Abstract

We present an engineering model of coherent imaging within a turbid volume, such as human tissues, with a confocal microscope. The model is built to analyze the statistical effect of aberrations and multiply scattered light on the resulting image. Numerical modeling of theory is compared with experimental results. We describe the construction of a stable phantom that represents the statistical effect of object turbidity on the image recorded. The model and phantom can serve as basis for system optimization in turbid imaging.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Sheppard and D. Shotton, Confocal Laser Scanning Microscopy (Springer, 1997).
  2. T. Wilson, Confocal Microscopy (Academic Press, 1990).
  3. M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. Webb, and R. Anderson, “In vivo confocal scanning laser microscopy of human skin: Melanin provides strong contrast,” J. Invest. Dermatol.104, 946–952 (1995).
    [CrossRef] [PubMed]
  4. E. Psaty and A. Halpern, “Current and emerging technologies in melanoma diagnosis: the state of the art,” Clin. Dermatol.27, 35–45 (2009).
    [CrossRef]
  5. S. Gonzalez and Y. Gilaberte-Calzada, “In vivo reflectance-mode confocal microscopy in clinical dermatology and cosmetology,” Int. J. Cosmet. Sci.30, 1–15 (2008).
    [CrossRef] [PubMed]
  6. V. Ahlgrimm-Siess, R. Hofmann-Wellenhof, T. Cao, M. Oliviero, A. Scope, and H. S. Rabinovitz, “Reflectance confocal microscopy in the daily practice,” Semin. Cutan Med. Surg.28, 180–189 (2009).
    [CrossRef] [PubMed]
  7. C. Smithpeter, A. Dunn, A. Welch, and R. Richards-Kortum, “Penetration depth limits of in vivo confocal reflectance imaging,” Appl. Opt.37, 2749–2754 (1998).
    [CrossRef]
  8. M. Kempe, W. Rudolph, and E. Welsch, “Comparative study of confocal and heterodyne microscopy for imaging through scattering media,” J. Opt. Soc. Am. A13, 46–52 (1996).
    [CrossRef]
  9. M. Kempe, A. Genack, W. Rudolph, and P. Dorn, “Ballistic and diffuse light detection in confocal and heterodyne imaging systems,” J. Opt. Soc. Am. A14, 216–223 (1997).
    [CrossRef]
  10. C. Glazowski and M. Rajadhyaksha, “Optimal detection pinhole for lowering speckle noise while maintaining adequate optical sectioning in confocal reflectance microscopes,” J. Biomed. Opt.17, 085001 (2012).
    [CrossRef] [PubMed]
  11. J. Schmitt, A. Knuttel, and M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. A11, 2226–2235 (1994).
    [CrossRef]
  12. J. Schmitt and K. Ben-Letaief, “Efficient monte carlo simulation of confocal microscopy in biological tissue,” J. Opt. Soc. Am. A13, 952–961 (1996).
    [CrossRef]
  13. J. Lu, X.-H. Hu, and K. Dong, “Modeling of the rough-interface effect on a converging light beam propagating in a skin tissue phantom,” Appl. Opt.39, 5890–5897 (2000).
    [CrossRef]
  14. C. Glazowski and J. Zavislan, “Coherent pupil engineered scanning reflectance confocal microscope for turbid imaging,” Proc. SPIE7570, 75700O (2010).
    [CrossRef]
  15. J. Goodman, Introduction to Fourier Optics (McGraw Hill, 1996).
  16. W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2000).
  17. B. Simon and C. A. Dimarzio, “Simulation of a theta line-scanning confocal microscope.” J. Biomed. Opt.12, 064020 (2007).
    [CrossRef]
  18. A. W. W. Cheong and S. Prahl, “A review of the optical properties biological tissue,” IEEE J. Quantum Electron.26, 2166–2185 (1990).
    [CrossRef]
  19. J. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am.66, 1145–1150 (1976).
    [CrossRef]
  20. Z. Wang, C. Glazowski, and J. Zavislan, “Modulation transfer function measurement of scanning reflectance microscopes,” J. Biomed. Opt.12, 051802 (2007).
    [CrossRef] [PubMed]

2012 (1)

C. Glazowski and M. Rajadhyaksha, “Optimal detection pinhole for lowering speckle noise while maintaining adequate optical sectioning in confocal reflectance microscopes,” J. Biomed. Opt.17, 085001 (2012).
[CrossRef] [PubMed]

2010 (1)

C. Glazowski and J. Zavislan, “Coherent pupil engineered scanning reflectance confocal microscope for turbid imaging,” Proc. SPIE7570, 75700O (2010).
[CrossRef]

2009 (2)

E. Psaty and A. Halpern, “Current and emerging technologies in melanoma diagnosis: the state of the art,” Clin. Dermatol.27, 35–45 (2009).
[CrossRef]

V. Ahlgrimm-Siess, R. Hofmann-Wellenhof, T. Cao, M. Oliviero, A. Scope, and H. S. Rabinovitz, “Reflectance confocal microscopy in the daily practice,” Semin. Cutan Med. Surg.28, 180–189 (2009).
[CrossRef] [PubMed]

2008 (1)

S. Gonzalez and Y. Gilaberte-Calzada, “In vivo reflectance-mode confocal microscopy in clinical dermatology and cosmetology,” Int. J. Cosmet. Sci.30, 1–15 (2008).
[CrossRef] [PubMed]

2007 (2)

B. Simon and C. A. Dimarzio, “Simulation of a theta line-scanning confocal microscope.” J. Biomed. Opt.12, 064020 (2007).
[CrossRef]

Z. Wang, C. Glazowski, and J. Zavislan, “Modulation transfer function measurement of scanning reflectance microscopes,” J. Biomed. Opt.12, 051802 (2007).
[CrossRef] [PubMed]

2000 (1)

1998 (1)

1997 (1)

1996 (2)

1995 (1)

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. Webb, and R. Anderson, “In vivo confocal scanning laser microscopy of human skin: Melanin provides strong contrast,” J. Invest. Dermatol.104, 946–952 (1995).
[CrossRef] [PubMed]

1994 (1)

1990 (1)

A. W. W. Cheong and S. Prahl, “A review of the optical properties biological tissue,” IEEE J. Quantum Electron.26, 2166–2185 (1990).
[CrossRef]

1976 (1)

Ahlgrimm-Siess, V.

V. Ahlgrimm-Siess, R. Hofmann-Wellenhof, T. Cao, M. Oliviero, A. Scope, and H. S. Rabinovitz, “Reflectance confocal microscopy in the daily practice,” Semin. Cutan Med. Surg.28, 180–189 (2009).
[CrossRef] [PubMed]

Anderson, R.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. Webb, and R. Anderson, “In vivo confocal scanning laser microscopy of human skin: Melanin provides strong contrast,” J. Invest. Dermatol.104, 946–952 (1995).
[CrossRef] [PubMed]

Ben-Letaief, K.

Cao, T.

V. Ahlgrimm-Siess, R. Hofmann-Wellenhof, T. Cao, M. Oliviero, A. Scope, and H. S. Rabinovitz, “Reflectance confocal microscopy in the daily practice,” Semin. Cutan Med. Surg.28, 180–189 (2009).
[CrossRef] [PubMed]

Cheong, A. W. W.

A. W. W. Cheong and S. Prahl, “A review of the optical properties biological tissue,” IEEE J. Quantum Electron.26, 2166–2185 (1990).
[CrossRef]

Dimarzio, C. A.

B. Simon and C. A. Dimarzio, “Simulation of a theta line-scanning confocal microscope.” J. Biomed. Opt.12, 064020 (2007).
[CrossRef]

Dong, K.

Dorn, P.

Dunn, A.

Esterowitz, D.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. Webb, and R. Anderson, “In vivo confocal scanning laser microscopy of human skin: Melanin provides strong contrast,” J. Invest. Dermatol.104, 946–952 (1995).
[CrossRef] [PubMed]

Genack, A.

Gilaberte-Calzada, Y.

S. Gonzalez and Y. Gilaberte-Calzada, “In vivo reflectance-mode confocal microscopy in clinical dermatology and cosmetology,” Int. J. Cosmet. Sci.30, 1–15 (2008).
[CrossRef] [PubMed]

Glazowski, C.

C. Glazowski and M. Rajadhyaksha, “Optimal detection pinhole for lowering speckle noise while maintaining adequate optical sectioning in confocal reflectance microscopes,” J. Biomed. Opt.17, 085001 (2012).
[CrossRef] [PubMed]

C. Glazowski and J. Zavislan, “Coherent pupil engineered scanning reflectance confocal microscope for turbid imaging,” Proc. SPIE7570, 75700O (2010).
[CrossRef]

Z. Wang, C. Glazowski, and J. Zavislan, “Modulation transfer function measurement of scanning reflectance microscopes,” J. Biomed. Opt.12, 051802 (2007).
[CrossRef] [PubMed]

Gonzalez, S.

S. Gonzalez and Y. Gilaberte-Calzada, “In vivo reflectance-mode confocal microscopy in clinical dermatology and cosmetology,” Int. J. Cosmet. Sci.30, 1–15 (2008).
[CrossRef] [PubMed]

Goodman, J.

Grossman, M.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. Webb, and R. Anderson, “In vivo confocal scanning laser microscopy of human skin: Melanin provides strong contrast,” J. Invest. Dermatol.104, 946–952 (1995).
[CrossRef] [PubMed]

Halpern, A.

E. Psaty and A. Halpern, “Current and emerging technologies in melanoma diagnosis: the state of the art,” Clin. Dermatol.27, 35–45 (2009).
[CrossRef]

Hofmann-Wellenhof, R.

V. Ahlgrimm-Siess, R. Hofmann-Wellenhof, T. Cao, M. Oliviero, A. Scope, and H. S. Rabinovitz, “Reflectance confocal microscopy in the daily practice,” Semin. Cutan Med. Surg.28, 180–189 (2009).
[CrossRef] [PubMed]

Hu, X.-H.

Kempe, M.

Knuttel, A.

Lu, J.

Oliviero, M.

V. Ahlgrimm-Siess, R. Hofmann-Wellenhof, T. Cao, M. Oliviero, A. Scope, and H. S. Rabinovitz, “Reflectance confocal microscopy in the daily practice,” Semin. Cutan Med. Surg.28, 180–189 (2009).
[CrossRef] [PubMed]

Prahl, S.

A. W. W. Cheong and S. Prahl, “A review of the optical properties biological tissue,” IEEE J. Quantum Electron.26, 2166–2185 (1990).
[CrossRef]

Psaty, E.

E. Psaty and A. Halpern, “Current and emerging technologies in melanoma diagnosis: the state of the art,” Clin. Dermatol.27, 35–45 (2009).
[CrossRef]

Rabinovitz, H. S.

V. Ahlgrimm-Siess, R. Hofmann-Wellenhof, T. Cao, M. Oliviero, A. Scope, and H. S. Rabinovitz, “Reflectance confocal microscopy in the daily practice,” Semin. Cutan Med. Surg.28, 180–189 (2009).
[CrossRef] [PubMed]

Rajadhyaksha, M.

C. Glazowski and M. Rajadhyaksha, “Optimal detection pinhole for lowering speckle noise while maintaining adequate optical sectioning in confocal reflectance microscopes,” J. Biomed. Opt.17, 085001 (2012).
[CrossRef] [PubMed]

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. Webb, and R. Anderson, “In vivo confocal scanning laser microscopy of human skin: Melanin provides strong contrast,” J. Invest. Dermatol.104, 946–952 (1995).
[CrossRef] [PubMed]

Richards-Kortum, R.

Rudolph, W.

Schmitt, J.

Scope, A.

V. Ahlgrimm-Siess, R. Hofmann-Wellenhof, T. Cao, M. Oliviero, A. Scope, and H. S. Rabinovitz, “Reflectance confocal microscopy in the daily practice,” Semin. Cutan Med. Surg.28, 180–189 (2009).
[CrossRef] [PubMed]

Sheppard, C.

C. Sheppard and D. Shotton, Confocal Laser Scanning Microscopy (Springer, 1997).

Shotton, D.

C. Sheppard and D. Shotton, Confocal Laser Scanning Microscopy (Springer, 1997).

Simon, B.

B. Simon and C. A. Dimarzio, “Simulation of a theta line-scanning confocal microscope.” J. Biomed. Opt.12, 064020 (2007).
[CrossRef]

Smith, W. J.

W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2000).

Smithpeter, C.

Wang, Z.

Z. Wang, C. Glazowski, and J. Zavislan, “Modulation transfer function measurement of scanning reflectance microscopes,” J. Biomed. Opt.12, 051802 (2007).
[CrossRef] [PubMed]

Webb, R.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. Webb, and R. Anderson, “In vivo confocal scanning laser microscopy of human skin: Melanin provides strong contrast,” J. Invest. Dermatol.104, 946–952 (1995).
[CrossRef] [PubMed]

Welch, A.

Welsch, E.

Wilson, T.

T. Wilson, Confocal Microscopy (Academic Press, 1990).

Yadlowsky, M.

Zavislan, J.

C. Glazowski and J. Zavislan, “Coherent pupil engineered scanning reflectance confocal microscope for turbid imaging,” Proc. SPIE7570, 75700O (2010).
[CrossRef]

Z. Wang, C. Glazowski, and J. Zavislan, “Modulation transfer function measurement of scanning reflectance microscopes,” J. Biomed. Opt.12, 051802 (2007).
[CrossRef] [PubMed]

Appl. Opt. (2)

Clin. Dermatol. (1)

E. Psaty and A. Halpern, “Current and emerging technologies in melanoma diagnosis: the state of the art,” Clin. Dermatol.27, 35–45 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. W. W. Cheong and S. Prahl, “A review of the optical properties biological tissue,” IEEE J. Quantum Electron.26, 2166–2185 (1990).
[CrossRef]

Int. J. Cosmet. Sci. (1)

S. Gonzalez and Y. Gilaberte-Calzada, “In vivo reflectance-mode confocal microscopy in clinical dermatology and cosmetology,” Int. J. Cosmet. Sci.30, 1–15 (2008).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

C. Glazowski and M. Rajadhyaksha, “Optimal detection pinhole for lowering speckle noise while maintaining adequate optical sectioning in confocal reflectance microscopes,” J. Biomed. Opt.17, 085001 (2012).
[CrossRef] [PubMed]

Z. Wang, C. Glazowski, and J. Zavislan, “Modulation transfer function measurement of scanning reflectance microscopes,” J. Biomed. Opt.12, 051802 (2007).
[CrossRef] [PubMed]

B. Simon and C. A. Dimarzio, “Simulation of a theta line-scanning confocal microscope.” J. Biomed. Opt.12, 064020 (2007).
[CrossRef]

J. Invest. Dermatol. (1)

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. Webb, and R. Anderson, “In vivo confocal scanning laser microscopy of human skin: Melanin provides strong contrast,” J. Invest. Dermatol.104, 946–952 (1995).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (4)

Proc. SPIE (1)

C. Glazowski and J. Zavislan, “Coherent pupil engineered scanning reflectance confocal microscope for turbid imaging,” Proc. SPIE7570, 75700O (2010).
[CrossRef]

Semin. Cutan Med. Surg. (1)

V. Ahlgrimm-Siess, R. Hofmann-Wellenhof, T. Cao, M. Oliviero, A. Scope, and H. S. Rabinovitz, “Reflectance confocal microscopy in the daily practice,” Semin. Cutan Med. Surg.28, 180–189 (2009).
[CrossRef] [PubMed]

Other (4)

C. Sheppard and D. Shotton, Confocal Laser Scanning Microscopy (Springer, 1997).

T. Wilson, Confocal Microscopy (Academic Press, 1990).

J. Goodman, Introduction to Fourier Optics (McGraw Hill, 1996).

W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2000).

Supplementary Material (1)

» Media 1: MP4 (143 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Idealized confocal microscope. Solid-black and dashed-red lines denote illumination and detection paths respectively.

Fig. 2
Fig. 2

(a) Planar illumination (solid-black) wavefronts are focusing into the turbid medium, scattered near the focus and returned (dashed-red) to the objective. (b) Physically and mathematically, an equivalent diffuser (FPP in blue) can be placed into the pupil that represents the aberrations of turbid medium.

Fig. 3
Fig. 3

RMS wavefront error calculated at an illumination wavelength of 830 nm and NA = 0.9. Each ‘x’ represents one realization of the simulated tissue environment, at the indicated axial depth.

Fig. 4
Fig. 4

Autocorrelation profiles of wavefront error after 80 μm of simulated tissue. Each profile is one realization of the simulated tissue environment.

Fig. 5
Fig. 5

The BPP is geometrically imaged (blue lines) through the confocal system. The NA of the UF fields (dashed red) at the pinhole is equal to the NA of the UB fields propagating back to the pinhole. Inset: The fields across the BPP are propagated to the pinhole plane to model the interference between the UB field with the UF field.

Fig. 6
Fig. 6

Pinhole irradiances for (a) |UF|2; (b) |UB|2; (c) |UF +UB|2 as the illumination is scanned across a uniform object. Simulation was at 0.5NA for the BK7 aberrator and experimental system specifics described in section 3.2 below. Gray circular boundary represents the outline of the detection pinhole ( Media 1).

Fig. 7
Fig. 7

Cross–sectional schematic of the objective lens focusing the illumination wavefronts into the phantom. i) Cover glass with rear-side ground forming the FPP height profile; ii) Immersion medium, typically water; iii) Uniform reflective surface spaced a distance zd from the FPP surface. The rear-side of the uniform reflector is ground to form the BPP height profile; iv) Mirror or high reflector. Converging waves (red) are aberrated by the FPP surface on (i). Light transmitted by the uniform object is scattered by the BPP and mirror surface (dashed red). The BPP generated light is further dephased by the FPP surface before collection by the objective.

Fig. 8
Fig. 8

Images of the turbid phantom with a confocal microscope at 0.9NA: (a) Uniformly reflecting surface; (b) With the BPP; (c) WIth only the SF2 FPP aberrator; (d) With a combination of FPP and BPP. The calibration bar represents 50 μm.

Fig. 9
Fig. 9

BPP only: (a) 0.9NA, (b) 0.5NA; FPP only: (c) BK7 - 0.9NA, (d) BK7 - 0.5NA, (e) SF2 - 0.9NA, (f) SF2 - 0.5NA; FPP+BPP: (g) BK7 - 0.9NA, (h) BK7 - 0.5NA, (i) SF2 - 0.9NA, (j) SF2 - 0.5NA.

Fig. 10
Fig. 10

Distributions of normalized signal for FPP+BPP cases in Fig. 9: (g) BK7 - 0.9NA and (j) SF2 - 0.5NA.

Tables (1)

Tables Icon

Table 1 Phantom construction specifications

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

S ( x o , y o , z d ) = α Pinhole | U p ( x p , y p ; x o , y o , z d ) | 2 d x p d y p ,
U p ( x p , y p ; x o , y o , z d ) = U F ( x p , y p ; x o , y o , z d ) + U B ( x p , y p ; x o , y o , z d )
U o ( x o , y o , z d ) = ε F 𝔽 { U ill ( x A , y A ) FPP ( x A , y A ; x o , y o , z d ) }
( x s , y s , z d ) = ( x o + m Δ x , y o + n Δ y , z d ) .
U A , refl ( x A , y A ; x s , y s , z d ) = ε F 𝔽 { U o ( x s , y s , z d ) Object ( x s , y s , z d ) }
U F ( x p , y p ; x s , y s , z d ) = ε F 𝔽 { U A , refl ( x A , y A ; x s , y s , z d ) FPP ( x A , y A ; x s , y s , z d ) }
U F ( x p , y p ; x s , y s , z d ) = ε F r o 𝔽 [ U ill ( x A , y A ) × FPP ( x A , y A ; x s , y s , z d ) FPP ( x A , y A ; x s , y s , z d ) ]
FPP ( x A , y A ; x s , y s , z d ) = exp ( i φ ( x A , y A ; x s , y s , z d ) )
φ = 0
φ 2 = [ σ φ ( z d ) ] 2
R φ ( δ x s , δ y s ) = φ ( x A , y A ; x s , y s , z d ) φ ( x A , y A ; x s + δ x s , y s + δ y s , z d )
σ φ ( z d ) = 0.10 λ z d 10 μ m
U B ( x p , y p ; x s , y s , z d ) = ε B BPP ( x b , y b , z d ; x s , y s ) exp ( i k r B ) [ r B ] 2 d x b d y b ,
r B = ( x p x b ) 2 + ( y p y b ) 2 + ( z d ) 2 ,
S N B = Pinhole | U F | 2 Pinhole | U B | 2 = | ε F ε B | 2
σ ¯ s = S 2 S 2 S 2

Metrics