).
[CrossRef] [PubMed]

Chen, Y.

Y. Zhang, J. Yu, D. J. S. Birch, and Y. Chen, “Gold nanorods for fluorescence lifetime imaging in biology,” J. Biomed. Opt.15(2), 020504 (2010).
[CrossRef] [PubMed]

Chen, Y. Y.

C. L. Chen, L. R. Kuo, C. L. Chang, Y. K. Hwu, C. K. Huang, S. Y. Lee, K. Chen, S. J. Lin, J. D. Huang, and Y. Y. Chen, “In situ real-time investigation of cancer cell photothermolysis mediated by excited gold nanorod surface plasmons,” Biomaterials31(14), 4104–4112 (2010).
[CrossRef] [PubMed]

Cheng, J. X.

L. Tong, Q. Wei, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol.85(1), 21–32 (2009).
[CrossRef] [PubMed]

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Cheruku, K. K.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Choyke, P. L.

M. Longmire, P. L. Choyke, and H. Kobayashi, “Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats,” Nanomedicine (Lond)3(5), 703–717 (2008).
[CrossRef] [PubMed]

Clare, S. E.

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: impending clinical impact,” Acc. Chem. Res.41(12), 1842–1851 (2008).
[CrossRef] [PubMed]

Clarke, G. D.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Coussens, L. M.

B. Ruffell, N. I. Affara, and L. M. Coussens, “Differential macrophage programming in the tumor microenvironment,” Trends Immunol.33(3), 119–126 (2012).
[CrossRef] [PubMed]

Dai, S.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

de Simone, G.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Dickson, R. M.

J. Zheng, C. Zhang, and R. M. Dickson, “Highly fluorescent, water-soluble, size-tunable gold quantum dots,” Phys. Rev. Lett.93(7), 077402–077405 (2004).
[CrossRef] [PubMed]

DiMarzio, C.

D. Nagesha, G. S. Laevsky, P. Lampton, R. Banyal, C. Warner, C. DiMarzio, and S. Sridhar, “In vitro imaging of embryonic stem cells using multiphoton luminescence of gold nanoparticles,” Int. J. Nanomedicine2(4), 813–819 (2007).
[PubMed]

Dominguez-Medina, S.

Y. Fang, W. S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio,” ACS Nano6(8), 7177–7184 (2012).
[CrossRef] [PubMed]

Dulkeith, E.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. Von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B70(20), 205424 (2004).
[CrossRef]

Dunn, A. K.

T. Wang, J. J. Mancuso, S. M. Kazmi, J. Dwelle, V. Sapozhnikova, B. Willsey, L. L. Ma, J. Qiu, X. Li, A. K. Dunn, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Combined two-photon luminescence microscopy and OCT for macrophage detection in the hypercholesterolemic rabbit aorta using plasmonic gold nanorose,” Lasers Surg. Med.44(1), 49–59 (2012).
[CrossRef] [PubMed]

Dwelle, J.

T. Wang, J. J. Mancuso, S. M. Kazmi, J. Dwelle, V. Sapozhnikova, B. Willsey, L. L. Ma, J. Qiu, X. Li, A. K. Dunn, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Combined two-photon luminescence microscopy and OCT for macrophage detection in the hypercholesterolemic rabbit aorta using plasmonic gold nanorose,” Lasers Surg. Med.44(1), 49–59 (2012).
[CrossRef] [PubMed]

Eisler, H. J.

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H. J. Eisler, “Highly localized non-linear optical white-light response at nanorod ends from non-resonant excitation,” Nanoscale2(6), 1018–1020 (2010).
[CrossRef] [PubMed]

Elliott, A. M.

X. Ji, R. Shao, A. M. Elliott, R. J. Stafford, E. Esparza-Coss, J. A. Bankson, G. Liang, Z.-P. Luo, K. Park, J. T. Markert, and C. Li, “Bifunctional Gold Nanoshells with a Superparamagnetic Iron Oxide-Silica Core Suitable for Both MR Imaging and Photothermal Therapy,” J Phys Chem C Nanomater Interfaces111(17), 6245–6251 (2007).
[CrossRef] [PubMed]

El-Sayed, I. H.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res.41(12), 1578–1586 (2008).
[CrossRef] [PubMed]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics2(3), 107–118 (2007).
[CrossRef]

El-Sayed, M. A.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
[CrossRef]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res.41(12), 1578–1586 (2008).
[CrossRef] [PubMed]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics2(3), 107–118 (2007).
[CrossRef]

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B109(43), 20331–20338 (2005).
[CrossRef] [PubMed]

S. Eustis and M. A. El-Sayed, “Aspect ratio dependence of the enhanced fluorescence intensity of gold nanorods: experimental and simulation study,” J. Phys. Chem. B109(34), 16350–16356 (2005).
[CrossRef] [PubMed]

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res.34(4), 257–264 (2001).
[CrossRef] [PubMed]

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett.317(6), 517–523 (2000).
[CrossRef]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B104(26), 6152–6163 (2000).
[CrossRef]

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B103(16), 3073–3077 (1999).
[CrossRef]

Esparza-Coss, E.

X. Ji, R. Shao, A. M. Elliott, R. J. Stafford, E. Esparza-Coss, J. A. Bankson, G. Liang, Z.-P. Luo, K. Park, J. T. Markert, and C. Li, “Bifunctional Gold Nanoshells with a Superparamagnetic Iron Oxide-Silica Core Suitable for Both MR Imaging and Photothermal Therapy,” J Phys Chem C Nanomater Interfaces111(17), 6245–6251 (2007).
[CrossRef] [PubMed]

Eustis, S.

S. Eustis and M. A. El-Sayed, “Aspect ratio dependence of the enhanced fluorescence intensity of gold nanorods: experimental and simulation study,” J. Phys. Chem. B109(34), 16350–16356 (2005).
[CrossRef] [PubMed]

Falk, E.

E. Falk, P. K. Shah, and V. Fuster, “Coronary plaque disruption,” Circulation92(3), 657–671 (1995).
[CrossRef] [PubMed]

Fan, Y. H.

N. B. Hao, M. H. Lü, Y. H. Fan, Y. L. Cao, Z. R. Zhang, and S. M. Yang, “Macrophages in tumor microenvironments and the progression of tumors,” Clin. Dev. Immunol.2012, 948098 (2012).
[CrossRef] [PubMed]

Fang, Y.

Y. Fang, W. S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio,” ACS Nano6(8), 7177–7184 (2012).
[CrossRef] [PubMed]

Farb, A.

F. D. Kolodgie, R. Virmani, A. P. Burke, A. Farb, D. K. Weber, R. Kutys, A. V. Finn, and H. K. Gold, “Pathologic assessment of the vulnerable human coronary plaque,” Heart90(12), 1385–1391 (2004).
[CrossRef] [PubMed]

Feldman, M. D.

T. Wang, J. J. Mancuso, S. M. Kazmi, J. Dwelle, V. Sapozhnikova, B. Willsey, L. L. Ma, J. Qiu, X. Li, A. K. Dunn, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Combined two-photon luminescence microscopy and OCT for macrophage detection in the hypercholesterolemic rabbit aorta using plasmonic gold nanorose,” Lasers Surg. Med.44(1), 49–59 (2012).
[CrossRef] [PubMed]

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Feldmann, J.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. Von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B70(20), 205424 (2004).
[CrossRef]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88(7), 077402–077405 (2002).
[CrossRef] [PubMed]

Finn, A. V.

F. D. Kolodgie, R. Virmani, A. P. Burke, A. Farb, D. K. Weber, R. Kutys, A. V. Finn, and H. K. Gold, “Pathologic assessment of the vulnerable human coronary plaque,” Heart90(12), 1385–1391 (2004).
[CrossRef] [PubMed]

Ford, E. S.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Fox, C. S.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88(7), 077402–077405 (2002).
[CrossRef] [PubMed]

Fullerton, H. J.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Fuster, V.

E. Falk, P. K. Shah, and V. Fuster, “Coronary plaque disruption,” Circulation92(3), 657–671 (1995).
[CrossRef] [PubMed]

Gamez, R. C.

E. T. Castellana, R. C. Gamez, M. E. Gómez, and D. H. Russell, “Longitudinal surface plasmon resonance based gold nanorod biosensors for mass spectrometry,” Langmuir26(8), 6066–6070 (2010).
[CrossRef] [PubMed]

Gans, R.

R. Gans, “Form of ultramicroscopic particles of silver,” Ann. Phys.47(10), 270–284 (1915).
[CrossRef]

Ghandehari, H.

M. M. Arnida, A. Janát-Amsbury, C. M. Ray, C. M. Peterson, and H. Ghandehari, “Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages,” Eur. J. Pharm. Biopharm.77(3), 417–423 (2011).
[CrossRef] [PubMed]

Ghazani, A. A.

T. S. Hauck, A. A. Ghazani, and W. C. W. Chan, “Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells,” Small4(1), 153–159 (2008).
[CrossRef] [PubMed]

Gillespie, C.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Gittins, D. I.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. Von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B70(20), 205424 (2004).
[CrossRef]

Go, A. S.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Gold, H. K.

F. D. Kolodgie, R. Virmani, A. P. Burke, A. Farb, D. K. Weber, R. Kutys, A. V. Finn, and H. K. Gold, “Pathologic assessment of the vulnerable human coronary plaque,” Heart90(12), 1385–1391 (2004).
[CrossRef] [PubMed]

Gómez, M. E.

E. T. Castellana, R. C. Gamez, M. E. Gómez, and D. H. Russell, “Longitudinal surface plasmon resonance based gold nanorod biosensors for mass spectrometry,” Langmuir26(8), 6066–6070 (2010).
[CrossRef] [PubMed]

Greenlund, K. J.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Guerrisi, M.

M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B12(2), 557–563 (1975).
[CrossRef]

M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B12(2), 557–563 (1975).
[CrossRef]

Hailpern, S. M.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Halas, N. J.

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: impending clinical impact,” Acc. Chem. Res.41(12), 1842–1851 (2008).
[CrossRef] [PubMed]

Hao, N. B.

N. B. Hao, M. H. Lü, Y. H. Fan, Y. L. Cao, Z. R. Zhang, and S. M. Yang, “Macrophages in tumor microenvironments and the progression of tumors,” Clin. Dev. Immunol.2012, 948098 (2012).
[CrossRef] [PubMed]

Hauck, T. S.

T. S. Hauck, A. A. Ghazani, and W. C. W. Chan, “Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells,” Small4(1), 153–159 (2008).
[CrossRef] [PubMed]

He, W.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Heit, J. A.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Ho, P. M.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Howard, V. J.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Huang, C. K.

C. L. Chen, L. R. Kuo, C. L. Chang, Y. K. Hwu, C. K. Huang, S. Y. Lee, K. Chen, S. J. Lin, J. D. Huang, and Y. Y. Chen, “In situ real-time investigation of cancer cell photothermolysis mediated by excited gold nanorod surface plasmons,” Biomaterials31(14), 4104–4112 (2010).
[CrossRef] [PubMed]

Huang, J. D.

C. L. Chen, L. R. Kuo, C. L. Chang, Y. K. Hwu, C. K. Huang, S. Y. Lee, K. Chen, S. J. Lin, J. D. Huang, and Y. Y. Chen, “In situ real-time investigation of cancer cell photothermolysis mediated by excited gold nanorod surface plasmons,” Biomaterials31(14), 4104–4112 (2010).
[CrossRef] [PubMed]

Huang, T.

G. Wang, T. Huang, R. W. Murray, L. Menard, and R. G. Nuzzo, “Near-IR luminescence of monolayer-protected metal clusters,” J. Am. Chem. Soc.127(3), 812–813 (2005).
[CrossRef] [PubMed]

Huang, X.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
[CrossRef]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res.41(12), 1578–1586 (2008).
[CrossRef] [PubMed]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics2(3), 107–118 (2007).
[CrossRef]

Huff, T. B.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Hwu, Y. K.

C. L. Chen, L. R. Kuo, C. L. Chang, Y. K. Hwu, C. K. Huang, S. Y. Lee, K. Chen, S. J. Lin, J. D. Huang, and Y. Y. Chen, “In situ real-time investigation of cancer cell photothermolysis mediated by excited gold nanorod surface plasmons,” Biomaterials31(14), 4104–4112 (2010).
[CrossRef] [PubMed]

Ilin, K. S.

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H. J. Eisler, “Highly localized non-linear optical white-light response at nanorod ends from non-resonant excitation,” Nanoscale2(6), 1018–1020 (2010).
[CrossRef] [PubMed]

Imura, K.

K. Imura and H. Okamoto, “Properties of photoluminescence from single gold nanorods induced by near-field two-photon excitation,” J. Phys. Chem. C113(27), 11756–11759 (2009).
[CrossRef]

H. Okamoto and K. Imura, “Near-field imaging of optical field and plasmon wavefunctions in metal nanoparticles,” J. Mater. Chem.16(40), 3920–3928 (2006).
[CrossRef]

K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B109(27), 13214–13220 (2005).
[CrossRef] [PubMed]

Ingram, D. R.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Jain, P. K.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res.41(12), 1578–1586 (2008).
[CrossRef] [PubMed]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics2(3), 107–118 (2007).
[CrossRef]

Janát-Amsbury, A.

M. M. Arnida, A. Janát-Amsbury, C. M. Ray, C. M. Peterson, and H. Ghandehari, “Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages,” Eur. J. Pharm. Biopharm.77(3), 417–423 (2011).
[CrossRef] [PubMed]

Jenkins, J. T.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Ji, X.

X. Ji, R. Shao, A. M. Elliott, R. J. Stafford, E. Esparza-Coss, J. A. Bankson, G. Liang, Z.-P. Luo, K. Park, J. T. Markert, and C. Li, “Bifunctional Gold Nanoshells with a Superparamagnetic Iron Oxide-Silica Core Suitable for Both MR Imaging and Photothermal Therapy,” J Phys Chem C Nanomater Interfaces111(17), 6245–6251 (2007).
[CrossRef] [PubMed]

Johnston, K. P.

T. Wang, J. J. Mancuso, S. M. Kazmi, J. Dwelle, V. Sapozhnikova, B. Willsey, L. L. Ma, J. Qiu, X. Li, A. K. Dunn, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Combined two-photon luminescence microscopy and OCT for macrophage detection in the hypercholesterolemic rabbit aorta using plasmonic gold nanorose,” Lasers Surg. Med.44(1), 49–59 (2012).
[CrossRef] [PubMed]

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Katayama, Y.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release114(3), 343–347 (2006).
[CrossRef] [PubMed]

Kawano, T.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release114(3), 343–347 (2006).
[CrossRef] [PubMed]

Kazmi, S. M.

T. Wang, J. J. Mancuso, S. M. Kazmi, J. Dwelle, V. Sapozhnikova, B. Willsey, L. L. Ma, J. Qiu, X. Li, A. K. Dunn, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Combined two-photon luminescence microscopy and OCT for macrophage detection in the hypercholesterolemic rabbit aorta using plasmonic gold nanorose,” Lasers Surg. Med.44(1), 49–59 (2012).
[CrossRef] [PubMed]

Kelley, D. F.

J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys.108(21), 9137–9143 (1998).
[CrossRef]

Kissela, B. M.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Kittner, S. J.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Klar, T. A.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. Von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B70(20), 205424 (2004).
[CrossRef]

Kobayashi, H.

M. Longmire, P. L. Choyke, and H. Kobayashi, “Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats,” Nanomedicine (Lond)3(5), 703–717 (2008).
[CrossRef] [PubMed]

Kolodgie, F. D.

F. D. Kolodgie, R. Virmani, A. P. Burke, A. Farb, D. K. Weber, R. Kutys, A. V. Finn, and H. K. Gold, “Pathologic assessment of the vulnerable human coronary plaque,” Heart90(12), 1385–1391 (2004).
[CrossRef] [PubMed]

Kostcheev, S.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett.95(26), 267405 (2005).
[CrossRef] [PubMed]

Kou, X. S.

W. H. Ni, X. S. Kou, Z. Yang, and J. F. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano2(4), 677–686 (2008).
[CrossRef] [PubMed]

Kuo, L. R.

C. L. Chen, L. R. Kuo, C. L. Chang, Y. K. Hwu, C. K. Huang, S. Y. Lee, K. Chen, S. J. Lin, J. D. Huang, and Y. Y. Chen, “In situ real-time investigation of cancer cell photothermolysis mediated by excited gold nanorod surface plasmons,” Biomaterials31(14), 4104–4112 (2010).
[CrossRef] [PubMed]

Kutys, R.

F. D. Kolodgie, R. Virmani, A. P. Burke, A. Farb, D. K. Weber, R. Kutys, A. V. Finn, and H. K. Gold, “Pathologic assessment of the vulnerable human coronary plaque,” Heart90(12), 1385–1391 (2004).
[CrossRef] [PubMed]

Lackland, D. T.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Laevsky, G. S.

D. Nagesha, G. S. Laevsky, P. Lampton, R. Banyal, C. Warner, C. DiMarzio, and S. Sridhar, “In vitro imaging of embryonic stem cells using multiphoton luminescence of gold nanoparticles,” Int. J. Nanomedicine2(4), 813–819 (2007).
[PubMed]

Lal, S.

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: impending clinical impact,” Acc. Chem. Res.41(12), 1842–1851 (2008).
[CrossRef] [PubMed]

Lampton, P.

D. Nagesha, G. S. Laevsky, P. Lampton, R. Banyal, C. Warner, C. DiMarzio, and S. Sridhar, “In vitro imaging of embryonic stem cells using multiphoton luminescence of gold nanoparticles,” Int. J. Nanomedicine2(4), 813–819 (2007).
[PubMed]

Larson, T. A.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Lee, K. S.

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B109(43), 20331–20338 (2005).
[CrossRef] [PubMed]

Lee, S. Y.

C. L. Chen, L. R. Kuo, C. L. Chang, Y. K. Hwu, C. K. Huang, S. Y. Lee, K. Chen, S. J. Lin, J. D. Huang, and Y. Y. Chen, “In situ real-time investigation of cancer cell photothermolysis mediated by excited gold nanorod surface plasmons,” Biomaterials31(14), 4104–4112 (2010).
[CrossRef] [PubMed]

Lemmer, U.

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H. J. Eisler, “Highly localized non-linear optical white-light response at nanorod ends from non-resonant excitation,” Nanoscale2(6), 1018–1020 (2010).
[CrossRef] [PubMed]

Lerondel, G.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett.95(26), 267405 (2005).
[CrossRef] [PubMed]

Li, C.

X. Ji, R. Shao, A. M. Elliott, R. J. Stafford, E. Esparza-Coss, J. A. Bankson, G. Liang, Z.-P. Luo, K. Park, J. T. Markert, and C. Li, “Bifunctional Gold Nanoshells with a Superparamagnetic Iron Oxide-Silica Core Suitable for Both MR Imaging and Photothermal Therapy,” J Phys Chem C Nanomater Interfaces111(17), 6245–6251 (2007).
[CrossRef] [PubMed]

Li, X.

T. Wang, J. J. Mancuso, S. M. Kazmi, J. Dwelle, V. Sapozhnikova, B. Willsey, L. L. Ma, J. Qiu, X. Li, A. K. Dunn, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Combined two-photon luminescence microscopy and OCT for macrophage detection in the hypercholesterolemic rabbit aorta using plasmonic gold nanorose,” Lasers Surg. Med.44(1), 49–59 (2012).
[CrossRef] [PubMed]

S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for cancer detection and treatment,” Nanomedicine (Lond)2(5), 657–668 (2007).
[CrossRef] [PubMed]

Liang, G.

X. Ji, R. Shao, A. M. Elliott, R. J. Stafford, E. Esparza-Coss, J. A. Bankson, G. Liang, Z.-P. Luo, K. Park, J. T. Markert, and C. Li, “Bifunctional Gold Nanoshells with a Superparamagnetic Iron Oxide-Silica Core Suitable for Both MR Imaging and Photothermal Therapy,” J Phys Chem C Nanomater Interfaces111(17), 6245–6251 (2007).
[CrossRef] [PubMed]

Lichtman, J. H.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Lin, S. J.

C. L. Chen, L. R. Kuo, C. L. Chang, Y. K. Hwu, C. K. Huang, S. Y. Lee, K. Chen, S. J. Lin, J. D. Huang, and Y. Y. Chen, “In situ real-time investigation of cancer cell photothermolysis mediated by excited gold nanorod surface plasmons,” Biomaterials31(14), 4104–4112 (2010).
[CrossRef] [PubMed]

Link, S.

Y. Fang, W. S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio,” ACS Nano6(8), 7177–7184 (2012).
[CrossRef] [PubMed]

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett.317(6), 517–523 (2000).
[CrossRef]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B104(26), 6152–6163 (2000).
[CrossRef]

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B103(16), 3073–3077 (1999).
[CrossRef]

Lisabeth, L. D.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Lloyd-Jones, D. M.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Longmire, M.

M. Longmire, P. L. Choyke, and H. Kobayashi, “Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats,” Nanomedicine (Lond)3(5), 703–717 (2008).
[CrossRef] [PubMed]

Low, P. S.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Lu, X.

S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for cancer detection and treatment,” Nanomedicine (Lond)2(5), 657–668 (2007).
[CrossRef] [PubMed]

Lü, M. H.

N. B. Hao, M. H. Lü, Y. H. Fan, Y. L. Cao, Z. R. Zhang, and S. M. Yang, “Macrophages in tumor microenvironments and the progression of tumors,” Clin. Dev. Immunol.2012, 948098 (2012).
[CrossRef] [PubMed]

Luo, Z.-P.

X. Ji, R. Shao, A. M. Elliott, R. J. Stafford, E. Esparza-Coss, J. A. Bankson, G. Liang, Z.-P. Luo, K. Park, J. T. Markert, and C. Li, “Bifunctional Gold Nanoshells with a Superparamagnetic Iron Oxide-Silica Core Suitable for Both MR Imaging and Photothermal Therapy,” J Phys Chem C Nanomater Interfaces111(17), 6245–6251 (2007).
[CrossRef] [PubMed]

Ma, L. L.

T. Wang, J. J. Mancuso, S. M. Kazmi, J. Dwelle, V. Sapozhnikova, B. Willsey, L. L. Ma, J. Qiu, X. Li, A. K. Dunn, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Combined two-photon luminescence microscopy and OCT for macrophage detection in the hypercholesterolemic rabbit aorta using plasmonic gold nanorose,” Lasers Surg. Med.44(1), 49–59 (2012).
[CrossRef] [PubMed]

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Makuc, D. M.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Mancuso, J. J.

T. Wang, J. J. Mancuso, S. M. Kazmi, J. Dwelle, V. Sapozhnikova, B. Willsey, L. L. Ma, J. Qiu, X. Li, A. K. Dunn, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Combined two-photon luminescence microscopy and OCT for macrophage detection in the hypercholesterolemic rabbit aorta using plasmonic gold nanorose,” Lasers Surg. Med.44(1), 49–59 (2012).
[CrossRef] [PubMed]

Marcus, G. M.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Marelli, A.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Markert, J. T.

X. Ji, R. Shao, A. M. Elliott, R. J. Stafford, E. Esparza-Coss, J. A. Bankson, G. Liang, Z.-P. Luo, K. Park, J. T. Markert, and C. Li, “Bifunctional Gold Nanoshells with a Superparamagnetic Iron Oxide-Silica Core Suitable for Both MR Imaging and Photothermal Therapy,” J Phys Chem C Nanomater Interfaces111(17), 6245–6251 (2007).
[CrossRef] [PubMed]

Martin, J. E.

J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys.108(21), 9137–9143 (1998).
[CrossRef]

Matchar, D. B.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Mayya, K. S.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. Von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B70(20), 205424 (2004).
[CrossRef]

McDermott, M. M.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Meigs, J. B.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Menard, L.

G. Wang, T. Huang, R. W. Murray, L. Menard, and R. G. Nuzzo, “Near-IR luminescence of monolayer-protected metal clusters,” J. Am. Chem. Soc.127(3), 812–813 (2005).
[CrossRef] [PubMed]

Milner, T. E.

T. Wang, J. J. Mancuso, S. M. Kazmi, J. Dwelle, V. Sapozhnikova, B. Willsey, L. L. Ma, J. Qiu, X. Li, A. K. Dunn, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Combined two-photon luminescence microscopy and OCT for macrophage detection in the hypercholesterolemic rabbit aorta using plasmonic gold nanorose,” Lasers Surg. Med.44(1), 49–59 (2012).
[CrossRef] [PubMed]

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Mohamed, M. B.

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett.317(6), 517–523 (2000).
[CrossRef]

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B103(16), 3073–3077 (1999).
[CrossRef]

Mooradian, A.

A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett.22(5), 185–187 (1969).
[CrossRef]

Moy, C. S.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Mozaffarian, D.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Mulvaney, P.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88(7), 077402–077405 (2002).
[CrossRef] [PubMed]

Murray, R. W.

G. Wang, T. Huang, R. W. Murray, L. Menard, and R. G. Nuzzo, “Near-IR luminescence of monolayer-protected metal clusters,” J. Am. Chem. Soc.127(3), 812–813 (2005).
[CrossRef] [PubMed]

Mussolino, M. E.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Nagahara, T.

K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B109(27), 13214–13220 (2005).
[CrossRef] [PubMed]

Nagesha, D.

D. Nagesha, G. S. Laevsky, P. Lampton, R. Banyal, C. Warner, C. DiMarzio, and S. Sridhar, “In vitro imaging of embryonic stem cells using multiphoton luminescence of gold nanoparticles,” Int. J. Nanomedicine2(4), 813–819 (2007).
[PubMed]

Neretina, S.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
[CrossRef]

Ni, W. H.

W. H. Ni, X. S. Kou, Z. Yang, and J. F. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano2(4), 677–686 (2008).
[CrossRef] [PubMed]

Nichol, G.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Niedereichholz, T.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. Von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B70(20), 205424 (2004).
[CrossRef]

Niidome, T.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release114(3), 343–347 (2006).
[CrossRef] [PubMed]

Niidome, Y.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release114(3), 343–347 (2006).
[CrossRef] [PubMed]

Nikoobakht, B.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B104(26), 6152–6163 (2000).
[CrossRef]

Novotny, L.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B68(11), 115433 (2003).
[CrossRef]

Nuzzo, R. G.

G. Wang, T. Huang, R. W. Murray, L. Menard, and R. G. Nuzzo, “Near-IR luminescence of monolayer-protected metal clusters,” J. Am. Chem. Soc.127(3), 812–813 (2005).
[CrossRef] [PubMed]

Ohulchanskyy, T. Y.

T. Y. Ohulchanskyy, I. Roy, K. T. Yong, H. E. Pudavar, and P. N. Prasad, “High-resolution light microscopy using luminescent nanoparticles,” Wiley Interdiscip Rev Nanomed Nanobiotechnol2(2), 162–175 (2010).
[CrossRef] [PubMed]

Okamoto, H.

K. Imura and H. Okamoto, “Properties of photoluminescence from single gold nanorods induced by near-field two-photon excitation,” J. Phys. Chem. C113(27), 11756–11759 (2009).
[CrossRef]

H. Okamoto and K. Imura, “Near-field imaging of optical field and plasmon wavefunctions in metal nanoparticles,” J. Mater. Chem.16(40), 3920–3928 (2006).
[CrossRef]

K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B109(27), 13214–13220 (2005).
[CrossRef] [PubMed]

Okamoto, Y.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release114(3), 343–347 (2006).
[CrossRef] [PubMed]

Paramita, V.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Paranjape, A. S.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Park, K.

X. Ji, R. Shao, A. M. Elliott, R. J. Stafford, E. Esparza-Coss, J. A. Bankson, G. Liang, Z.-P. Luo, K. Park, J. T. Markert, and C. Li, “Bifunctional Gold Nanoshells with a Superparamagnetic Iron Oxide-Silica Core Suitable for Both MR Imaging and Photothermal Therapy,” J Phys Chem C Nanomater Interfaces111(17), 6245–6251 (2007).
[CrossRef] [PubMed]

Parsapour, F.

J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys.108(21), 9137–9143 (1998).
[CrossRef]

Paynter, N. P.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Peterson, C. M.

M. M. Arnida, A. Janát-Amsbury, C. M. Ray, C. M. Peterson, and H. Ghandehari, “Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages,” Eur. J. Pharm. Biopharm.77(3), 417–423 (2011).
[CrossRef] [PubMed]

Prasad, P. N.

T. Y. Ohulchanskyy, I. Roy, K. T. Yong, H. E. Pudavar, and P. N. Prasad, “High-resolution light microscopy using luminescent nanoparticles,” Wiley Interdiscip Rev Nanomed Nanobiotechnol2(2), 162–175 (2010).
[CrossRef] [PubMed]

Pudavar, H. E.

T. Y. Ohulchanskyy, I. Roy, K. T. Yong, H. E. Pudavar, and P. N. Prasad, “High-resolution light microscopy using luminescent nanoparticles,” Wiley Interdiscip Rev Nanomed Nanobiotechnol2(2), 162–175 (2010).
[CrossRef] [PubMed]

Qiu, J.

T. Wang, J. J. Mancuso, S. M. Kazmi, J. Dwelle, V. Sapozhnikova, B. Willsey, L. L. Ma, J. Qiu, X. Li, A. K. Dunn, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Combined two-photon luminescence microscopy and OCT for macrophage detection in the hypercholesterolemic rabbit aorta using plasmonic gold nanorose,” Lasers Surg. Med.44(1), 49–59 (2012).
[CrossRef] [PubMed]

Ray, C. M.

M. M. Arnida, A. Janát-Amsbury, C. M. Ray, C. M. Peterson, and H. Ghandehari, “Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages,” Eur. J. Pharm. Biopharm.77(3), 417–423 (2011).
[CrossRef] [PubMed]

Roger, V. L.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Rosamond, W. D.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Rosei, R.

M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B12(2), 557–563 (1975).
[CrossRef]

M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B12(2), 557–563 (1975).
[CrossRef]

Roy, I.

T. Y. Ohulchanskyy, I. Roy, K. T. Yong, H. E. Pudavar, and P. N. Prasad, “High-resolution light microscopy using luminescent nanoparticles,” Wiley Interdiscip Rev Nanomed Nanobiotechnol2(2), 162–175 (2010).
[CrossRef] [PubMed]

Royer, P.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett.95(26), 267405 (2005).
[CrossRef] [PubMed]

Ruffell, B.

B. Ruffell, N. I. Affara, and L. M. Coussens, “Differential macrophage programming in the tumor microenvironment,” Trends Immunol.33(3), 119–126 (2012).
[CrossRef] [PubMed]

Russell, D. H.

E. T. Castellana, R. C. Gamez, M. E. Gómez, and D. H. Russell, “Longitudinal surface plasmon resonance based gold nanorod biosensors for mass spectrometry,” Langmuir26(8), 6066–6070 (2010).
[CrossRef] [PubMed]

Sapozhnikova, V.

T. Wang, J. J. Mancuso, S. M. Kazmi, J. Dwelle, V. Sapozhnikova, B. Willsey, L. L. Ma, J. Qiu, X. Li, A. K. Dunn, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Combined two-photon luminescence microscopy and OCT for macrophage detection in the hypercholesterolemic rabbit aorta using plasmonic gold nanorose,” Lasers Surg. Med.44(1), 49–59 (2012).
[CrossRef] [PubMed]

Sastry, M.

R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, and M. Sastry, “Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview,” Langmuir21(23), 10644–10654 (2005).
[CrossRef] [PubMed]

Sekhon, J. S.

S. S. Verma and J. S. Sekhon, “Influence of aspect ratio and surrounding medium on localized surface plasmon resonance (LSPR) of gold nanorod,” J. Opt.41(2), 89–93 (2012).
[CrossRef]

Shah, P. K.

E. Falk, P. K. Shah, and V. Fuster, “Coronary plaque disruption,” Circulation92(3), 657–671 (1995).
[CrossRef] [PubMed]

Shao, R.

X. Ji, R. Shao, A. M. Elliott, R. J. Stafford, E. Esparza-Coss, J. A. Bankson, G. Liang, Z.-P. Luo, K. Park, J. T. Markert, and C. Li, “Bifunctional Gold Nanoshells with a Superparamagnetic Iron Oxide-Silica Core Suitable for Both MR Imaging and Photothermal Therapy,” J Phys Chem C Nanomater Interfaces111(17), 6245–6251 (2007).
[CrossRef] [PubMed]

Shen, Y. R.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

Shukla, R.

R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, and M. Sastry, “Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview,” Langmuir21(23), 10644–10654 (2005).
[CrossRef] [PubMed]

Siegel, M.

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H. J. Eisler, “Highly localized non-linear optical white-light response at nanorod ends from non-resonant excitation,” Nanoscale2(6), 1018–1020 (2010).
[CrossRef] [PubMed]

Skrabalak, S. E.

S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for cancer detection and treatment,” Nanomedicine (Lond)2(5), 657–668 (2007).
[CrossRef] [PubMed]

Sokolov, K.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Sönnichsen, C.

C. Sönnichsen and A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett.5(2), 301–304 (2005).
[CrossRef] [PubMed]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88(7), 077402–077405 (2002).
[CrossRef] [PubMed]

Sorlie, P. D.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Sridhar, S.

D. Nagesha, G. S. Laevsky, P. Lampton, R. Banyal, C. Warner, C. DiMarzio, and S. Sridhar, “In vitro imaging of embryonic stem cells using multiphoton luminescence of gold nanoparticles,” Int. J. Nanomedicine2(4), 813–819 (2007).
[PubMed]

Stafford, R. J.

X. Ji, R. Shao, A. M. Elliott, R. J. Stafford, E. Esparza-Coss, J. A. Bankson, G. Liang, Z.-P. Luo, K. Park, J. T. Markert, and C. Li, “Bifunctional Gold Nanoshells with a Superparamagnetic Iron Oxide-Silica Core Suitable for Both MR Imaging and Photothermal Therapy,” J Phys Chem C Nanomater Interfaces111(17), 6245–6251 (2007).
[CrossRef] [PubMed]

Stafford, R. S.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Swanglap, P.

Y. Fang, W. S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio,” ACS Nano6(8), 7177–7184 (2012).
[CrossRef] [PubMed]

Takahashi, H.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release114(3), 343–347 (2006).
[CrossRef] [PubMed]

Tam, J. M.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Tam, J. O.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Tong, L.

L. Tong, Q. Wei, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol.85(1), 21–32 (2009).
[CrossRef] [PubMed]

Turan, T. N.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Turner, M. B.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Verma, S. S.

S. S. Verma and J. S. Sekhon, “Influence of aspect ratio and surrounding medium on localized surface plasmon resonance (LSPR) of gold nanorod,” J. Opt.41(2), 89–93 (2012).
[CrossRef]

Villard, J. W.

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Virmani, R.

F. D. Kolodgie, R. Virmani, A. P. Burke, A. Farb, D. K. Weber, R. Kutys, A. V. Finn, and H. K. Gold, “Pathologic assessment of the vulnerable human coronary plaque,” Heart90(12), 1385–1391 (2004).
[CrossRef] [PubMed]

Volkov, V.

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett.317(6), 517–523 (2000).
[CrossRef]

Von Plessen, G.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. Von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B70(20), 205424 (2004).
[CrossRef]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88(7), 077402–077405 (2002).
[CrossRef] [PubMed]

Wang, G.

G. Wang, T. Huang, R. W. Murray, L. Menard, and R. G. Nuzzo, “Near-IR luminescence of monolayer-protected metal clusters,” J. Am. Chem. Soc.127(3), 812–813 (2005).
[CrossRef] [PubMed]

Wang, H.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Wang, J. F.

W. H. Ni, X. S. Kou, Z. Yang, and J. F. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano2(4), 677–686 (2008).
[CrossRef] [PubMed]

Wang, T.

T. Wang, J. J. Mancuso, S. M. Kazmi, J. Dwelle, V. Sapozhnikova, B. Willsey, L. L. Ma, J. Qiu, X. Li, A. K. Dunn, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Combined two-photon luminescence microscopy and OCT for macrophage detection in the hypercholesterolemic rabbit aorta using plasmonic gold nanorose,” Lasers Surg. Med.44(1), 49–59 (2012).
[CrossRef] [PubMed]

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Warner, C.

D. Nagesha, G. S. Laevsky, P. Lampton, R. Banyal, C. Warner, C. DiMarzio, and S. Sridhar, “In vitro imaging of embryonic stem cells using multiphoton luminescence of gold nanoparticles,” Int. J. Nanomedicine2(4), 813–819 (2007).
[PubMed]

Webb, W. W.

Weber, D. K.

F. D. Kolodgie, R. Virmani, A. P. Burke, A. Farb, D. K. Weber, R. Kutys, A. V. Finn, and H. K. Gold, “Pathologic assessment of the vulnerable human coronary plaque,” Heart90(12), 1385–1391 (2004).
[CrossRef] [PubMed]

Wei, A.

L. Tong, Q. Wei, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol.85(1), 21–32 (2009).
[CrossRef] [PubMed]

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Wei, Q.

L. Tong, Q. Wei, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol.85(1), 21–32 (2009).
[CrossRef] [PubMed]

Wiedenman, B.

J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys.108(21), 9137–9143 (1998).
[CrossRef]

Wiederrecht, G. P.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett.95(26), 267405 (2005).
[CrossRef] [PubMed]

Wilcoxon, J. P.

J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys.108(21), 9137–9143 (1998).
[CrossRef]

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88(7), 077402–077405 (2002).
[CrossRef] [PubMed]

Willingham, B.

Y. Fang, W. S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio,” ACS Nano6(8), 7177–7184 (2012).
[CrossRef] [PubMed]

Willsey, B.

T. Wang, J. J. Mancuso, S. M. Kazmi, J. Dwelle, V. Sapozhnikova, B. Willsey, L. L. Ma, J. Qiu, X. Li, A. K. Dunn, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Combined two-photon luminescence microscopy and OCT for macrophage detection in the hypercholesterolemic rabbit aorta using plasmonic gold nanorose,” Lasers Surg. Med.44(1), 49–59 (2012).
[CrossRef] [PubMed]

Wilson, O.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88(7), 077402–077405 (2002).
[CrossRef] [PubMed]

Winsemius, P.

M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B12(2), 557–563 (1975).
[CrossRef]

M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B12(2), 557–563 (1975).
[CrossRef]

Wissert, M. D.

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H. J. Eisler, “Highly localized non-linear optical white-light response at nanorod ends from non-resonant excitation,” Nanoscale2(6), 1018–1020 (2010).
[CrossRef] [PubMed]

Wong, N. D.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Wylie-Rosett, J.

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

Xia, Y.

S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for cancer detection and treatment,” Nanomedicine (Lond)2(5), 657–668 (2007).
[CrossRef] [PubMed]

Xu, C.

Yamagata, M.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release114(3), 343–347 (2006).
[CrossRef] [PubMed]

Yang, S. M.

N. B. Hao, M. H. Lü, Y. H. Fan, Y. L. Cao, Z. R. Zhang, and S. M. Yang, “Macrophages in tumor microenvironments and the progression of tumors,” Clin. Dev. Immunol.2012, 948098 (2012).
[CrossRef] [PubMed]

Yang, Z.

W. H. Ni, X. S. Kou, Z. Yang, and J. F. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano2(4), 677–686 (2008).
[CrossRef] [PubMed]

Yong, K. T.

T. Y. Ohulchanskyy, I. Roy, K. T. Yong, H. E. Pudavar, and P. N. Prasad, “High-resolution light microscopy using luminescent nanoparticles,” Wiley Interdiscip Rev Nanomed Nanobiotechnol2(2), 162–175 (2010).
[CrossRef] [PubMed]

Yu, J.

Y. Zhang, J. Yu, D. J. S. Birch, and Y. Chen, “Gold nanorods for fluorescence lifetime imaging in biology,” J. Biomed. Opt.15(2), 020504 (2010).
[CrossRef] [PubMed]

Yu, Z. H.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

Zhang, C.

J. Zheng, C. Zhang, and R. M. Dickson, “Highly fluorescent, water-soluble, size-tunable gold quantum dots,” Phys. Rev. Lett.93(7), 077402–077405 (2004).
[CrossRef] [PubMed]

Zhang, Y.

Y. Zhang, J. Yu, D. J. S. Birch, and Y. Chen, “Gold nanorods for fluorescence lifetime imaging in biology,” J. Biomed. Opt.15(2), 020504 (2010).
[CrossRef] [PubMed]

Zhang, Z. R.

N. B. Hao, M. H. Lü, Y. H. Fan, Y. L. Cao, Z. R. Zhang, and S. M. Yang, “Macrophages in tumor microenvironments and the progression of tumors,” Clin. Dev. Immunol.2012, 948098 (2012).
[CrossRef] [PubMed]

Zheng, J.

J. Zheng, C. Zhang, and R. M. Dickson, “Highly fluorescent, water-soluble, size-tunable gold quantum dots,” Phys. Rev. Lett.93(7), 077402–077405 (2004).
[CrossRef] [PubMed]

Zweifel, D. A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Acc. Chem. Res. (3)

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: impending clinical impact,” Acc. Chem. Res.41(12), 1842–1851 (2008).
[CrossRef] [PubMed]

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res.34(4), 257–264 (2001).
[CrossRef] [PubMed]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res.41(12), 1578–1586 (2008).
[CrossRef] [PubMed]

ACS Nano (3)

Y. Fang, W. S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio,” ACS Nano6(8), 7177–7184 (2012).
[CrossRef] [PubMed]

W. H. Ni, X. S. Kou, Z. Yang, and J. F. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano2(4), 677–686 (2008).
[CrossRef] [PubMed]

L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano3(9), 2686–2696 (2009).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
[CrossRef]

Ann. Phys. (1)

R. Gans, “Form of ultramicroscopic particles of silver,” Ann. Phys.47(10), 270–284 (1915).
[CrossRef]

Appl. Opt. (1)

Biomaterials (1)

C. L. Chen, L. R. Kuo, C. L. Chang, Y. K. Hwu, C. K. Huang, S. Y. Lee, K. Chen, S. J. Lin, J. D. Huang, and Y. Y. Chen, “In situ real-time investigation of cancer cell photothermolysis mediated by excited gold nanorod surface plasmons,” Biomaterials31(14), 4104–4112 (2010).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett.317(6), 517–523 (2000).
[CrossRef]

Circulation (2)

V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011).
[CrossRef] [PubMed]

E. Falk, P. K. Shah, and V. Fuster, “Coronary plaque disruption,” Circulation92(3), 657–671 (1995).
[CrossRef] [PubMed]

Clin. Dev. Immunol. (1)

N. B. Hao, M. H. Lü, Y. H. Fan, Y. L. Cao, Z. R. Zhang, and S. M. Yang, “Macrophages in tumor microenvironments and the progression of tumors,” Clin. Dev. Immunol.2012, 948098 (2012).
[CrossRef] [PubMed]

Eur. J. Pharm. Biopharm. (1)

M. M. Arnida, A. Janát-Amsbury, C. M. Ray, C. M. Peterson, and H. Ghandehari, “Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages,” Eur. J. Pharm. Biopharm.77(3), 417–423 (2011).
[CrossRef] [PubMed]

Heart (1)

F. D. Kolodgie, R. Virmani, A. P. Burke, A. Farb, D. K. Weber, R. Kutys, A. V. Finn, and H. K. Gold, “Pathologic assessment of the vulnerable human coronary plaque,” Heart90(12), 1385–1391 (2004).
[CrossRef] [PubMed]

Int. J. Nanomedicine (1)

D. Nagesha, G. S. Laevsky, P. Lampton, R. Banyal, C. Warner, C. DiMarzio, and S. Sridhar, “In vitro imaging of embryonic stem cells using multiphoton luminescence of gold nanoparticles,” Int. J. Nanomedicine2(4), 813–819 (2007).
[PubMed]

J Phys Chem C Nanomater Interfaces (1)

X. Ji, R. Shao, A. M. Elliott, R. J. Stafford, E. Esparza-Coss, J. A. Bankson, G. Liang, Z.-P. Luo, K. Park, J. T. Markert, and C. Li, “Bifunctional Gold Nanoshells with a Superparamagnetic Iron Oxide-Silica Core Suitable for Both MR Imaging and Photothermal Therapy,” J Phys Chem C Nanomater Interfaces111(17), 6245–6251 (2007).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

G. Wang, T. Huang, R. W. Murray, L. Menard, and R. G. Nuzzo, “Near-IR luminescence of monolayer-protected metal clusters,” J. Am. Chem. Soc.127(3), 812–813 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

Y. Zhang, J. Yu, D. J. S. Birch, and Y. Chen, “Gold nanorods for fluorescence lifetime imaging in biology,” J. Biomed. Opt.15(2), 020504 (2010).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys.108(21), 9137–9143 (1998).
[CrossRef]

J. Control. Release (1)

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release114(3), 343–347 (2006).
[CrossRef] [PubMed]

J. Mater. Chem. (1)

H. Okamoto and K. Imura, “Near-field imaging of optical field and plasmon wavefunctions in metal nanoparticles,” J. Mater. Chem.16(40), 3920–3928 (2006).
[CrossRef]

J. Opt. (1)

S. S. Verma and J. S. Sekhon, “Influence of aspect ratio and surrounding medium on localized surface plasmon resonance (LSPR) of gold nanorod,” J. Opt.41(2), 89–93 (2012).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (5)

K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B109(27), 13214–13220 (2005).
[CrossRef] [PubMed]

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B103(16), 3073–3077 (1999).
[CrossRef]

S. Eustis and M. A. El-Sayed, “Aspect ratio dependence of the enhanced fluorescence intensity of gold nanorods: experimental and simulation study,” J. Phys. Chem. B109(34), 16350–16356 (2005).
[CrossRef] [PubMed]

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B109(43), 20331–20338 (2005).
[CrossRef] [PubMed]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B104(26), 6152–6163 (2000).
[CrossRef]

J. Phys. Chem. C (1)

K. Imura and H. Okamoto, “Properties of photoluminescence from single gold nanorods induced by near-field two-photon excitation,” J. Phys. Chem. C113(27), 11756–11759 (2009).
[CrossRef]

Langmuir (2)

E. T. Castellana, R. C. Gamez, M. E. Gómez, and D. H. Russell, “Longitudinal surface plasmon resonance based gold nanorod biosensors for mass spectrometry,” Langmuir26(8), 6066–6070 (2010).
[CrossRef] [PubMed]

R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, and M. Sastry, “Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview,” Langmuir21(23), 10644–10654 (2005).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

T. Wang, J. J. Mancuso, S. M. Kazmi, J. Dwelle, V. Sapozhnikova, B. Willsey, L. L. Ma, J. Qiu, X. Li, A. K. Dunn, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Combined two-photon luminescence microscopy and OCT for macrophage detection in the hypercholesterolemic rabbit aorta using plasmonic gold nanorose,” Lasers Surg. Med.44(1), 49–59 (2012).
[CrossRef] [PubMed]

Nano Lett. (1)

C. Sönnichsen and A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett.5(2), 301–304 (2005).
[CrossRef] [PubMed]

Nanomedicine (Lond) (2)

S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for cancer detection and treatment,” Nanomedicine (Lond)2(5), 657–668 (2007).
[CrossRef] [PubMed]

M. Longmire, P. L. Choyke, and H. Kobayashi, “Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats,” Nanomedicine (Lond)3(5), 703–717 (2008).
[CrossRef] [PubMed]

Nanoscale (1)

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H. J. Eisler, “Highly localized non-linear optical white-light response at nanorod ends from non-resonant excitation,” Nanoscale2(6), 1018–1020 (2010).
[CrossRef] [PubMed]

Photochem. Photobiol. (1)

L. Tong, Q. Wei, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol.85(1), 21–32 (2009).
[CrossRef] [PubMed]

Phys. Rev. B (4)

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B68(11), 115433 (2003).
[CrossRef]

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. Von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B70(20), 205424 (2004).
[CrossRef]

M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B12(2), 557–563 (1975).
[CrossRef]

M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B12(2), 557–563 (1975).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett.95(26), 267405 (2005).
[CrossRef] [PubMed]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88(7), 077402–077405 (2002).
[CrossRef] [PubMed]

A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett.22(5), 185–187 (1969).
[CrossRef]

J. Zheng, C. Zhang, and R. M. Dickson, “Highly fluorescent, water-soluble, size-tunable gold quantum dots,” Phys. Rev. Lett.93(7), 077402–077405 (2004).
[CrossRef] [PubMed]

Plasmonics (1)

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics2(3), 107–118 (2007).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Small (1)

T. S. Hauck, A. A. Ghazani, and W. C. W. Chan, “Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells,” Small4(1), 153–159 (2008).
[CrossRef] [PubMed]

Trends Immunol. (1)

B. Ruffell, N. I. Affara, and L. M. Coussens, “Differential macrophage programming in the tumor microenvironment,” Trends Immunol.33(3), 119–126 (2012).
[CrossRef] [PubMed]

Wiley Interdiscip Rev Nanomed Nanobiotechnol (1)

T. Y. Ohulchanskyy, I. Roy, K. T. Yong, H. E. Pudavar, and P. N. Prasad, “High-resolution light microscopy using luminescent nanoparticles,” Wiley Interdiscip Rev Nanomed Nanobiotechnol2(2), 162–175 (2010).
[CrossRef] [PubMed]

Other (1)

R. E. Hummel, Electronic Properties of Materials, 4th ed. (Springer, New York, 2011), pp. 37–61.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

TEM images of gold nanorods used in this study: a, Au700; b, Au756; c, Au844; d, Au1060. Insets in a–d are TPL images of a single nanorod at 840 nm excitation within the spectral range of 400-720 nm. Scale bars in TEM and TPL images represent 20 nm and 1 µm, respectively. e, Schematic diagram of the laser scanning TPL microscope. EOM, electro-optic modulator; PMT, photomultiplier tube.

Fig. 2
Fig. 2

a, Single-photon absorbance spectra of nanorods with four aspect ratios measured at a concentration of 4 × 1011 nanoparticles/ml. b, MPL intensity dependence on the excitation laser power (132 µW-4.8 mW) of nanorods at excitation wavelengths of 760, 840 and 1040 nm. c, Quadratic dependence of luminescence intensity of nanorods on excitation laser power at lower power levels (i.e., <1.6 mW) in b. Slopes of 1.7-2.2 (for each aspect ratio of nanorod at different excitation wavelength) confirm the TPL process.

Fig. 3
Fig. 3

a, A typical TPL image (80 × 80 µm2) of Au1060 at 840 nm excitation acquired after 30 s laser irradiation at 2 mW in the red box (20 × 20 µm2), where a MPL signal drop of nanorods is observed. b, Averaged MPL signal of nanorods in the red box (second bar of the same color) was normalized to that of the nanorods outside the red box in the larger field of view (first bar of the same color) for nanorods with four aspect ratios at three excitation wavelengths. Error bar represents the standard deviation.

Fig. 4
Fig. 4

Normalized TPACS of Rhodamine 6G single particle, Rhodamine 6G solution and reported values from Albota et al. [40] over a wavelength range of 760-1040 nm. Single Rhodamine 6G particles were formed from dried water solution; Rhodamine 6G solution has a concentration of 110 µM dissolved in DI water; Reported data used a Rhodamine 6G concentration of 110 µM dissolved in MeOH.

Fig. 5
Fig. 5

TPL emission spectra of a, Au700; b, Au756; c, Au844; and d, Au1060 at the excitation wavelengths of 760, 800, 840 and 1040 nm. Inset in a represents total quantum efficiency of the detection system including the electron-multiplying CCD and spectrometer gratings. Spectra was corrected for the quantum efficiency and normalized on the number of incident photons and nanorod concentration.

Tables (1)

Tables Icon

Table 1 TPACS (in GM units) of single nanorod at excitation wavelengths of 760, 840 and 1040 nm

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F 1 2 φC η 2 σ 2 g p fτ 8n P 2 πλ ,
( η 2 σ 2 ) n = n r n n P ¯ r 2 P ¯ n 2 F n F r ( η 2 σ 2 ) r .

Metrics