Abstract

Two mid-infrared light sources, a broadband source from a Fourier Transform Infrared Spectrometer (FTIR) and a pulsed Quantum Cascade (QC) Laser, are used to measure angle-resolved backscattering in vivo from human skin across a broad spectral range. Scattering profiles measured using the FTIR suggest limited penetration of the light into the skin, with most of the light interacting with the stratum corneum layer of the epidermis. Scattering profiles from the QC laser show modulation patterns with angle suggesting interaction with scattering centers in the skin. The scattering is attributed to interaction of the laser light with components such as collagen fibers and capillaries in the dermis layer of the skin.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. H. Mantsch and D. Chapman, eds., Infrared Spectroscopy of Biomolecules (WileyLiss, 1996).
  2. L. Wang and B. Mizaikoff, “Application of multivariate data analysis techniques to biomedical diagnostics based on mid-infrared spectroscopy,” Anal. Bioanal. Chem.391, 1641–1654 (2008).
    [CrossRef] [PubMed]
  3. R. Bhargava, “Infrared spectroscopic imaging: the next generation,” Appl. Spectrosc.66, 1091–1120 (2012).
    [CrossRef] [PubMed]
  4. R. Mendelsohn, C. R. Flach, and D. J. Moore, “Determination of molecular conformation and permeation in skin via IR spectroscopy, microscopy, and imaging,” Biochim. Biophys. Acta1758, 923–933 (2006).
    [CrossRef] [PubMed]
  5. A. P. M. Michel, S. Liakat, E. Zanghi, K. Ostrander, and C. F. Gmachl, in The 11th International Conference on Intersubband Transitions and Quantum Wells (ITQW), Badesi, Italy (Sept. 12, 2011).
  6. V. Tuchin, Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues (CRC Press, Taylor and Francis, 2008).
    [CrossRef]
  7. S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels,” Diabetes Technol. Ther.3, 357–365 (2001).
    [CrossRef]
  8. J. M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt.37, 2788–2797 (1998).
    [CrossRef]
  9. L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley-Interscience, 2007).
  10. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt.37, 3586–3593 (1998).
    [CrossRef]
  11. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys.38, 2543–2555 (2005).
    [CrossRef]
  12. S. Liakat, A. P. M. Michel, K. Bors, and C. F. Gmachl, “Mid-infrared (λ =8.4–9.9μm) light scattering from porcine tissue,” Appl. Phys. Lett.101, 093705 (2012).
    [CrossRef]
  13. R. Kong and R. Bhargava, “Characterization of porcine skin as a model for human skin studies using infrared spectroscopic imaging,” Analyst136, 2359–2366 (2011).
    [CrossRef] [PubMed]
  14. “American National Standard for Safe Use of Lasers,” ANSI Standard Z136.1-2007 (R2007).
  15. A. Krishnaswamy and G. Baranoski, “A biophysically based spectral model of light interaction with human skin,” Comput. Graph. Forum23, 331–340 (2004).
    [CrossRef]
  16. R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol.77, 13–19 (1981).
    [CrossRef] [PubMed]
  17. N. Kollias and G. Stamatas, “Optical non-invasive approaches to diagnosis of skin diseases,” J. Invest. Dermatol. Symp. Proc.7, 64–75 (2002).
    [CrossRef]
  18. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103, 577–644 (2003).
    [CrossRef] [PubMed]
  19. I. S. Saidi, S. L. Jacques, and F. K. Tittel, “Mie and Rayleigh modeling of visible-light scattering in neonatal skin,” Appl. Opt.34, 7410–7418 (1995).
    [CrossRef] [PubMed]
  20. R. R. Anderson and J. A Parrish, “Optical properties of human skin,” in The Science of Photomedicine, J. A. Parrish and J. F. Regan, eds. (Plenum, New York, 1982), pp. 147–194.
    [CrossRef]
  21. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE Press, 2007).

2012 (2)

S. Liakat, A. P. M. Michel, K. Bors, and C. F. Gmachl, “Mid-infrared (λ =8.4–9.9μm) light scattering from porcine tissue,” Appl. Phys. Lett.101, 093705 (2012).
[CrossRef]

R. Bhargava, “Infrared spectroscopic imaging: the next generation,” Appl. Spectrosc.66, 1091–1120 (2012).
[CrossRef] [PubMed]

2011 (1)

R. Kong and R. Bhargava, “Characterization of porcine skin as a model for human skin studies using infrared spectroscopic imaging,” Analyst136, 2359–2366 (2011).
[CrossRef] [PubMed]

2008 (1)

L. Wang and B. Mizaikoff, “Application of multivariate data analysis techniques to biomedical diagnostics based on mid-infrared spectroscopy,” Anal. Bioanal. Chem.391, 1641–1654 (2008).
[CrossRef] [PubMed]

2006 (1)

R. Mendelsohn, C. R. Flach, and D. J. Moore, “Determination of molecular conformation and permeation in skin via IR spectroscopy, microscopy, and imaging,” Biochim. Biophys. Acta1758, 923–933 (2006).
[CrossRef] [PubMed]

2005 (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys.38, 2543–2555 (2005).
[CrossRef]

2004 (1)

A. Krishnaswamy and G. Baranoski, “A biophysically based spectral model of light interaction with human skin,” Comput. Graph. Forum23, 331–340 (2004).
[CrossRef]

2003 (1)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103, 577–644 (2003).
[CrossRef] [PubMed]

2002 (1)

N. Kollias and G. Stamatas, “Optical non-invasive approaches to diagnosis of skin diseases,” J. Invest. Dermatol. Symp. Proc.7, 64–75 (2002).
[CrossRef]

2001 (1)

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels,” Diabetes Technol. Ther.3, 357–365 (2001).
[CrossRef]

1998 (2)

1995 (1)

1981 (1)

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol.77, 13–19 (1981).
[CrossRef] [PubMed]

Anderson, R. R.

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol.77, 13–19 (1981).
[CrossRef] [PubMed]

R. R. Anderson and J. A Parrish, “Optical properties of human skin,” in The Science of Photomedicine, J. A. Parrish and J. F. Regan, eds. (Plenum, New York, 1982), pp. 147–194.
[CrossRef]

Baranoski, G.

A. Krishnaswamy and G. Baranoski, “A biophysically based spectral model of light interaction with human skin,” Comput. Graph. Forum23, 331–340 (2004).
[CrossRef]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys.38, 2543–2555 (2005).
[CrossRef]

Bhargava, R.

R. Bhargava, “Infrared spectroscopic imaging: the next generation,” Appl. Spectrosc.66, 1091–1120 (2012).
[CrossRef] [PubMed]

R. Kong and R. Bhargava, “Characterization of porcine skin as a model for human skin studies using infrared spectroscopic imaging,” Analyst136, 2359–2366 (2011).
[CrossRef] [PubMed]

Block, M. B.

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels,” Diabetes Technol. Ther.3, 357–365 (2001).
[CrossRef]

Bors, K.

S. Liakat, A. P. M. Michel, K. Bors, and C. F. Gmachl, “Mid-infrared (λ =8.4–9.9μm) light scattering from porcine tissue,” Appl. Phys. Lett.101, 093705 (2012).
[CrossRef]

Eick, A. A.

Flach, C. R.

R. Mendelsohn, C. R. Flach, and D. J. Moore, “Determination of molecular conformation and permeation in skin via IR spectroscopy, microscopy, and imaging,” Biochim. Biophys. Acta1758, 923–933 (2006).
[CrossRef] [PubMed]

Freyer, J. P.

Genina, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys.38, 2543–2555 (2005).
[CrossRef]

Gmachl, C. F.

S. Liakat, A. P. M. Michel, K. Bors, and C. F. Gmachl, “Mid-infrared (λ =8.4–9.9μm) light scattering from porcine tissue,” Appl. Phys. Lett.101, 093705 (2012).
[CrossRef]

A. P. M. Michel, S. Liakat, E. Zanghi, K. Ostrander, and C. F. Gmachl, in The 11th International Conference on Intersubband Transitions and Quantum Wells (ITQW), Badesi, Italy (Sept. 12, 2011).

Hazen, K. H.

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels,” Diabetes Technol. Ther.3, 357–365 (2001).
[CrossRef]

Hielscher, A. H.

Jacques, S. L.

Johnson, T. M.

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys.38, 2543–2555 (2005).
[CrossRef]

Kollias, N.

N. Kollias and G. Stamatas, “Optical non-invasive approaches to diagnosis of skin diseases,” J. Invest. Dermatol. Symp. Proc.7, 64–75 (2002).
[CrossRef]

Kong, R.

R. Kong and R. Bhargava, “Characterization of porcine skin as a model for human skin studies using infrared spectroscopic imaging,” Analyst136, 2359–2366 (2011).
[CrossRef] [PubMed]

Krishnaswamy, A.

A. Krishnaswamy and G. Baranoski, “A biophysically based spectral model of light interaction with human skin,” Comput. Graph. Forum23, 331–340 (2004).
[CrossRef]

Kumar, G.

Liakat, S.

S. Liakat, A. P. M. Michel, K. Bors, and C. F. Gmachl, “Mid-infrared (λ =8.4–9.9μm) light scattering from porcine tissue,” Appl. Phys. Lett.101, 093705 (2012).
[CrossRef]

A. P. M. Michel, S. Liakat, E. Zanghi, K. Ostrander, and C. F. Gmachl, in The 11th International Conference on Intersubband Transitions and Quantum Wells (ITQW), Badesi, Italy (Sept. 12, 2011).

Mendelsohn, R.

R. Mendelsohn, C. R. Flach, and D. J. Moore, “Determination of molecular conformation and permeation in skin via IR spectroscopy, microscopy, and imaging,” Biochim. Biophys. Acta1758, 923–933 (2006).
[CrossRef] [PubMed]

Michel, A. P. M.

S. Liakat, A. P. M. Michel, K. Bors, and C. F. Gmachl, “Mid-infrared (λ =8.4–9.9μm) light scattering from porcine tissue,” Appl. Phys. Lett.101, 093705 (2012).
[CrossRef]

A. P. M. Michel, S. Liakat, E. Zanghi, K. Ostrander, and C. F. Gmachl, in The 11th International Conference on Intersubband Transitions and Quantum Wells (ITQW), Badesi, Italy (Sept. 12, 2011).

Mizaikoff, B.

L. Wang and B. Mizaikoff, “Application of multivariate data analysis techniques to biomedical diagnostics based on mid-infrared spectroscopy,” Anal. Bioanal. Chem.391, 1641–1654 (2008).
[CrossRef] [PubMed]

Moore, D. J.

R. Mendelsohn, C. R. Flach, and D. J. Moore, “Determination of molecular conformation and permeation in skin via IR spectroscopy, microscopy, and imaging,” Biochim. Biophys. Acta1758, 923–933 (2006).
[CrossRef] [PubMed]

Mourant, J. R.

Ostrander, K.

A. P. M. Michel, S. Liakat, E. Zanghi, K. Ostrander, and C. F. Gmachl, in The 11th International Conference on Intersubband Transitions and Quantum Wells (ITQW), Badesi, Italy (Sept. 12, 2011).

Parrish, J. A

R. R. Anderson and J. A Parrish, “Optical properties of human skin,” in The Science of Photomedicine, J. A. Parrish and J. F. Regan, eds. (Plenum, New York, 1982), pp. 147–194.
[CrossRef]

Parrish, J. A.

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol.77, 13–19 (1981).
[CrossRef] [PubMed]

Rennert, J. L.

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels,” Diabetes Technol. Ther.3, 357–365 (2001).
[CrossRef]

Ruchti, T. L.

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels,” Diabetes Technol. Ther.3, 357–365 (2001).
[CrossRef]

Saidi, I. S.

Schmitt, J. M.

Shen, D.

Stamatas, G.

N. Kollias and G. Stamatas, “Optical non-invasive approaches to diagnosis of skin diseases,” J. Invest. Dermatol. Symp. Proc.7, 64–75 (2002).
[CrossRef]

Thennadil, S. N.

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels,” Diabetes Technol. Ther.3, 357–365 (2001).
[CrossRef]

Tittel, F. K.

Tuchin, V.

V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE Press, 2007).

V. Tuchin, Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues (CRC Press, Taylor and Francis, 2008).
[CrossRef]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys.38, 2543–2555 (2005).
[CrossRef]

Venugopalan, V.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103, 577–644 (2003).
[CrossRef] [PubMed]

Vogel, A.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103, 577–644 (2003).
[CrossRef] [PubMed]

Wang, L.

L. Wang and B. Mizaikoff, “Application of multivariate data analysis techniques to biomedical diagnostics based on mid-infrared spectroscopy,” Anal. Bioanal. Chem.391, 1641–1654 (2008).
[CrossRef] [PubMed]

Wang, L. V.

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley-Interscience, 2007).

Wenzel, B. J.

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels,” Diabetes Technol. Ther.3, 357–365 (2001).
[CrossRef]

Wu, H.

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley-Interscience, 2007).

Zanghi, E.

A. P. M. Michel, S. Liakat, E. Zanghi, K. Ostrander, and C. F. Gmachl, in The 11th International Conference on Intersubband Transitions and Quantum Wells (ITQW), Badesi, Italy (Sept. 12, 2011).

Anal. Bioanal. Chem. (1)

L. Wang and B. Mizaikoff, “Application of multivariate data analysis techniques to biomedical diagnostics based on mid-infrared spectroscopy,” Anal. Bioanal. Chem.391, 1641–1654 (2008).
[CrossRef] [PubMed]

Analyst (1)

R. Kong and R. Bhargava, “Characterization of porcine skin as a model for human skin studies using infrared spectroscopic imaging,” Analyst136, 2359–2366 (2011).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

S. Liakat, A. P. M. Michel, K. Bors, and C. F. Gmachl, “Mid-infrared (λ =8.4–9.9μm) light scattering from porcine tissue,” Appl. Phys. Lett.101, 093705 (2012).
[CrossRef]

Appl. Spectrosc. (1)

Biochim. Biophys. Acta (1)

R. Mendelsohn, C. R. Flach, and D. J. Moore, “Determination of molecular conformation and permeation in skin via IR spectroscopy, microscopy, and imaging,” Biochim. Biophys. Acta1758, 923–933 (2006).
[CrossRef] [PubMed]

Chem. Rev. (1)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103, 577–644 (2003).
[CrossRef] [PubMed]

Comput. Graph. Forum (1)

A. Krishnaswamy and G. Baranoski, “A biophysically based spectral model of light interaction with human skin,” Comput. Graph. Forum23, 331–340 (2004).
[CrossRef]

Diabetes Technol. Ther. (1)

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels,” Diabetes Technol. Ther.3, 357–365 (2001).
[CrossRef]

J. Invest. Dermatol. (1)

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol.77, 13–19 (1981).
[CrossRef] [PubMed]

J. Invest. Dermatol. Symp. Proc. (1)

N. Kollias and G. Stamatas, “Optical non-invasive approaches to diagnosis of skin diseases,” J. Invest. Dermatol. Symp. Proc.7, 64–75 (2002).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys.38, 2543–2555 (2005).
[CrossRef]

Other (7)

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley-Interscience, 2007).

H. H. Mantsch and D. Chapman, eds., Infrared Spectroscopy of Biomolecules (WileyLiss, 1996).

A. P. M. Michel, S. Liakat, E. Zanghi, K. Ostrander, and C. F. Gmachl, in The 11th International Conference on Intersubband Transitions and Quantum Wells (ITQW), Badesi, Italy (Sept. 12, 2011).

V. Tuchin, Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues (CRC Press, Taylor and Francis, 2008).
[CrossRef]

“American National Standard for Safe Use of Lasers,” ANSI Standard Z136.1-2007 (R2007).

R. R. Anderson and J. A Parrish, “Optical properties of human skin,” in The Science of Photomedicine, J. A. Parrish and J. F. Regan, eds. (Plenum, New York, 1982), pp. 147–194.
[CrossRef]

V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE Press, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic drawing of the experimental setup. A mirror (M1) was attached to a flip mount to allow for either source, the FTIR or the EC-QCL, to be used without realignment of the optical beam path. A lens (L1) was used to focus the collimated light onto the sample. Two lenses (L2 and L3) were used to collect the scattered light from the skin onto the detector.

Fig. 2
Fig. 2

Measurement of infrared light interaction with porcine skin using FTIR spectroscopy (ϕ = 30°).

Fig. 3
Fig. 3

Measurement of infrared light interaction with human skin in vivo using FTIR spectroscopy (ϕ = 30°).

Fig. 4
Fig. 4

FTIR spectrum of reflection by human skin.

Fig. 5
Fig. 5

Measurement of infrared light interaction with human skin using a QC laser source.

Fig. 6
Fig. 6

The left column from top-to-bottom shows detected power (mW) on three different human subjects. The right column from top-to-bottom shows detected power normalized to input power for the same three human subjects.

Fig. 7
Fig. 7

Scattered light intensity collected from porcine skin with three different melanin contents.

Metrics