Abstract

We report on the measurement and analysis of the polarization state of second harmonic signals generated by starch granules, using a four-channel photon counting based Stokes-polarimeter. Various polarization parameters, such as the degree of polarization (DOP), the degree of linear polarization (DOLP), the degree of circular polarization (DOCP), and anisotropy are extracted from the 2D second harmonic Stokes images of starch granules. The concentric shell structure of a starch granule forms a natural photonic crystal structure. By integration over all the solid angle, it will allow very similar SHG quantum efficiency regardless of the angle or the states of incident polarization. Given type I phase matching and the concentric shell structure of a starch granule, one can easily infer the polarization states of the input beam from the resulting SH micrograph.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
    [CrossRef] [PubMed]
  2. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  3. F. Lu, W. Zheng, and Z. Huang, “Heterodyne polarization coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett.92(12), 123901 (2008).
    [CrossRef]
  4. S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J.90(2), 693–703 (2006).
    [CrossRef] [PubMed]
  5. P. J. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases diagnostics,” Anal. Chem.83(9), 3224–3231 (2011).
    [CrossRef] [PubMed]
  6. X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc.7(4), 654–669 (2012).
    [CrossRef] [PubMed]
  7. R. W. Boyd, Nonlinear Optics (Academic Press, 1992).
  8. S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt.14(1), 014001 (2009).
    [CrossRef] [PubMed]
  9. G. Cox, N. Moreno, and J. Feijó, “Second-harmonic imaging of plant polysaccharides,” J. Biomed. Opt.10(2), 024013 (2005).
    [CrossRef] [PubMed]
  10. A. D. Slepkov, A. Ridsdale, A. F. Pegoraro, D. J. Moffatt, and A. Stolow, “Multimodal CARS microscopy of structured carbohydrate biopolymers,” Biomed. Opt. Express1(5), 1347–1357 (2010).
    [CrossRef] [PubMed]
  11. Z. Y. Zhuo, C. S. Liao, C. H. Huang, J. Y. Yu, Y. Y. Tzeng, W. Lo, C. Y. Dong, H. C. Chui, Y. C. Huang, H. M. Lai, and S. W. Chu, “Second harmonic generation imaging—a new method for unraveling molecular information of starch,” J. Struct. Biol.171(1), 88–94 (2010).
    [CrossRef] [PubMed]
  12. S. Psilodimitrakopoulos, I. Amat-Roldan, P. Loza-Alvarez, and D. Artigas, “Estimating the helical pitch angle of amylopectin in starch using polarization second harmonic generation microscopy,” J. Opt.12(8), 084007 (2010).
    [CrossRef]
  13. S. Psilodimitrakopoulos, I. Amat-Roldan, P. Loza-Alvarez, and D. Artigas, “Effect of molecular organization on the image histograms of polarization SHG microscopy,” Biomed. Opt. Express3(10), 2681–2693 (2012).
    [CrossRef] [PubMed]
  14. R. L. Whistler, J. N. Bemiller, and E. F. Parschall, Starch: Chemistry and Technology (Academic Press, 1984), pp. 183–247.
  15. D. J. Gallant, B. Bouchet, A. Buléon, and S. Pérez, “Physical characteristics of starch granules and susceptibility to enzymatic degradation,” Eur. J. Clin. Nutr.46(Suppl 2), S3–S16 (1992).
    [PubMed]
  16. D. J. Gallant, B. Bouchet, and P. M. Baldwin, “Microscopy of starch: evidence of a new level of granule organization,” Carbohydr. Polym.32(3-4), 177–191 (1997).
    [CrossRef]
  17. G. T. Oostergetel and E. F. J. van Bruggen, “On the origin of a low angle spacing in starch,” Starch41(9), 331–335 (1989).
    [CrossRef]
  18. G. Mizutani, Y. Sonoda, H. Sano, M. Sakamoto, T. Takahashi, and S. Ushioda, “Detection of starch granules in a living plant by optical second harmonic microscopy,” J. Lumin.87-89, 824–826 (2000).
    [CrossRef]
  19. R. Carriles, K. E. Sheetz, E. E. Hoover, J. A. Squier, and V. Barzda, “Simultaneous multifocal, multiphoton, photon counting microscopy,” Opt. Express16(14), 10364–10371 (2008).
    [CrossRef] [PubMed]
  20. K. N. Anisha Thayil, E. J. Gualda, S. Psilodimitrakopoulos, I. G. Cormack, I. Amat-Roldán, M. Mathew, D. Artigas, and P. Loza-Alvarez, “Starch-based backwards SHG for in situ MEFISTO pulse characterization in multiphoton microscopy,” J. Microsc.230(1), 70–75 (2008).
    [CrossRef] [PubMed]
  21. M. Wang, K. M. Reiser, and A. Knoesen, “Spectral moment invariant analysis of disorder in polarization-modulated second-harmonic-generation images obtained from collagen assemblies,” J. Opt. Soc. Am. A24(11), 3573–3586 (2007).
    [CrossRef] [PubMed]
  22. M. R. Foreman, C. Macias Romero, and P. Török, “A priori information and optimisation in polarimetry,” Opt. Express16(19), 15212–15227 (2008).
    [CrossRef] [PubMed]
  23. R. M. A. Azzam, “Arrangement of four photodetectors for measuring the state of polarization of light,” Opt. Lett.10(7), 309–311 (1985).
    [CrossRef] [PubMed]
  24. P. A. Letnes, I. S. Nerbø, L. M. S. Aas, P. G. Ellingsen, and M. Kildemo, “Fast and optimal broad-band Stokes/Mueller polarimeter design by the use of a genetic algorithm,” Opt. Express18(22), 23095–23103 (2010).
    [CrossRef] [PubMed]
  25. C. W. Sun, C. C. Yang, and Y. W. Kiang, “Optical imaging based on time-resolved Stokes vectors in filamentous tissues,” Appl. Opt.42(4), 750–754 (2003).
    [CrossRef] [PubMed]
  26. V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt.7(3), 300–306 (2002).
    [CrossRef] [PubMed]
  27. V. K. Valev, A. V. Silhanek, N. Smisdom, B. De Clercq, W. Gillijns, O. A. Aktsipetrov, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Linearly polarized second harmonic generation microscopy reveals chirality,” Opt. Express18(8), 8286–8293 (2010).
    [CrossRef] [PubMed]
  28. T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys.103(18), 8296–8298 (1995).
    [CrossRef]
  29. N. Mazumder, J. Qiu, M. R. Foreman, C. M. Romero, C.-W. Hu, H.-R. Tsai, P. Tӧrӧk, and F.-J. Kao, “Polarization-resolved second harmonic generation microscopy with a four-channel Stokes-polarimeter,” Opt. Express20(13), 14090–14099 (2012).
    [CrossRef] [PubMed]
  30. E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, 1993).
  31. J. G. Webster, “Polarization measurement,” in The Measurement, Instrumentation and Sensors Handbook (CRC Press, 1998), Chap. 60.
  32. J. Qiu (Modern Optics Laboratory, National Yang-Ming University, 155 Li-Nong St., Taipei 112, Taiwan) and N. Mazumder are preparing a manuscript to be called “Stokes vector formalism based nonlinear optical microscopy.”
  33. A. Buléon, P. Colonna, V. Planchot, and S. Ball, “Starch granules: structure and biosynthesis,” Int. J. Biol. Macromol.23(2), 85–112 (1998).
    [CrossRef] [PubMed]
  34. T. A. Waigh, K. L. Kato, A. M. Donald, M. J. Gidley, C. J. Clarke, and C. Riekel, “Side-chain liquid-crystalline model for starch,” Starch52(12), 450–460 (2000).
    [CrossRef]

2012 (3)

2011 (1)

P. J. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases diagnostics,” Anal. Chem.83(9), 3224–3231 (2011).
[CrossRef] [PubMed]

2010 (5)

Z. Y. Zhuo, C. S. Liao, C. H. Huang, J. Y. Yu, Y. Y. Tzeng, W. Lo, C. Y. Dong, H. C. Chui, Y. C. Huang, H. M. Lai, and S. W. Chu, “Second harmonic generation imaging—a new method for unraveling molecular information of starch,” J. Struct. Biol.171(1), 88–94 (2010).
[CrossRef] [PubMed]

S. Psilodimitrakopoulos, I. Amat-Roldan, P. Loza-Alvarez, and D. Artigas, “Estimating the helical pitch angle of amylopectin in starch using polarization second harmonic generation microscopy,” J. Opt.12(8), 084007 (2010).
[CrossRef]

V. K. Valev, A. V. Silhanek, N. Smisdom, B. De Clercq, W. Gillijns, O. A. Aktsipetrov, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Linearly polarized second harmonic generation microscopy reveals chirality,” Opt. Express18(8), 8286–8293 (2010).
[CrossRef] [PubMed]

P. A. Letnes, I. S. Nerbø, L. M. S. Aas, P. G. Ellingsen, and M. Kildemo, “Fast and optimal broad-band Stokes/Mueller polarimeter design by the use of a genetic algorithm,” Opt. Express18(22), 23095–23103 (2010).
[CrossRef] [PubMed]

A. D. Slepkov, A. Ridsdale, A. F. Pegoraro, D. J. Moffatt, and A. Stolow, “Multimodal CARS microscopy of structured carbohydrate biopolymers,” Biomed. Opt. Express1(5), 1347–1357 (2010).
[CrossRef] [PubMed]

2009 (1)

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt.14(1), 014001 (2009).
[CrossRef] [PubMed]

2008 (4)

F. Lu, W. Zheng, and Z. Huang, “Heterodyne polarization coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett.92(12), 123901 (2008).
[CrossRef]

K. N. Anisha Thayil, E. J. Gualda, S. Psilodimitrakopoulos, I. G. Cormack, I. Amat-Roldán, M. Mathew, D. Artigas, and P. Loza-Alvarez, “Starch-based backwards SHG for in situ MEFISTO pulse characterization in multiphoton microscopy,” J. Microsc.230(1), 70–75 (2008).
[CrossRef] [PubMed]

R. Carriles, K. E. Sheetz, E. E. Hoover, J. A. Squier, and V. Barzda, “Simultaneous multifocal, multiphoton, photon counting microscopy,” Opt. Express16(14), 10364–10371 (2008).
[CrossRef] [PubMed]

M. R. Foreman, C. Macias Romero, and P. Török, “A priori information and optimisation in polarimetry,” Opt. Express16(19), 15212–15227 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (1)

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J.90(2), 693–703 (2006).
[CrossRef] [PubMed]

2005 (1)

G. Cox, N. Moreno, and J. Feijó, “Second-harmonic imaging of plant polysaccharides,” J. Biomed. Opt.10(2), 024013 (2005).
[CrossRef] [PubMed]

2003 (2)

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

C. W. Sun, C. C. Yang, and Y. W. Kiang, “Optical imaging based on time-resolved Stokes vectors in filamentous tissues,” Appl. Opt.42(4), 750–754 (2003).
[CrossRef] [PubMed]

2002 (1)

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt.7(3), 300–306 (2002).
[CrossRef] [PubMed]

2000 (2)

G. Mizutani, Y. Sonoda, H. Sano, M. Sakamoto, T. Takahashi, and S. Ushioda, “Detection of starch granules in a living plant by optical second harmonic microscopy,” J. Lumin.87-89, 824–826 (2000).
[CrossRef]

T. A. Waigh, K. L. Kato, A. M. Donald, M. J. Gidley, C. J. Clarke, and C. Riekel, “Side-chain liquid-crystalline model for starch,” Starch52(12), 450–460 (2000).
[CrossRef]

1998 (1)

A. Buléon, P. Colonna, V. Planchot, and S. Ball, “Starch granules: structure and biosynthesis,” Int. J. Biol. Macromol.23(2), 85–112 (1998).
[CrossRef] [PubMed]

1997 (1)

D. J. Gallant, B. Bouchet, and P. M. Baldwin, “Microscopy of starch: evidence of a new level of granule organization,” Carbohydr. Polym.32(3-4), 177–191 (1997).
[CrossRef]

1995 (1)

T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys.103(18), 8296–8298 (1995).
[CrossRef]

1992 (1)

D. J. Gallant, B. Bouchet, A. Buléon, and S. Pérez, “Physical characteristics of starch granules and susceptibility to enzymatic degradation,” Eur. J. Clin. Nutr.46(Suppl 2), S3–S16 (1992).
[PubMed]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

1989 (1)

G. T. Oostergetel and E. F. J. van Bruggen, “On the origin of a low angle spacing in starch,” Starch41(9), 331–335 (1989).
[CrossRef]

1985 (1)

Aas, L. M. S.

Aktsipetrov, O. A.

Amat-Roldan, I.

S. Psilodimitrakopoulos, I. Amat-Roldan, P. Loza-Alvarez, and D. Artigas, “Effect of molecular organization on the image histograms of polarization SHG microscopy,” Biomed. Opt. Express3(10), 2681–2693 (2012).
[CrossRef] [PubMed]

S. Psilodimitrakopoulos, I. Amat-Roldan, P. Loza-Alvarez, and D. Artigas, “Estimating the helical pitch angle of amylopectin in starch using polarization second harmonic generation microscopy,” J. Opt.12(8), 084007 (2010).
[CrossRef]

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt.14(1), 014001 (2009).
[CrossRef] [PubMed]

Amat-Roldán, I.

K. N. Anisha Thayil, E. J. Gualda, S. Psilodimitrakopoulos, I. G. Cormack, I. Amat-Roldán, M. Mathew, D. Artigas, and P. Loza-Alvarez, “Starch-based backwards SHG for in situ MEFISTO pulse characterization in multiphoton microscopy,” J. Microsc.230(1), 70–75 (2008).
[CrossRef] [PubMed]

Ameloot, M.

Anisha Thayil, K. N.

K. N. Anisha Thayil, E. J. Gualda, S. Psilodimitrakopoulos, I. G. Cormack, I. Amat-Roldán, M. Mathew, D. Artigas, and P. Loza-Alvarez, “Starch-based backwards SHG for in situ MEFISTO pulse characterization in multiphoton microscopy,” J. Microsc.230(1), 70–75 (2008).
[CrossRef] [PubMed]

Artigas, D.

S. Psilodimitrakopoulos, I. Amat-Roldan, P. Loza-Alvarez, and D. Artigas, “Effect of molecular organization on the image histograms of polarization SHG microscopy,” Biomed. Opt. Express3(10), 2681–2693 (2012).
[CrossRef] [PubMed]

S. Psilodimitrakopoulos, I. Amat-Roldan, P. Loza-Alvarez, and D. Artigas, “Estimating the helical pitch angle of amylopectin in starch using polarization second harmonic generation microscopy,” J. Opt.12(8), 084007 (2010).
[CrossRef]

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt.14(1), 014001 (2009).
[CrossRef] [PubMed]

K. N. Anisha Thayil, E. J. Gualda, S. Psilodimitrakopoulos, I. G. Cormack, I. Amat-Roldán, M. Mathew, D. Artigas, and P. Loza-Alvarez, “Starch-based backwards SHG for in situ MEFISTO pulse characterization in multiphoton microscopy,” J. Microsc.230(1), 70–75 (2008).
[CrossRef] [PubMed]

Azzam, R. M. A.

Baldwin, P. M.

D. J. Gallant, B. Bouchet, and P. M. Baldwin, “Microscopy of starch: evidence of a new level of granule organization,” Carbohydr. Polym.32(3-4), 177–191 (1997).
[CrossRef]

Ball, S.

A. Buléon, P. Colonna, V. Planchot, and S. Ball, “Starch granules: structure and biosynthesis,” Int. J. Biol. Macromol.23(2), 85–112 (1998).
[CrossRef] [PubMed]

Barzda, V.

Bouchet, B.

D. J. Gallant, B. Bouchet, and P. M. Baldwin, “Microscopy of starch: evidence of a new level of granule organization,” Carbohydr. Polym.32(3-4), 177–191 (1997).
[CrossRef]

D. J. Gallant, B. Bouchet, A. Buléon, and S. Pérez, “Physical characteristics of starch granules and susceptibility to enzymatic degradation,” Eur. J. Clin. Nutr.46(Suppl 2), S3–S16 (1992).
[PubMed]

Buléon, A.

A. Buléon, P. Colonna, V. Planchot, and S. Ball, “Starch granules: structure and biosynthesis,” Int. J. Biol. Macromol.23(2), 85–112 (1998).
[CrossRef] [PubMed]

D. J. Gallant, B. Bouchet, A. Buléon, and S. Pérez, “Physical characteristics of starch granules and susceptibility to enzymatic degradation,” Eur. J. Clin. Nutr.46(Suppl 2), S3–S16 (1992).
[PubMed]

Campagnola, P. J.

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc.7(4), 654–669 (2012).
[CrossRef] [PubMed]

P. J. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases diagnostics,” Anal. Chem.83(9), 3224–3231 (2011).
[CrossRef] [PubMed]

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J.90(2), 693–703 (2006).
[CrossRef] [PubMed]

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

Carriles, R.

Chen, X.

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc.7(4), 654–669 (2012).
[CrossRef] [PubMed]

Chu, S. W.

Z. Y. Zhuo, C. S. Liao, C. H. Huang, J. Y. Yu, Y. Y. Tzeng, W. Lo, C. Y. Dong, H. C. Chui, Y. C. Huang, H. M. Lai, and S. W. Chu, “Second harmonic generation imaging—a new method for unraveling molecular information of starch,” J. Struct. Biol.171(1), 88–94 (2010).
[CrossRef] [PubMed]

Chui, H. C.

Z. Y. Zhuo, C. S. Liao, C. H. Huang, J. Y. Yu, Y. Y. Tzeng, W. Lo, C. Y. Dong, H. C. Chui, Y. C. Huang, H. M. Lai, and S. W. Chu, “Second harmonic generation imaging—a new method for unraveling molecular information of starch,” J. Struct. Biol.171(1), 88–94 (2010).
[CrossRef] [PubMed]

Clarke, C. J.

T. A. Waigh, K. L. Kato, A. M. Donald, M. J. Gidley, C. J. Clarke, and C. Riekel, “Side-chain liquid-crystalline model for starch,” Starch52(12), 450–460 (2000).
[CrossRef]

Colonna, P.

A. Buléon, P. Colonna, V. Planchot, and S. Ball, “Starch granules: structure and biosynthesis,” Int. J. Biol. Macromol.23(2), 85–112 (1998).
[CrossRef] [PubMed]

Cormack, I. G.

K. N. Anisha Thayil, E. J. Gualda, S. Psilodimitrakopoulos, I. G. Cormack, I. Amat-Roldán, M. Mathew, D. Artigas, and P. Loza-Alvarez, “Starch-based backwards SHG for in situ MEFISTO pulse characterization in multiphoton microscopy,” J. Microsc.230(1), 70–75 (2008).
[CrossRef] [PubMed]

Cox, G.

G. Cox, N. Moreno, and J. Feijó, “Second-harmonic imaging of plant polysaccharides,” J. Biomed. Opt.10(2), 024013 (2005).
[CrossRef] [PubMed]

De Clercq, B.

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Donald, A. M.

T. A. Waigh, K. L. Kato, A. M. Donald, M. J. Gidley, C. J. Clarke, and C. Riekel, “Side-chain liquid-crystalline model for starch,” Starch52(12), 450–460 (2000).
[CrossRef]

Dong, C. Y.

Z. Y. Zhuo, C. S. Liao, C. H. Huang, J. Y. Yu, Y. Y. Tzeng, W. Lo, C. Y. Dong, H. C. Chui, Y. C. Huang, H. M. Lai, and S. W. Chu, “Second harmonic generation imaging—a new method for unraveling molecular information of starch,” J. Struct. Biol.171(1), 88–94 (2010).
[CrossRef] [PubMed]

Ellingsen, P. G.

Feijó, J.

G. Cox, N. Moreno, and J. Feijó, “Second-harmonic imaging of plant polysaccharides,” J. Biomed. Opt.10(2), 024013 (2005).
[CrossRef] [PubMed]

Foreman, M. R.

Gallant, D. J.

D. J. Gallant, B. Bouchet, and P. M. Baldwin, “Microscopy of starch: evidence of a new level of granule organization,” Carbohydr. Polym.32(3-4), 177–191 (1997).
[CrossRef]

D. J. Gallant, B. Bouchet, A. Buléon, and S. Pérez, “Physical characteristics of starch granules and susceptibility to enzymatic degradation,” Eur. J. Clin. Nutr.46(Suppl 2), S3–S16 (1992).
[PubMed]

Gidley, M. J.

T. A. Waigh, K. L. Kato, A. M. Donald, M. J. Gidley, C. J. Clarke, and C. Riekel, “Side-chain liquid-crystalline model for starch,” Starch52(12), 450–460 (2000).
[CrossRef]

Gillijns, W.

Gualda, E. J.

K. N. Anisha Thayil, E. J. Gualda, S. Psilodimitrakopoulos, I. G. Cormack, I. Amat-Roldán, M. Mathew, D. Artigas, and P. Loza-Alvarez, “Starch-based backwards SHG for in situ MEFISTO pulse characterization in multiphoton microscopy,” J. Microsc.230(1), 70–75 (2008).
[CrossRef] [PubMed]

Hoover, E. E.

Hu, C.-W.

Huang, C. H.

Z. Y. Zhuo, C. S. Liao, C. H. Huang, J. Y. Yu, Y. Y. Tzeng, W. Lo, C. Y. Dong, H. C. Chui, Y. C. Huang, H. M. Lai, and S. W. Chu, “Second harmonic generation imaging—a new method for unraveling molecular information of starch,” J. Struct. Biol.171(1), 88–94 (2010).
[CrossRef] [PubMed]

Huang, Y. C.

Z. Y. Zhuo, C. S. Liao, C. H. Huang, J. Y. Yu, Y. Y. Tzeng, W. Lo, C. Y. Dong, H. C. Chui, Y. C. Huang, H. M. Lai, and S. W. Chu, “Second harmonic generation imaging—a new method for unraveling molecular information of starch,” J. Struct. Biol.171(1), 88–94 (2010).
[CrossRef] [PubMed]

Huang, Z.

F. Lu, W. Zheng, and Z. Huang, “Heterodyne polarization coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett.92(12), 123901 (2008).
[CrossRef]

Kao, F.-J.

Kato, K. L.

T. A. Waigh, K. L. Kato, A. M. Donald, M. J. Gidley, C. J. Clarke, and C. Riekel, “Side-chain liquid-crystalline model for starch,” Starch52(12), 450–460 (2000).
[CrossRef]

Kauranen, M.

T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys.103(18), 8296–8298 (1995).
[CrossRef]

Kiang, Y. W.

Kildemo, M.

Knoesen, A.

Lai, H. M.

Z. Y. Zhuo, C. S. Liao, C. H. Huang, J. Y. Yu, Y. Y. Tzeng, W. Lo, C. Y. Dong, H. C. Chui, Y. C. Huang, H. M. Lai, and S. W. Chu, “Second harmonic generation imaging—a new method for unraveling molecular information of starch,” J. Struct. Biol.171(1), 88–94 (2010).
[CrossRef] [PubMed]

Letnes, P. A.

Liao, C. S.

Z. Y. Zhuo, C. S. Liao, C. H. Huang, J. Y. Yu, Y. Y. Tzeng, W. Lo, C. Y. Dong, H. C. Chui, Y. C. Huang, H. M. Lai, and S. W. Chu, “Second harmonic generation imaging—a new method for unraveling molecular information of starch,” J. Struct. Biol.171(1), 88–94 (2010).
[CrossRef] [PubMed]

Lo, W.

Z. Y. Zhuo, C. S. Liao, C. H. Huang, J. Y. Yu, Y. Y. Tzeng, W. Lo, C. Y. Dong, H. C. Chui, Y. C. Huang, H. M. Lai, and S. W. Chu, “Second harmonic generation imaging—a new method for unraveling molecular information of starch,” J. Struct. Biol.171(1), 88–94 (2010).
[CrossRef] [PubMed]

Loew, L. M.

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

Loza-Alvarez, P.

S. Psilodimitrakopoulos, I. Amat-Roldan, P. Loza-Alvarez, and D. Artigas, “Effect of molecular organization on the image histograms of polarization SHG microscopy,” Biomed. Opt. Express3(10), 2681–2693 (2012).
[CrossRef] [PubMed]

S. Psilodimitrakopoulos, I. Amat-Roldan, P. Loza-Alvarez, and D. Artigas, “Estimating the helical pitch angle of amylopectin in starch using polarization second harmonic generation microscopy,” J. Opt.12(8), 084007 (2010).
[CrossRef]

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt.14(1), 014001 (2009).
[CrossRef] [PubMed]

K. N. Anisha Thayil, E. J. Gualda, S. Psilodimitrakopoulos, I. G. Cormack, I. Amat-Roldán, M. Mathew, D. Artigas, and P. Loza-Alvarez, “Starch-based backwards SHG for in situ MEFISTO pulse characterization in multiphoton microscopy,” J. Microsc.230(1), 70–75 (2008).
[CrossRef] [PubMed]

Lu, F.

F. Lu, W. Zheng, and Z. Huang, “Heterodyne polarization coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett.92(12), 123901 (2008).
[CrossRef]

Macias Romero, C.

Maitland, D. J.

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt.7(3), 300–306 (2002).
[CrossRef] [PubMed]

Maki, J. J.

T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys.103(18), 8296–8298 (1995).
[CrossRef]

Mathew, M.

K. N. Anisha Thayil, E. J. Gualda, S. Psilodimitrakopoulos, I. G. Cormack, I. Amat-Roldán, M. Mathew, D. Artigas, and P. Loza-Alvarez, “Starch-based backwards SHG for in situ MEFISTO pulse characterization in multiphoton microscopy,” J. Microsc.230(1), 70–75 (2008).
[CrossRef] [PubMed]

Mazumder, N.

Millard, A. C.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J.90(2), 693–703 (2006).
[CrossRef] [PubMed]

Mizutani, G.

G. Mizutani, Y. Sonoda, H. Sano, M. Sakamoto, T. Takahashi, and S. Ushioda, “Detection of starch granules in a living plant by optical second harmonic microscopy,” J. Lumin.87-89, 824–826 (2000).
[CrossRef]

Moffatt, D. J.

Mohler, W. A.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J.90(2), 693–703 (2006).
[CrossRef] [PubMed]

Moreno, N.

G. Cox, N. Moreno, and J. Feijó, “Second-harmonic imaging of plant polysaccharides,” J. Biomed. Opt.10(2), 024013 (2005).
[CrossRef] [PubMed]

Moshchalkov, V. V.

Nadiarynkh, O.

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc.7(4), 654–669 (2012).
[CrossRef] [PubMed]

Nerbø, I. S.

Nolte, R. J. M.

T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys.103(18), 8296–8298 (1995).
[CrossRef]

Oostergetel, G. T.

G. T. Oostergetel and E. F. J. van Bruggen, “On the origin of a low angle spacing in starch,” Starch41(9), 331–335 (1989).
[CrossRef]

Pegoraro, A. F.

Pérez, S.

D. J. Gallant, B. Bouchet, A. Buléon, and S. Pérez, “Physical characteristics of starch granules and susceptibility to enzymatic degradation,” Eur. J. Clin. Nutr.46(Suppl 2), S3–S16 (1992).
[PubMed]

Persoons, A.

T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys.103(18), 8296–8298 (1995).
[CrossRef]

Planchot, V.

A. Buléon, P. Colonna, V. Planchot, and S. Ball, “Starch granules: structure and biosynthesis,” Int. J. Biol. Macromol.23(2), 85–112 (1998).
[CrossRef] [PubMed]

Plotnikov, S.

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc.7(4), 654–669 (2012).
[CrossRef] [PubMed]

Plotnikov, S. V.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J.90(2), 693–703 (2006).
[CrossRef] [PubMed]

Psilodimitrakopoulos, S.

S. Psilodimitrakopoulos, I. Amat-Roldan, P. Loza-Alvarez, and D. Artigas, “Effect of molecular organization on the image histograms of polarization SHG microscopy,” Biomed. Opt. Express3(10), 2681–2693 (2012).
[CrossRef] [PubMed]

S. Psilodimitrakopoulos, I. Amat-Roldan, P. Loza-Alvarez, and D. Artigas, “Estimating the helical pitch angle of amylopectin in starch using polarization second harmonic generation microscopy,” J. Opt.12(8), 084007 (2010).
[CrossRef]

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt.14(1), 014001 (2009).
[CrossRef] [PubMed]

K. N. Anisha Thayil, E. J. Gualda, S. Psilodimitrakopoulos, I. G. Cormack, I. Amat-Roldán, M. Mathew, D. Artigas, and P. Loza-Alvarez, “Starch-based backwards SHG for in situ MEFISTO pulse characterization in multiphoton microscopy,” J. Microsc.230(1), 70–75 (2008).
[CrossRef] [PubMed]

Qiu, J.

Reiser, K. M.

Ridsdale, A.

Riekel, C.

T. A. Waigh, K. L. Kato, A. M. Donald, M. J. Gidley, C. J. Clarke, and C. Riekel, “Side-chain liquid-crystalline model for starch,” Starch52(12), 450–460 (2000).
[CrossRef]

Romero, C. M.

Sakamoto, M.

G. Mizutani, Y. Sonoda, H. Sano, M. Sakamoto, T. Takahashi, and S. Ushioda, “Detection of starch granules in a living plant by optical second harmonic microscopy,” J. Lumin.87-89, 824–826 (2000).
[CrossRef]

Sankaran, V.

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt.7(3), 300–306 (2002).
[CrossRef] [PubMed]

Sano, H.

G. Mizutani, Y. Sonoda, H. Sano, M. Sakamoto, T. Takahashi, and S. Ushioda, “Detection of starch granules in a living plant by optical second harmonic microscopy,” J. Lumin.87-89, 824–826 (2000).
[CrossRef]

Santos, S. I. C. O.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt.14(1), 014001 (2009).
[CrossRef] [PubMed]

Schouten, A. J.

T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys.103(18), 8296–8298 (1995).
[CrossRef]

Sheetz, K. E.

Silhanek, A. V.

Slepkov, A. D.

Smisdom, N.

Sonoda, Y.

G. Mizutani, Y. Sonoda, H. Sano, M. Sakamoto, T. Takahashi, and S. Ushioda, “Detection of starch granules in a living plant by optical second harmonic microscopy,” J. Lumin.87-89, 824–826 (2000).
[CrossRef]

Squier, J. A.

Stolow, A.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Sun, C. W.

T?r?k, P.

Takahashi, T.

G. Mizutani, Y. Sonoda, H. Sano, M. Sakamoto, T. Takahashi, and S. Ushioda, “Detection of starch granules in a living plant by optical second harmonic microscopy,” J. Lumin.87-89, 824–826 (2000).
[CrossRef]

Teerenstra, M. N.

T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys.103(18), 8296–8298 (1995).
[CrossRef]

Thayil, A. K. N.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt.14(1), 014001 (2009).
[CrossRef] [PubMed]

Török, P.

Tsai, H.-R.

Tzeng, Y. Y.

Z. Y. Zhuo, C. S. Liao, C. H. Huang, J. Y. Yu, Y. Y. Tzeng, W. Lo, C. Y. Dong, H. C. Chui, Y. C. Huang, H. M. Lai, and S. W. Chu, “Second harmonic generation imaging—a new method for unraveling molecular information of starch,” J. Struct. Biol.171(1), 88–94 (2010).
[CrossRef] [PubMed]

Ushioda, S.

G. Mizutani, Y. Sonoda, H. Sano, M. Sakamoto, T. Takahashi, and S. Ushioda, “Detection of starch granules in a living plant by optical second harmonic microscopy,” J. Lumin.87-89, 824–826 (2000).
[CrossRef]

Valev, V. K.

van Bruggen, E. F. J.

G. T. Oostergetel and E. F. J. van Bruggen, “On the origin of a low angle spacing in starch,” Starch41(9), 331–335 (1989).
[CrossRef]

Verbiest, T.

V. K. Valev, A. V. Silhanek, N. Smisdom, B. De Clercq, W. Gillijns, O. A. Aktsipetrov, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Linearly polarized second harmonic generation microscopy reveals chirality,” Opt. Express18(8), 8286–8293 (2010).
[CrossRef] [PubMed]

T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys.103(18), 8296–8298 (1995).
[CrossRef]

Waigh, T. A.

T. A. Waigh, K. L. Kato, A. M. Donald, M. J. Gidley, C. J. Clarke, and C. Riekel, “Side-chain liquid-crystalline model for starch,” Starch52(12), 450–460 (2000).
[CrossRef]

Walsh, J. T.

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt.7(3), 300–306 (2002).
[CrossRef] [PubMed]

Wang, M.

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Yang, C. C.

Yu, J. Y.

Z. Y. Zhuo, C. S. Liao, C. H. Huang, J. Y. Yu, Y. Y. Tzeng, W. Lo, C. Y. Dong, H. C. Chui, Y. C. Huang, H. M. Lai, and S. W. Chu, “Second harmonic generation imaging—a new method for unraveling molecular information of starch,” J. Struct. Biol.171(1), 88–94 (2010).
[CrossRef] [PubMed]

Zheng, W.

F. Lu, W. Zheng, and Z. Huang, “Heterodyne polarization coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett.92(12), 123901 (2008).
[CrossRef]

Zhuo, Z. Y.

Z. Y. Zhuo, C. S. Liao, C. H. Huang, J. Y. Yu, Y. Y. Tzeng, W. Lo, C. Y. Dong, H. C. Chui, Y. C. Huang, H. M. Lai, and S. W. Chu, “Second harmonic generation imaging—a new method for unraveling molecular information of starch,” J. Struct. Biol.171(1), 88–94 (2010).
[CrossRef] [PubMed]

Anal. Chem. (1)

P. J. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases diagnostics,” Anal. Chem.83(9), 3224–3231 (2011).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

F. Lu, W. Zheng, and Z. Huang, “Heterodyne polarization coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett.92(12), 123901 (2008).
[CrossRef]

Biomed. Opt. Express (2)

Biophys. J. (1)

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J.90(2), 693–703 (2006).
[CrossRef] [PubMed]

Carbohydr. Polym. (1)

D. J. Gallant, B. Bouchet, and P. M. Baldwin, “Microscopy of starch: evidence of a new level of granule organization,” Carbohydr. Polym.32(3-4), 177–191 (1997).
[CrossRef]

Eur. J. Clin. Nutr. (1)

D. J. Gallant, B. Bouchet, A. Buléon, and S. Pérez, “Physical characteristics of starch granules and susceptibility to enzymatic degradation,” Eur. J. Clin. Nutr.46(Suppl 2), S3–S16 (1992).
[PubMed]

Int. J. Biol. Macromol. (1)

A. Buléon, P. Colonna, V. Planchot, and S. Ball, “Starch granules: structure and biosynthesis,” Int. J. Biol. Macromol.23(2), 85–112 (1998).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt.7(3), 300–306 (2002).
[CrossRef] [PubMed]

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt.14(1), 014001 (2009).
[CrossRef] [PubMed]

G. Cox, N. Moreno, and J. Feijó, “Second-harmonic imaging of plant polysaccharides,” J. Biomed. Opt.10(2), 024013 (2005).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys.103(18), 8296–8298 (1995).
[CrossRef]

J. Lumin. (1)

G. Mizutani, Y. Sonoda, H. Sano, M. Sakamoto, T. Takahashi, and S. Ushioda, “Detection of starch granules in a living plant by optical second harmonic microscopy,” J. Lumin.87-89, 824–826 (2000).
[CrossRef]

J. Microsc. (1)

K. N. Anisha Thayil, E. J. Gualda, S. Psilodimitrakopoulos, I. G. Cormack, I. Amat-Roldán, M. Mathew, D. Artigas, and P. Loza-Alvarez, “Starch-based backwards SHG for in situ MEFISTO pulse characterization in multiphoton microscopy,” J. Microsc.230(1), 70–75 (2008).
[CrossRef] [PubMed]

J. Opt. (1)

S. Psilodimitrakopoulos, I. Amat-Roldan, P. Loza-Alvarez, and D. Artigas, “Estimating the helical pitch angle of amylopectin in starch using polarization second harmonic generation microscopy,” J. Opt.12(8), 084007 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Struct. Biol. (1)

Z. Y. Zhuo, C. S. Liao, C. H. Huang, J. Y. Yu, Y. Y. Tzeng, W. Lo, C. Y. Dong, H. C. Chui, Y. C. Huang, H. M. Lai, and S. W. Chu, “Second harmonic generation imaging—a new method for unraveling molecular information of starch,” J. Struct. Biol.171(1), 88–94 (2010).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

Nat. Protoc. (1)

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc.7(4), 654–669 (2012).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Starch (2)

G. T. Oostergetel and E. F. J. van Bruggen, “On the origin of a low angle spacing in starch,” Starch41(9), 331–335 (1989).
[CrossRef]

T. A. Waigh, K. L. Kato, A. M. Donald, M. J. Gidley, C. J. Clarke, and C. Riekel, “Side-chain liquid-crystalline model for starch,” Starch52(12), 450–460 (2000).
[CrossRef]

Other (5)

E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, 1993).

J. G. Webster, “Polarization measurement,” in The Measurement, Instrumentation and Sensors Handbook (CRC Press, 1998), Chap. 60.

J. Qiu (Modern Optics Laboratory, National Yang-Ming University, 155 Li-Nong St., Taipei 112, Taiwan) and N. Mazumder are preparing a manuscript to be called “Stokes vector formalism based nonlinear optical microscopy.”

R. W. Boyd, Nonlinear Optics (Academic Press, 1992).

R. L. Whistler, J. N. Bemiller, and E. F. Parschall, Starch: Chemistry and Technology (Academic Press, 1984), pp. 183–247.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of our polarization-resolved SHG microscope with four-channel Stokes-polarimeter module. IX81: The Olympus inverted optical microscope, HWP: Half wave-plate, QWP: Quarter wave-plate, S: Sample, BS: beam splitter, FR: Fresnel Rhomb, WP: Wollaston Prism, Ia, Ib, Ic, Id: photo-multiplier tubes (PMTs). TCSPC: Time Correlated Single Photon Counter.

Fig. 2
Fig. 2

Shows the reconstructed 2D Stokes images for input polarization states correspond to 0°, 45°, 90° linear, and RC polarization, respectively. The color scale shows the values of each parameter increasing from blue to red. The theoretical values of S0, S1/S0, S2/S0 and S3/S0 at 0°, 45°, 90°, RCP are [1 1 0 0], [1 0 1 0], [1 −1 0 0] and [1 0 0 1], respectively.

Fig. 3
Fig. 3

Experimental reconstructed 2D Stokes images of the SHG response from starch granules for (a) horizontally, (b) vertically, (c) right and (d) left circularly polarized illumination, respectively. White arrows in the leftmost images indicate the direction of polarization. The color scale shows the value of each Stokes parameter increasing from blue to red. A schematic model of a starch granule is shown in (f).

Fig. 4
Fig. 4

Experimental polarization-resolved 2D reconstructed DOP, DOLP, DOCP and polarization anisotropy images of SHG response from starch granule for the; (a) horizontal, (b) vertical, (c) right and (d) left circularly polarized polarization respectively. The direction of polarization is indicated by a white arrow in the images. The color scale shows the values of each parameter increases from blue to red.

Metrics