Abstract

In this paper, we report a light driven, non-invasive cell membrane perforation technique based on the localized field amplification by a nanosecond pulsed laser near gold nanoparticles (AuNPs). The optoporation phenomena is investigated with pulses generated by a Nd:YAG laser for two wavelengths that are either in the visible (532 nm) or near infrared (NIR) (1064 nm). Here, the main objective is to compare on and off localized surface plasmonic resonance (LSPR) to introduce foreign material through the cell membrane using nanosecond laser pulses. The membrane permeability of human melanoma cells (MW278) has been successfully increased as shown by the intake of a fluorescent dye upon irradiation. The viability of this laser driven perforation method is evaluated by propidium iodide exclusion as well as MTT assay. Our results show that up to 25% of the cells are perforated with 532 nm pulses at 50 mJ/cm2 and around 30% of the cells are perforated with 1064 nm pulses at 1 J/cm2. With 532 nm pulses, the viability 2 h after treatment is 64% but it increases to 88% 72 h later. On the other hand, the irradiation with 1064 nm pulses leads to an improved 2 h viability of 81% and reaches 98% after 72 h. Scanning electron microscopy images show that the 5 pulses delivered during treatment induce changes in the AuNPs size distribution when irradiated by a 532 nm beam, while this distribution is barely affected when 1064 nm is used.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Alberts, D. Bray, K. Hopkin, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Essential Cell Biology, 2nd ed. (Garland Science, 2009).
  2. S. D. Li and L. Huang, “Gene therapy progress and prospects: non-viral gene therapy by systemic delivery,” Gene Ther.13(18), 1313–1319 (2006).
    [CrossRef] [PubMed]
  3. P. M. Patil, P. D. Chaudharie, M. Sahu, and J. Duragkar, “Review article on gene therapy,” Int. J. Genetics4, 74–79 (2012).
  4. K. A. Whitehead, R. Langer, and D. G. Anderson, “Knocking down barriers: advances in siRNA delivery,” Nat. Rev. Drug Discov.8(2), 129–138 (2009).
    [CrossRef] [PubMed]
  5. S. Florea, K. Andreeva, C. Machado, P. M. Mirabito, and C. L. Schardl, “Elimination of marker genes from transformed filamentous fungi by unselected transient transfection with a Cre-expressing plasmid,” Fungal Genet. Biol.46(10), 721–730 (2009).
    [CrossRef] [PubMed]
  6. C. H. Evans, S. C. Ghivizzani, and P. D. Robbins, “Arthritis gene therapy’s first death,” Arthritis Res. Ther.10(3), 110 (2008).
    [CrossRef] [PubMed]
  7. S. Lehrman, “Virus treatment questioned after gene therapy death,” Nature401(6753), 517–518 (1999).
    [CrossRef] [PubMed]
  8. A. Pathak, S. Patnaik, and K. C. Gupta, “Recent trends in non-viral vector-mediated gene delivery,” Biotechnol. J.4(11), 1559–1572 (2009).
    [CrossRef] [PubMed]
  9. Y. Zhao, Z. Zheng, C. J. Cohen, L. Gattinoni, D. C. Palmer, N. P. Restifo, S. A. Rosenberg, and R. A. Morgan, “High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation,” Mol. Ther.13(1), 151–159 (2006).
    [CrossRef] [PubMed]
  10. L. M. Mir, “Nucleic acids electrotransfer-based gene therapy (electrogenetherapy): past, current, and future,” Mol. Biotechnol.43(2), 167–176 (2009).
    [CrossRef] [PubMed]
  11. Y. Zhang and L. C. Yu, “Single-cell microinjection technology in cell biology,” Bioessays30(6), 606–610 (2008).
    [CrossRef] [PubMed]
  12. M. Ogura, S. Sato, K. Nakanishi, M. Uenoyama, T. Kiyozumi, D. Saitoh, T. Ikeda, H. Ashida, and M. Obara, “In vivo targeted gene transfer in skin by the use of laser-induced stress waves,” Lasers Surg. Med.34(3), 242–248 (2004).
    [CrossRef] [PubMed]
  13. S. Takano, S. Sato, M. Terakawa, H. Asida, H. Okano, and M. Obara, “Enhanced transfection efficiency in laser-induced stress wave-assisted gene transfer at low laser fluence by increasing pressure impulse,” Appl. Phys. Express1, 038001 (2008).
    [CrossRef]
  14. M. Lei, H. Xu, H. Yang, and B. Yao, “Femtosecond laser-assisted microinjection into living neurons,” J. Neurosci. Methods174(2), 215–218 (2008).
    [CrossRef] [PubMed]
  15. J. Baumgart, W. Bintig, A. Ngezahayo, S. Willenbrock, H. Murua Escobar, W. Ertmer, H. Lubatschowski, and A. Heisterkamp, “Quantified femtosecond laser based opto-perforation of living GFSHR-17 and MTH53 a cells,” Opt. Express16(5), 3021–3031 (2008).
    [CrossRef] [PubMed]
  16. C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J.84(6), 4023–4032 (2003).
    [CrossRef] [PubMed]
  17. J. Baumgart, L. Humbert, É. Boulais, R. Lachaine, J. J. Lebrun, and M. Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials33(7), 2345–2350 (2012).
    [CrossRef] [PubMed]
  18. C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, “Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,” J. Biomed. Opt.10(6), 064012 (2005).
    [CrossRef] [PubMed]
  19. E. Y. Lukianova-Hleb, D. S. Wagner, M. K. Brenner, and D. O. Lapotko, “Cell-specific transmembrane injection of molecular cargo with gold nanoparticle-generated transient plasmonic nanobubbles,” Biomaterials33(21), 5441–5450 (2012).
    [CrossRef] [PubMed]
  20. K. Sankaranarayanan, S. Radhakrishnan, S. Kanagaraj, R. Rajendran, S. Shahid, P. Kathirvel, V. Sundaresan, V. K. Udayakumar, R. Ramachandran, and R. Sundararajan, “Effect of Irreversible electroporation on cell proliferation in fibroblasts,” Proceedings of the ESA Annual Meeting on Electrostatics (2011), pp. 1–8.
  21. P. J. Canatella, J. F. Karr, J. A. Petros, and M. R. Prausnitz, “Quantitative study of electroporation-mediated molecular uptake and cell viability,” Biophys. J.80(2), 755–764 (2001).
    [CrossRef] [PubMed]
  22. O. C. Farokhzad and R. Langer, “Impact of nanotechnology on drug delivery,” ACS Nano3(1), 16–20 (2009).
    [CrossRef] [PubMed]
  23. E. Y. Lukianova-Hleb, A. Belyanin, S. Kashinath, X. Wu, and D. O. Lapotko, “Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells,” Biomaterials33(6), 1821–1826 (2012).
    [CrossRef] [PubMed]
  24. D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol.24(2), 62–67 (2006).
    [CrossRef] [PubMed]
  25. D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett.239(1), 36–45 (2006).
    [CrossRef] [PubMed]
  26. R. R. Letfullin, C. Joenathan, T. F. George, and V. P. Zharov, “Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer,” Nanomedicine (Lond)1(4), 473–480 (2006).
    [CrossRef] [PubMed]
  27. D. O. Lapotko, E. Y. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med.38(6), 631–642 (2006).
    [CrossRef] [PubMed]
  28. S. Link and M. A. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” J. Phys. Chem. B103(40), 8410–8426 (1999).
    [CrossRef]
  29. S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev.35(3), 209–217 (2006).
    [CrossRef] [PubMed]
  30. P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today2(1), 18–29 (2007).
    [CrossRef]
  31. P. M. Tiwari, K. Vig, V. A. Dennis, and S. R. Singh, “Functionalized gold nanoparticles and their biomedical applications,” J. Nanomater.1(1), 31–63 (2011).
    [CrossRef]
  32. E. Y. Lukianova-Hleb, A. P. Samaniego, J. Wen, L. S. Metelitsa, C. C. Chang, and D. O. Lapotko, “Selective gene transfection of individual cells in vitro with plasmonic nanobubbles,” J. Control. Release152(2), 286–293 (2011).
    [CrossRef] [PubMed]
  33. C. Yao, X. Qu, Z. Zhang, G. Hüttmann, and R. Rahmanzadeh, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” J. Biomed. Opt.14(5), 054034 (2009).
    [CrossRef] [PubMed]
  34. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
    [CrossRef]
  35. S. Inasawa, M. Sugiyama, and Y. Yamaguchi, “Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting,” J. Phys. Chem. B109(8), 3104–3111 (2005).
    [CrossRef] [PubMed]
  36. A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B103(8), 1226–1232 (1999).
    [CrossRef]
  37. N. M. Schaeublin, L. K. Braydich-Stolle, A. M. Schrand, J. M. Miller, J. Hutchison, J. J. Schlager, and S. M. Hussain, “Surface charge of gold nanoparticles mediates mechanism of toxicity,” Nanoscale3(2), 410–420 (2011).
    [CrossRef] [PubMed]
  38. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
    [CrossRef]
  39. É. Boulais, R. Lachaine, and M. Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett.12(9), 4763–4769 (2012).
    [CrossRef] [PubMed]
  40. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103(2), 577–644 (2003).
    [CrossRef] [PubMed]
  41. E. Y. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano4(4), 2109–2123 (2010).
    [CrossRef] [PubMed]
  42. E. Y. Lukianova-Hleb, E. Y. Hanna, J. H. Hafner, and D. O. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology21(8), 085102 (2010).
    [CrossRef] [PubMed]
  43. M. Kitz, S. Preisser, A. Wetterwald, M. Jaeger, G. N. Thalmann, and M. Frenz, “Vapor bubble generation around gold nano-particles and its application to damaging of cells,” Biomed. Opt. Express2(2), 291–304 (2011).
    [CrossRef] [PubMed]
  44. E. Y. Lukianova-Hleb, C. Santiago, D. S. Wagner, J. H. Hafner, and D. O. Lapotko, “Generation and detection of plasmonic nanobubbles in zebrafish,” Nanotechnology21(22), 225102 (2010).
    [CrossRef] [PubMed]
  45. R. Lachaine, E. Boulais, E. Bourbeau, and M. Meunier, “Effect of pulse duration on plasmonic enhanced ultrafast laser-induced bubble generation in water,” Appl. Phys., A Mater. Sci. Process.2012(Sept.) 1–4 (2012).
  46. V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett.5(11), 775–792 (2008).
    [CrossRef]
  47. O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D Appl. Phys.41(18), 185501 (2008).
    [CrossRef] [PubMed]
  48. A. V. Nikolskaya, V. P. Nikolski, and I. R. Efimov, “Gene printer: laser-scanning targeted transfection of cultured cardiac neonatal rat cells,” Cell Commun. Adhes.13(4), 217–222 (2006).
    [CrossRef] [PubMed]

2012 (6)

P. M. Patil, P. D. Chaudharie, M. Sahu, and J. Duragkar, “Review article on gene therapy,” Int. J. Genetics4, 74–79 (2012).

J. Baumgart, L. Humbert, É. Boulais, R. Lachaine, J. J. Lebrun, and M. Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials33(7), 2345–2350 (2012).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, D. S. Wagner, M. K. Brenner, and D. O. Lapotko, “Cell-specific transmembrane injection of molecular cargo with gold nanoparticle-generated transient plasmonic nanobubbles,” Biomaterials33(21), 5441–5450 (2012).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, A. Belyanin, S. Kashinath, X. Wu, and D. O. Lapotko, “Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells,” Biomaterials33(6), 1821–1826 (2012).
[CrossRef] [PubMed]

É. Boulais, R. Lachaine, and M. Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett.12(9), 4763–4769 (2012).
[CrossRef] [PubMed]

R. Lachaine, E. Boulais, E. Bourbeau, and M. Meunier, “Effect of pulse duration on plasmonic enhanced ultrafast laser-induced bubble generation in water,” Appl. Phys., A Mater. Sci. Process.2012(Sept.) 1–4 (2012).

2011 (4)

M. Kitz, S. Preisser, A. Wetterwald, M. Jaeger, G. N. Thalmann, and M. Frenz, “Vapor bubble generation around gold nano-particles and its application to damaging of cells,” Biomed. Opt. Express2(2), 291–304 (2011).
[CrossRef] [PubMed]

N. M. Schaeublin, L. K. Braydich-Stolle, A. M. Schrand, J. M. Miller, J. Hutchison, J. J. Schlager, and S. M. Hussain, “Surface charge of gold nanoparticles mediates mechanism of toxicity,” Nanoscale3(2), 410–420 (2011).
[CrossRef] [PubMed]

P. M. Tiwari, K. Vig, V. A. Dennis, and S. R. Singh, “Functionalized gold nanoparticles and their biomedical applications,” J. Nanomater.1(1), 31–63 (2011).
[CrossRef]

E. Y. Lukianova-Hleb, A. P. Samaniego, J. Wen, L. S. Metelitsa, C. C. Chang, and D. O. Lapotko, “Selective gene transfection of individual cells in vitro with plasmonic nanobubbles,” J. Control. Release152(2), 286–293 (2011).
[CrossRef] [PubMed]

2010 (3)

E. Y. Lukianova-Hleb, C. Santiago, D. S. Wagner, J. H. Hafner, and D. O. Lapotko, “Generation and detection of plasmonic nanobubbles in zebrafish,” Nanotechnology21(22), 225102 (2010).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano4(4), 2109–2123 (2010).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, E. Y. Hanna, J. H. Hafner, and D. O. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology21(8), 085102 (2010).
[CrossRef] [PubMed]

2009 (6)

C. Yao, X. Qu, Z. Zhang, G. Hüttmann, and R. Rahmanzadeh, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” J. Biomed. Opt.14(5), 054034 (2009).
[CrossRef] [PubMed]

O. C. Farokhzad and R. Langer, “Impact of nanotechnology on drug delivery,” ACS Nano3(1), 16–20 (2009).
[CrossRef] [PubMed]

K. A. Whitehead, R. Langer, and D. G. Anderson, “Knocking down barriers: advances in siRNA delivery,” Nat. Rev. Drug Discov.8(2), 129–138 (2009).
[CrossRef] [PubMed]

S. Florea, K. Andreeva, C. Machado, P. M. Mirabito, and C. L. Schardl, “Elimination of marker genes from transformed filamentous fungi by unselected transient transfection with a Cre-expressing plasmid,” Fungal Genet. Biol.46(10), 721–730 (2009).
[CrossRef] [PubMed]

A. Pathak, S. Patnaik, and K. C. Gupta, “Recent trends in non-viral vector-mediated gene delivery,” Biotechnol. J.4(11), 1559–1572 (2009).
[CrossRef] [PubMed]

L. M. Mir, “Nucleic acids electrotransfer-based gene therapy (electrogenetherapy): past, current, and future,” Mol. Biotechnol.43(2), 167–176 (2009).
[CrossRef] [PubMed]

2008 (7)

Y. Zhang and L. C. Yu, “Single-cell microinjection technology in cell biology,” Bioessays30(6), 606–610 (2008).
[CrossRef] [PubMed]

C. H. Evans, S. C. Ghivizzani, and P. D. Robbins, “Arthritis gene therapy’s first death,” Arthritis Res. Ther.10(3), 110 (2008).
[CrossRef] [PubMed]

S. Takano, S. Sato, M. Terakawa, H. Asida, H. Okano, and M. Obara, “Enhanced transfection efficiency in laser-induced stress wave-assisted gene transfer at low laser fluence by increasing pressure impulse,” Appl. Phys. Express1, 038001 (2008).
[CrossRef]

M. Lei, H. Xu, H. Yang, and B. Yao, “Femtosecond laser-assisted microinjection into living neurons,” J. Neurosci. Methods174(2), 215–218 (2008).
[CrossRef] [PubMed]

J. Baumgart, W. Bintig, A. Ngezahayo, S. Willenbrock, H. Murua Escobar, W. Ertmer, H. Lubatschowski, and A. Heisterkamp, “Quantified femtosecond laser based opto-perforation of living GFSHR-17 and MTH53 a cells,” Opt. Express16(5), 3021–3031 (2008).
[CrossRef] [PubMed]

V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett.5(11), 775–792 (2008).
[CrossRef]

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D Appl. Phys.41(18), 185501 (2008).
[CrossRef] [PubMed]

2007 (1)

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today2(1), 18–29 (2007).
[CrossRef]

2006 (8)

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev.35(3), 209–217 (2006).
[CrossRef] [PubMed]

S. D. Li and L. Huang, “Gene therapy progress and prospects: non-viral gene therapy by systemic delivery,” Gene Ther.13(18), 1313–1319 (2006).
[CrossRef] [PubMed]

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol.24(2), 62–67 (2006).
[CrossRef] [PubMed]

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett.239(1), 36–45 (2006).
[CrossRef] [PubMed]

R. R. Letfullin, C. Joenathan, T. F. George, and V. P. Zharov, “Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer,” Nanomedicine (Lond)1(4), 473–480 (2006).
[CrossRef] [PubMed]

D. O. Lapotko, E. Y. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med.38(6), 631–642 (2006).
[CrossRef] [PubMed]

Y. Zhao, Z. Zheng, C. J. Cohen, L. Gattinoni, D. C. Palmer, N. P. Restifo, S. A. Rosenberg, and R. A. Morgan, “High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation,” Mol. Ther.13(1), 151–159 (2006).
[CrossRef] [PubMed]

A. V. Nikolskaya, V. P. Nikolski, and I. R. Efimov, “Gene printer: laser-scanning targeted transfection of cultured cardiac neonatal rat cells,” Cell Commun. Adhes.13(4), 217–222 (2006).
[CrossRef] [PubMed]

2005 (4)

C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, “Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,” J. Biomed. Opt.10(6), 064012 (2005).
[CrossRef] [PubMed]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

S. Inasawa, M. Sugiyama, and Y. Yamaguchi, “Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting,” J. Phys. Chem. B109(8), 3104–3111 (2005).
[CrossRef] [PubMed]

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

2004 (1)

M. Ogura, S. Sato, K. Nakanishi, M. Uenoyama, T. Kiyozumi, D. Saitoh, T. Ikeda, H. Ashida, and M. Obara, “In vivo targeted gene transfer in skin by the use of laser-induced stress waves,” Lasers Surg. Med.34(3), 242–248 (2004).
[CrossRef] [PubMed]

2003 (2)

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J.84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103(2), 577–644 (2003).
[CrossRef] [PubMed]

2001 (1)

P. J. Canatella, J. F. Karr, J. A. Petros, and M. R. Prausnitz, “Quantitative study of electroporation-mediated molecular uptake and cell viability,” Biophys. J.80(2), 755–764 (2001).
[CrossRef] [PubMed]

1999 (3)

S. Lehrman, “Virus treatment questioned after gene therapy death,” Nature401(6753), 517–518 (1999).
[CrossRef] [PubMed]

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B103(8), 1226–1232 (1999).
[CrossRef]

S. Link and M. A. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” J. Phys. Chem. B103(40), 8410–8426 (1999).
[CrossRef]

Aleinikova, O.

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett.239(1), 36–45 (2006).
[CrossRef] [PubMed]

Anderson, D. G.

K. A. Whitehead, R. Langer, and D. G. Anderson, “Knocking down barriers: advances in siRNA delivery,” Nat. Rev. Drug Discov.8(2), 129–138 (2009).
[CrossRef] [PubMed]

Anderson, R. R.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J.84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Andreeva, K.

S. Florea, K. Andreeva, C. Machado, P. M. Mirabito, and C. L. Schardl, “Elimination of marker genes from transformed filamentous fungi by unselected transient transfection with a Cre-expressing plasmid,” Fungal Genet. Biol.46(10), 721–730 (2009).
[CrossRef] [PubMed]

Ashida, H.

M. Ogura, S. Sato, K. Nakanishi, M. Uenoyama, T. Kiyozumi, D. Saitoh, T. Ikeda, H. Ashida, and M. Obara, “In vivo targeted gene transfer in skin by the use of laser-induced stress waves,” Lasers Surg. Med.34(3), 242–248 (2004).
[CrossRef] [PubMed]

Asida, H.

S. Takano, S. Sato, M. Terakawa, H. Asida, H. Okano, and M. Obara, “Enhanced transfection efficiency in laser-induced stress wave-assisted gene transfer at low laser fluence by increasing pressure impulse,” Appl. Phys. Express1, 038001 (2008).
[CrossRef]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

Baumgart, J.

J. Baumgart, L. Humbert, É. Boulais, R. Lachaine, J. J. Lebrun, and M. Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials33(7), 2345–2350 (2012).
[CrossRef] [PubMed]

J. Baumgart, W. Bintig, A. Ngezahayo, S. Willenbrock, H. Murua Escobar, W. Ertmer, H. Lubatschowski, and A. Heisterkamp, “Quantified femtosecond laser based opto-perforation of living GFSHR-17 and MTH53 a cells,” Opt. Express16(5), 3021–3031 (2008).
[CrossRef] [PubMed]

Belyanin, A.

E. Y. Lukianova-Hleb, A. Belyanin, S. Kashinath, X. Wu, and D. O. Lapotko, “Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells,” Biomaterials33(6), 1821–1826 (2012).
[CrossRef] [PubMed]

Ben-Yakar, A.

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D Appl. Phys.41(18), 185501 (2008).
[CrossRef] [PubMed]

Bintig, W.

Boulais, E.

R. Lachaine, E. Boulais, E. Bourbeau, and M. Meunier, “Effect of pulse duration on plasmonic enhanced ultrafast laser-induced bubble generation in water,” Appl. Phys., A Mater. Sci. Process.2012(Sept.) 1–4 (2012).

Boulais, É.

É. Boulais, R. Lachaine, and M. Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett.12(9), 4763–4769 (2012).
[CrossRef] [PubMed]

J. Baumgart, L. Humbert, É. Boulais, R. Lachaine, J. J. Lebrun, and M. Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials33(7), 2345–2350 (2012).
[CrossRef] [PubMed]

Bourbeau, E.

R. Lachaine, E. Boulais, E. Bourbeau, and M. Meunier, “Effect of pulse duration on plasmonic enhanced ultrafast laser-induced bubble generation in water,” Appl. Phys., A Mater. Sci. Process.2012(Sept.) 1–4 (2012).

Braydich-Stolle, L. K.

N. M. Schaeublin, L. K. Braydich-Stolle, A. M. Schrand, J. M. Miller, J. Hutchison, J. J. Schlager, and S. M. Hussain, “Surface charge of gold nanoparticles mediates mechanism of toxicity,” Nanoscale3(2), 410–420 (2011).
[CrossRef] [PubMed]

Brenner, M. K.

E. Y. Lukianova-Hleb, D. S. Wagner, M. K. Brenner, and D. O. Lapotko, “Cell-specific transmembrane injection of molecular cargo with gold nanoparticle-generated transient plasmonic nanobubbles,” Biomaterials33(21), 5441–5450 (2012).
[CrossRef] [PubMed]

Canatella, P. J.

P. J. Canatella, J. F. Karr, J. A. Petros, and M. R. Prausnitz, “Quantitative study of electroporation-mediated molecular uptake and cell viability,” Biophys. J.80(2), 755–764 (2001).
[CrossRef] [PubMed]

Chang, C. C.

E. Y. Lukianova-Hleb, A. P. Samaniego, J. Wen, L. S. Metelitsa, C. C. Chang, and D. O. Lapotko, “Selective gene transfection of individual cells in vitro with plasmonic nanobubbles,” J. Control. Release152(2), 286–293 (2011).
[CrossRef] [PubMed]

Chaudharie, P. D.

P. M. Patil, P. D. Chaudharie, M. Sahu, and J. Duragkar, “Review article on gene therapy,” Int. J. Genetics4, 74–79 (2012).

Cohen, C. J.

Y. Zhao, Z. Zheng, C. J. Cohen, L. Gattinoni, D. C. Palmer, N. P. Restifo, S. A. Rosenberg, and R. A. Morgan, “High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation,” Mol. Ther.13(1), 151–159 (2006).
[CrossRef] [PubMed]

Cortie, M. B.

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol.24(2), 62–67 (2006).
[CrossRef] [PubMed]

Dennis, V. A.

P. M. Tiwari, K. Vig, V. A. Dennis, and S. R. Singh, “Functionalized gold nanoparticles and their biomedical applications,” J. Nanomater.1(1), 31–63 (2011).
[CrossRef]

Drezek, R. A.

E. Y. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano4(4), 2109–2123 (2010).
[CrossRef] [PubMed]

Duragkar, J.

P. M. Patil, P. D. Chaudharie, M. Sahu, and J. Duragkar, “Review article on gene therapy,” Int. J. Genetics4, 74–79 (2012).

Durr, N. J.

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D Appl. Phys.41(18), 185501 (2008).
[CrossRef] [PubMed]

Efimov, I. R.

A. V. Nikolskaya, V. P. Nikolski, and I. R. Efimov, “Gene printer: laser-scanning targeted transfection of cultured cardiac neonatal rat cells,” Cell Commun. Adhes.13(4), 217–222 (2006).
[CrossRef] [PubMed]

Ekici, O.

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D Appl. Phys.41(18), 185501 (2008).
[CrossRef] [PubMed]

El-Sayed, I. H.

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today2(1), 18–29 (2007).
[CrossRef]

El-Sayed, M. A.

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today2(1), 18–29 (2007).
[CrossRef]

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev.35(3), 209–217 (2006).
[CrossRef] [PubMed]

S. Link and M. A. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” J. Phys. Chem. B103(40), 8410–8426 (1999).
[CrossRef]

Endl, E.

C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, “Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,” J. Biomed. Opt.10(6), 064012 (2005).
[CrossRef] [PubMed]

Ertmer, W.

Eustis, S.

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev.35(3), 209–217 (2006).
[CrossRef] [PubMed]

Evans, C. H.

C. H. Evans, S. C. Ghivizzani, and P. D. Robbins, “Arthritis gene therapy’s first death,” Arthritis Res. Ther.10(3), 110 (2008).
[CrossRef] [PubMed]

Eversole, D. S.

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D Appl. Phys.41(18), 185501 (2008).
[CrossRef] [PubMed]

Farokhzad, O. C.

O. C. Farokhzad and R. Langer, “Impact of nanotechnology on drug delivery,” ACS Nano3(1), 16–20 (2009).
[CrossRef] [PubMed]

Florea, S.

S. Florea, K. Andreeva, C. Machado, P. M. Mirabito, and C. L. Schardl, “Elimination of marker genes from transformed filamentous fungi by unselected transient transfection with a Cre-expressing plasmid,” Fungal Genet. Biol.46(10), 721–730 (2009).
[CrossRef] [PubMed]

Frenz, M.

Gattinoni, L.

Y. Zhao, Z. Zheng, C. J. Cohen, L. Gattinoni, D. C. Palmer, N. P. Restifo, S. A. Rosenberg, and R. A. Morgan, “High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation,” Mol. Ther.13(1), 151–159 (2006).
[CrossRef] [PubMed]

Genina, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

George, T. F.

R. R. Letfullin, C. Joenathan, T. F. George, and V. P. Zharov, “Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer,” Nanomedicine (Lond)1(4), 473–480 (2006).
[CrossRef] [PubMed]

Gerdes, J.

C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, “Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,” J. Biomed. Opt.10(6), 064012 (2005).
[CrossRef] [PubMed]

Ghivizzani, S. C.

C. H. Evans, S. C. Ghivizzani, and P. D. Robbins, “Arthritis gene therapy’s first death,” Arthritis Res. Ther.10(3), 110 (2008).
[CrossRef] [PubMed]

Gupta, K. C.

A. Pathak, S. Patnaik, and K. C. Gupta, “Recent trends in non-viral vector-mediated gene delivery,” Biotechnol. J.4(11), 1559–1572 (2009).
[CrossRef] [PubMed]

Hafner, J. H.

E. Y. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano4(4), 2109–2123 (2010).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, E. Y. Hanna, J. H. Hafner, and D. O. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology21(8), 085102 (2010).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, C. Santiago, D. S. Wagner, J. H. Hafner, and D. O. Lapotko, “Generation and detection of plasmonic nanobubbles in zebrafish,” Nanotechnology21(22), 225102 (2010).
[CrossRef] [PubMed]

Hanna, E. Y.

E. Y. Lukianova-Hleb, E. Y. Hanna, J. H. Hafner, and D. O. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology21(8), 085102 (2010).
[CrossRef] [PubMed]

Harrison, R. K.

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D Appl. Phys.41(18), 185501 (2008).
[CrossRef] [PubMed]

Heisterkamp, A.

Hu, Y.

E. Y. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano4(4), 2109–2123 (2010).
[CrossRef] [PubMed]

Huang, L.

S. D. Li and L. Huang, “Gene therapy progress and prospects: non-viral gene therapy by systemic delivery,” Gene Ther.13(18), 1313–1319 (2006).
[CrossRef] [PubMed]

Humbert, L.

J. Baumgart, L. Humbert, É. Boulais, R. Lachaine, J. J. Lebrun, and M. Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials33(7), 2345–2350 (2012).
[CrossRef] [PubMed]

Hussain, S. M.

N. M. Schaeublin, L. K. Braydich-Stolle, A. M. Schrand, J. M. Miller, J. Hutchison, J. J. Schlager, and S. M. Hussain, “Surface charge of gold nanoparticles mediates mechanism of toxicity,” Nanoscale3(2), 410–420 (2011).
[CrossRef] [PubMed]

Hutchison, J.

N. M. Schaeublin, L. K. Braydich-Stolle, A. M. Schrand, J. M. Miller, J. Hutchison, J. J. Schlager, and S. M. Hussain, “Surface charge of gold nanoparticles mediates mechanism of toxicity,” Nanoscale3(2), 410–420 (2011).
[CrossRef] [PubMed]

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

Hüttmann, G.

C. Yao, X. Qu, Z. Zhang, G. Hüttmann, and R. Rahmanzadeh, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” J. Biomed. Opt.14(5), 054034 (2009).
[CrossRef] [PubMed]

C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, “Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,” J. Biomed. Opt.10(6), 064012 (2005).
[CrossRef] [PubMed]

Ikeda, T.

M. Ogura, S. Sato, K. Nakanishi, M. Uenoyama, T. Kiyozumi, D. Saitoh, T. Ikeda, H. Ashida, and M. Obara, “In vivo targeted gene transfer in skin by the use of laser-induced stress waves,” Lasers Surg. Med.34(3), 242–248 (2004).
[CrossRef] [PubMed]

Inasawa, S.

S. Inasawa, M. Sugiyama, and Y. Yamaguchi, “Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting,” J. Phys. Chem. B109(8), 3104–3111 (2005).
[CrossRef] [PubMed]

Jaeger, M.

Jain, P. K.

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today2(1), 18–29 (2007).
[CrossRef]

Joe, E. K.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J.84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Joenathan, C.

R. R. Letfullin, C. Joenathan, T. F. George, and V. P. Zharov, “Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer,” Nanomedicine (Lond)1(4), 473–480 (2006).
[CrossRef] [PubMed]

Karr, J. F.

P. J. Canatella, J. F. Karr, J. A. Petros, and M. R. Prausnitz, “Quantitative study of electroporation-mediated molecular uptake and cell viability,” Biophys. J.80(2), 755–764 (2001).
[CrossRef] [PubMed]

Kashinath, S.

E. Y. Lukianova-Hleb, A. Belyanin, S. Kashinath, X. Wu, and D. O. Lapotko, “Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells,” Biomaterials33(6), 1821–1826 (2012).
[CrossRef] [PubMed]

Kitz, M.

Kiyozumi, T.

M. Ogura, S. Sato, K. Nakanishi, M. Uenoyama, T. Kiyozumi, D. Saitoh, T. Ikeda, H. Ashida, and M. Obara, “In vivo targeted gene transfer in skin by the use of laser-induced stress waves,” Lasers Surg. Med.34(3), 242–248 (2004).
[CrossRef] [PubMed]

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

Koda, S.

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B103(8), 1226–1232 (1999).
[CrossRef]

Kurita, H.

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B103(8), 1226–1232 (1999).
[CrossRef]

Lachaine, R.

J. Baumgart, L. Humbert, É. Boulais, R. Lachaine, J. J. Lebrun, and M. Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials33(7), 2345–2350 (2012).
[CrossRef] [PubMed]

É. Boulais, R. Lachaine, and M. Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett.12(9), 4763–4769 (2012).
[CrossRef] [PubMed]

R. Lachaine, E. Boulais, E. Bourbeau, and M. Meunier, “Effect of pulse duration on plasmonic enhanced ultrafast laser-induced bubble generation in water,” Appl. Phys., A Mater. Sci. Process.2012(Sept.) 1–4 (2012).

Langer, R.

K. A. Whitehead, R. Langer, and D. G. Anderson, “Knocking down barriers: advances in siRNA delivery,” Nat. Rev. Drug Discov.8(2), 129–138 (2009).
[CrossRef] [PubMed]

O. C. Farokhzad and R. Langer, “Impact of nanotechnology on drug delivery,” ACS Nano3(1), 16–20 (2009).
[CrossRef] [PubMed]

Lapotko, D.

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett.239(1), 36–45 (2006).
[CrossRef] [PubMed]

Lapotko, D. O.

E. Y. Lukianova-Hleb, A. Belyanin, S. Kashinath, X. Wu, and D. O. Lapotko, “Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells,” Biomaterials33(6), 1821–1826 (2012).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, D. S. Wagner, M. K. Brenner, and D. O. Lapotko, “Cell-specific transmembrane injection of molecular cargo with gold nanoparticle-generated transient plasmonic nanobubbles,” Biomaterials33(21), 5441–5450 (2012).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, A. P. Samaniego, J. Wen, L. S. Metelitsa, C. C. Chang, and D. O. Lapotko, “Selective gene transfection of individual cells in vitro with plasmonic nanobubbles,” J. Control. Release152(2), 286–293 (2011).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, C. Santiago, D. S. Wagner, J. H. Hafner, and D. O. Lapotko, “Generation and detection of plasmonic nanobubbles in zebrafish,” Nanotechnology21(22), 225102 (2010).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, E. Y. Hanna, J. H. Hafner, and D. O. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology21(8), 085102 (2010).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano4(4), 2109–2123 (2010).
[CrossRef] [PubMed]

D. O. Lapotko, E. Y. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med.38(6), 631–642 (2006).
[CrossRef] [PubMed]

Latterini, L.

E. Y. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano4(4), 2109–2123 (2010).
[CrossRef] [PubMed]

Lebrun, J. J.

J. Baumgart, L. Humbert, É. Boulais, R. Lachaine, J. J. Lebrun, and M. Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials33(7), 2345–2350 (2012).
[CrossRef] [PubMed]

Lee, M.

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D Appl. Phys.41(18), 185501 (2008).
[CrossRef] [PubMed]

Lee, S.

E. Y. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano4(4), 2109–2123 (2010).
[CrossRef] [PubMed]

Lehrman, S.

S. Lehrman, “Virus treatment questioned after gene therapy death,” Nature401(6753), 517–518 (1999).
[CrossRef] [PubMed]

Lei, M.

M. Lei, H. Xu, H. Yang, and B. Yao, “Femtosecond laser-assisted microinjection into living neurons,” J. Neurosci. Methods174(2), 215–218 (2008).
[CrossRef] [PubMed]

Letfullin, R. R.

R. R. Letfullin, C. Joenathan, T. F. George, and V. P. Zharov, “Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer,” Nanomedicine (Lond)1(4), 473–480 (2006).
[CrossRef] [PubMed]

Li, S. D.

S. D. Li and L. Huang, “Gene therapy progress and prospects: non-viral gene therapy by systemic delivery,” Gene Ther.13(18), 1313–1319 (2006).
[CrossRef] [PubMed]

Lin, C. P.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J.84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Link, S.

S. Link and M. A. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” J. Phys. Chem. B103(40), 8410–8426 (1999).
[CrossRef]

Lubatschowski, H.

Lukianova, E.

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett.239(1), 36–45 (2006).
[CrossRef] [PubMed]

Lukianova, E. Y.

D. O. Lapotko, E. Y. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med.38(6), 631–642 (2006).
[CrossRef] [PubMed]

Lukianova-Hleb, E. Y.

E. Y. Lukianova-Hleb, A. Belyanin, S. Kashinath, X. Wu, and D. O. Lapotko, “Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells,” Biomaterials33(6), 1821–1826 (2012).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, D. S. Wagner, M. K. Brenner, and D. O. Lapotko, “Cell-specific transmembrane injection of molecular cargo with gold nanoparticle-generated transient plasmonic nanobubbles,” Biomaterials33(21), 5441–5450 (2012).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, A. P. Samaniego, J. Wen, L. S. Metelitsa, C. C. Chang, and D. O. Lapotko, “Selective gene transfection of individual cells in vitro with plasmonic nanobubbles,” J. Control. Release152(2), 286–293 (2011).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, E. Y. Hanna, J. H. Hafner, and D. O. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology21(8), 085102 (2010).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, C. Santiago, D. S. Wagner, J. H. Hafner, and D. O. Lapotko, “Generation and detection of plasmonic nanobubbles in zebrafish,” Nanotechnology21(22), 225102 (2010).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano4(4), 2109–2123 (2010).
[CrossRef] [PubMed]

Machado, C.

S. Florea, K. Andreeva, C. Machado, P. M. Mirabito, and C. L. Schardl, “Elimination of marker genes from transformed filamentous fungi by unselected transient transfection with a Cre-expressing plasmid,” Fungal Genet. Biol.46(10), 721–730 (2009).
[CrossRef] [PubMed]

Metelitsa, L. S.

E. Y. Lukianova-Hleb, A. P. Samaniego, J. Wen, L. S. Metelitsa, C. C. Chang, and D. O. Lapotko, “Selective gene transfection of individual cells in vitro with plasmonic nanobubbles,” J. Control. Release152(2), 286–293 (2011).
[CrossRef] [PubMed]

Meunier, M.

J. Baumgart, L. Humbert, É. Boulais, R. Lachaine, J. J. Lebrun, and M. Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials33(7), 2345–2350 (2012).
[CrossRef] [PubMed]

É. Boulais, R. Lachaine, and M. Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett.12(9), 4763–4769 (2012).
[CrossRef] [PubMed]

R. Lachaine, E. Boulais, E. Bourbeau, and M. Meunier, “Effect of pulse duration on plasmonic enhanced ultrafast laser-induced bubble generation in water,” Appl. Phys., A Mater. Sci. Process.2012(Sept.) 1–4 (2012).

Miller, J. M.

N. M. Schaeublin, L. K. Braydich-Stolle, A. M. Schrand, J. M. Miller, J. Hutchison, J. J. Schlager, and S. M. Hussain, “Surface charge of gold nanoparticles mediates mechanism of toxicity,” Nanoscale3(2), 410–420 (2011).
[CrossRef] [PubMed]

Mir, L. M.

L. M. Mir, “Nucleic acids electrotransfer-based gene therapy (electrogenetherapy): past, current, and future,” Mol. Biotechnol.43(2), 167–176 (2009).
[CrossRef] [PubMed]

Mirabito, P. M.

S. Florea, K. Andreeva, C. Machado, P. M. Mirabito, and C. L. Schardl, “Elimination of marker genes from transformed filamentous fungi by unselected transient transfection with a Cre-expressing plasmid,” Fungal Genet. Biol.46(10), 721–730 (2009).
[CrossRef] [PubMed]

Morgan, R. A.

Y. Zhao, Z. Zheng, C. J. Cohen, L. Gattinoni, D. C. Palmer, N. P. Restifo, S. A. Rosenberg, and R. A. Morgan, “High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation,” Mol. Ther.13(1), 151–159 (2006).
[CrossRef] [PubMed]

Murua Escobar, H.

Nakanishi, K.

M. Ogura, S. Sato, K. Nakanishi, M. Uenoyama, T. Kiyozumi, D. Saitoh, T. Ikeda, H. Ashida, and M. Obara, “In vivo targeted gene transfer in skin by the use of laser-induced stress waves,” Lasers Surg. Med.34(3), 242–248 (2004).
[CrossRef] [PubMed]

Ngezahayo, A.

Nikolskaya, A. V.

A. V. Nikolskaya, V. P. Nikolski, and I. R. Efimov, “Gene printer: laser-scanning targeted transfection of cultured cardiac neonatal rat cells,” Cell Commun. Adhes.13(4), 217–222 (2006).
[CrossRef] [PubMed]

Nikolski, V. P.

A. V. Nikolskaya, V. P. Nikolski, and I. R. Efimov, “Gene printer: laser-scanning targeted transfection of cultured cardiac neonatal rat cells,” Cell Commun. Adhes.13(4), 217–222 (2006).
[CrossRef] [PubMed]

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

Obara, M.

S. Takano, S. Sato, M. Terakawa, H. Asida, H. Okano, and M. Obara, “Enhanced transfection efficiency in laser-induced stress wave-assisted gene transfer at low laser fluence by increasing pressure impulse,” Appl. Phys. Express1, 038001 (2008).
[CrossRef]

M. Ogura, S. Sato, K. Nakanishi, M. Uenoyama, T. Kiyozumi, D. Saitoh, T. Ikeda, H. Ashida, and M. Obara, “In vivo targeted gene transfer in skin by the use of laser-induced stress waves,” Lasers Surg. Med.34(3), 242–248 (2004).
[CrossRef] [PubMed]

Ogura, M.

M. Ogura, S. Sato, K. Nakanishi, M. Uenoyama, T. Kiyozumi, D. Saitoh, T. Ikeda, H. Ashida, and M. Obara, “In vivo targeted gene transfer in skin by the use of laser-induced stress waves,” Lasers Surg. Med.34(3), 242–248 (2004).
[CrossRef] [PubMed]

Okano, H.

S. Takano, S. Sato, M. Terakawa, H. Asida, H. Okano, and M. Obara, “Enhanced transfection efficiency in laser-induced stress wave-assisted gene transfer at low laser fluence by increasing pressure impulse,” Appl. Phys. Express1, 038001 (2008).
[CrossRef]

Oraevsky, A.

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett.239(1), 36–45 (2006).
[CrossRef] [PubMed]

Oraevsky, A. A.

D. O. Lapotko, E. Y. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med.38(6), 631–642 (2006).
[CrossRef] [PubMed]

Palmer, D. C.

Y. Zhao, Z. Zheng, C. J. Cohen, L. Gattinoni, D. C. Palmer, N. P. Restifo, S. A. Rosenberg, and R. A. Morgan, “High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation,” Mol. Ther.13(1), 151–159 (2006).
[CrossRef] [PubMed]

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

Pathak, A.

A. Pathak, S. Patnaik, and K. C. Gupta, “Recent trends in non-viral vector-mediated gene delivery,” Biotechnol. J.4(11), 1559–1572 (2009).
[CrossRef] [PubMed]

Patil, P. M.

P. M. Patil, P. D. Chaudharie, M. Sahu, and J. Duragkar, “Review article on gene therapy,” Int. J. Genetics4, 74–79 (2012).

Patnaik, S.

A. Pathak, S. Patnaik, and K. C. Gupta, “Recent trends in non-viral vector-mediated gene delivery,” Biotechnol. J.4(11), 1559–1572 (2009).
[CrossRef] [PubMed]

Petros, J. A.

P. J. Canatella, J. F. Karr, J. A. Petros, and M. R. Prausnitz, “Quantitative study of electroporation-mediated molecular uptake and cell viability,” Biophys. J.80(2), 755–764 (2001).
[CrossRef] [PubMed]

Pissuwan, D.

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol.24(2), 62–67 (2006).
[CrossRef] [PubMed]

Pitsillides, C. M.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J.84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Potapnev, M.

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett.239(1), 36–45 (2006).
[CrossRef] [PubMed]

Prausnitz, M. R.

P. J. Canatella, J. F. Karr, J. A. Petros, and M. R. Prausnitz, “Quantitative study of electroporation-mediated molecular uptake and cell viability,” Biophys. J.80(2), 755–764 (2001).
[CrossRef] [PubMed]

Preisser, S.

Pustovalov, V. K.

V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett.5(11), 775–792 (2008).
[CrossRef]

Qu, X.

C. Yao, X. Qu, Z. Zhang, G. Hüttmann, and R. Rahmanzadeh, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” J. Biomed. Opt.14(5), 054034 (2009).
[CrossRef] [PubMed]

Rahmanzadeh, R.

C. Yao, X. Qu, Z. Zhang, G. Hüttmann, and R. Rahmanzadeh, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” J. Biomed. Opt.14(5), 054034 (2009).
[CrossRef] [PubMed]

C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, “Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,” J. Biomed. Opt.10(6), 064012 (2005).
[CrossRef] [PubMed]

Restifo, N. P.

Y. Zhao, Z. Zheng, C. J. Cohen, L. Gattinoni, D. C. Palmer, N. P. Restifo, S. A. Rosenberg, and R. A. Morgan, “High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation,” Mol. Ther.13(1), 151–159 (2006).
[CrossRef] [PubMed]

Robbins, P. D.

C. H. Evans, S. C. Ghivizzani, and P. D. Robbins, “Arthritis gene therapy’s first death,” Arthritis Res. Ther.10(3), 110 (2008).
[CrossRef] [PubMed]

Rosenberg, S. A.

Y. Zhao, Z. Zheng, C. J. Cohen, L. Gattinoni, D. C. Palmer, N. P. Restifo, S. A. Rosenberg, and R. A. Morgan, “High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation,” Mol. Ther.13(1), 151–159 (2006).
[CrossRef] [PubMed]

Sahu, M.

P. M. Patil, P. D. Chaudharie, M. Sahu, and J. Duragkar, “Review article on gene therapy,” Int. J. Genetics4, 74–79 (2012).

Saitoh, D.

M. Ogura, S. Sato, K. Nakanishi, M. Uenoyama, T. Kiyozumi, D. Saitoh, T. Ikeda, H. Ashida, and M. Obara, “In vivo targeted gene transfer in skin by the use of laser-induced stress waves,” Lasers Surg. Med.34(3), 242–248 (2004).
[CrossRef] [PubMed]

Samaniego, A. P.

E. Y. Lukianova-Hleb, A. P. Samaniego, J. Wen, L. S. Metelitsa, C. C. Chang, and D. O. Lapotko, “Selective gene transfection of individual cells in vitro with plasmonic nanobubbles,” J. Control. Release152(2), 286–293 (2011).
[CrossRef] [PubMed]

Santiago, C.

E. Y. Lukianova-Hleb, C. Santiago, D. S. Wagner, J. H. Hafner, and D. O. Lapotko, “Generation and detection of plasmonic nanobubbles in zebrafish,” Nanotechnology21(22), 225102 (2010).
[CrossRef] [PubMed]

Sato, S.

S. Takano, S. Sato, M. Terakawa, H. Asida, H. Okano, and M. Obara, “Enhanced transfection efficiency in laser-induced stress wave-assisted gene transfer at low laser fluence by increasing pressure impulse,” Appl. Phys. Express1, 038001 (2008).
[CrossRef]

M. Ogura, S. Sato, K. Nakanishi, M. Uenoyama, T. Kiyozumi, D. Saitoh, T. Ikeda, H. Ashida, and M. Obara, “In vivo targeted gene transfer in skin by the use of laser-induced stress waves,” Lasers Surg. Med.34(3), 242–248 (2004).
[CrossRef] [PubMed]

Schaeublin, N. M.

N. M. Schaeublin, L. K. Braydich-Stolle, A. M. Schrand, J. M. Miller, J. Hutchison, J. J. Schlager, and S. M. Hussain, “Surface charge of gold nanoparticles mediates mechanism of toxicity,” Nanoscale3(2), 410–420 (2011).
[CrossRef] [PubMed]

Schardl, C. L.

S. Florea, K. Andreeva, C. Machado, P. M. Mirabito, and C. L. Schardl, “Elimination of marker genes from transformed filamentous fungi by unselected transient transfection with a Cre-expressing plasmid,” Fungal Genet. Biol.46(10), 721–730 (2009).
[CrossRef] [PubMed]

Schlager, J. J.

N. M. Schaeublin, L. K. Braydich-Stolle, A. M. Schrand, J. M. Miller, J. Hutchison, J. J. Schlager, and S. M. Hussain, “Surface charge of gold nanoparticles mediates mechanism of toxicity,” Nanoscale3(2), 410–420 (2011).
[CrossRef] [PubMed]

Schrand, A. M.

N. M. Schaeublin, L. K. Braydich-Stolle, A. M. Schrand, J. M. Miller, J. Hutchison, J. J. Schlager, and S. M. Hussain, “Surface charge of gold nanoparticles mediates mechanism of toxicity,” Nanoscale3(2), 410–420 (2011).
[CrossRef] [PubMed]

Singh, S. R.

P. M. Tiwari, K. Vig, V. A. Dennis, and S. R. Singh, “Functionalized gold nanoparticles and their biomedical applications,” J. Nanomater.1(1), 31–63 (2011).
[CrossRef]

Smetannikov, A. S.

V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett.5(11), 775–792 (2008).
[CrossRef]

Sugiyama, M.

S. Inasawa, M. Sugiyama, and Y. Yamaguchi, “Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting,” J. Phys. Chem. B109(8), 3104–3111 (2005).
[CrossRef] [PubMed]

Takami, A.

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B103(8), 1226–1232 (1999).
[CrossRef]

Takano, S.

S. Takano, S. Sato, M. Terakawa, H. Asida, H. Okano, and M. Obara, “Enhanced transfection efficiency in laser-induced stress wave-assisted gene transfer at low laser fluence by increasing pressure impulse,” Appl. Phys. Express1, 038001 (2008).
[CrossRef]

Tarpani, L.

E. Y. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano4(4), 2109–2123 (2010).
[CrossRef] [PubMed]

Terakawa, M.

S. Takano, S. Sato, M. Terakawa, H. Asida, H. Okano, and M. Obara, “Enhanced transfection efficiency in laser-induced stress wave-assisted gene transfer at low laser fluence by increasing pressure impulse,” Appl. Phys. Express1, 038001 (2008).
[CrossRef]

Thalmann, G. N.

Tiwari, P. M.

P. M. Tiwari, K. Vig, V. A. Dennis, and S. R. Singh, “Functionalized gold nanoparticles and their biomedical applications,” J. Nanomater.1(1), 31–63 (2011).
[CrossRef]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

Uenoyama, M.

M. Ogura, S. Sato, K. Nakanishi, M. Uenoyama, T. Kiyozumi, D. Saitoh, T. Ikeda, H. Ashida, and M. Obara, “In vivo targeted gene transfer in skin by the use of laser-induced stress waves,” Lasers Surg. Med.34(3), 242–248 (2004).
[CrossRef] [PubMed]

Valenzuela, S. M.

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol.24(2), 62–67 (2006).
[CrossRef] [PubMed]

Venugopalan, V.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103(2), 577–644 (2003).
[CrossRef] [PubMed]

Vig, K.

P. M. Tiwari, K. Vig, V. A. Dennis, and S. R. Singh, “Functionalized gold nanoparticles and their biomedical applications,” J. Nanomater.1(1), 31–63 (2011).
[CrossRef]

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103(2), 577–644 (2003).
[CrossRef] [PubMed]

Wagner, D. S.

E. Y. Lukianova-Hleb, D. S. Wagner, M. K. Brenner, and D. O. Lapotko, “Cell-specific transmembrane injection of molecular cargo with gold nanoparticle-generated transient plasmonic nanobubbles,” Biomaterials33(21), 5441–5450 (2012).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, C. Santiago, D. S. Wagner, J. H. Hafner, and D. O. Lapotko, “Generation and detection of plasmonic nanobubbles in zebrafish,” Nanotechnology21(22), 225102 (2010).
[CrossRef] [PubMed]

Wei, X.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J.84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Wen, J.

E. Y. Lukianova-Hleb, A. P. Samaniego, J. Wen, L. S. Metelitsa, C. C. Chang, and D. O. Lapotko, “Selective gene transfection of individual cells in vitro with plasmonic nanobubbles,” J. Control. Release152(2), 286–293 (2011).
[CrossRef] [PubMed]

Wetterwald, A.

Whitehead, K. A.

K. A. Whitehead, R. Langer, and D. G. Anderson, “Knocking down barriers: advances in siRNA delivery,” Nat. Rev. Drug Discov.8(2), 129–138 (2009).
[CrossRef] [PubMed]

Willenbrock, S.

Wu, X.

E. Y. Lukianova-Hleb, A. Belyanin, S. Kashinath, X. Wu, and D. O. Lapotko, “Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells,” Biomaterials33(6), 1821–1826 (2012).
[CrossRef] [PubMed]

Xu, H.

M. Lei, H. Xu, H. Yang, and B. Yao, “Femtosecond laser-assisted microinjection into living neurons,” J. Neurosci. Methods174(2), 215–218 (2008).
[CrossRef] [PubMed]

Yamaguchi, Y.

S. Inasawa, M. Sugiyama, and Y. Yamaguchi, “Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting,” J. Phys. Chem. B109(8), 3104–3111 (2005).
[CrossRef] [PubMed]

Yang, H.

M. Lei, H. Xu, H. Yang, and B. Yao, “Femtosecond laser-assisted microinjection into living neurons,” J. Neurosci. Methods174(2), 215–218 (2008).
[CrossRef] [PubMed]

Yao, B.

M. Lei, H. Xu, H. Yang, and B. Yao, “Femtosecond laser-assisted microinjection into living neurons,” J. Neurosci. Methods174(2), 215–218 (2008).
[CrossRef] [PubMed]

Yao, C.

C. Yao, X. Qu, Z. Zhang, G. Hüttmann, and R. Rahmanzadeh, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” J. Biomed. Opt.14(5), 054034 (2009).
[CrossRef] [PubMed]

C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, “Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,” J. Biomed. Opt.10(6), 064012 (2005).
[CrossRef] [PubMed]

Yu, L. C.

Y. Zhang and L. C. Yu, “Single-cell microinjection technology in cell biology,” Bioessays30(6), 606–610 (2008).
[CrossRef] [PubMed]

Zhang, Y.

Y. Zhang and L. C. Yu, “Single-cell microinjection technology in cell biology,” Bioessays30(6), 606–610 (2008).
[CrossRef] [PubMed]

Zhang, Z.

C. Yao, X. Qu, Z. Zhang, G. Hüttmann, and R. Rahmanzadeh, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” J. Biomed. Opt.14(5), 054034 (2009).
[CrossRef] [PubMed]

C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, “Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,” J. Biomed. Opt.10(6), 064012 (2005).
[CrossRef] [PubMed]

Zhao, Y.

Y. Zhao, Z. Zheng, C. J. Cohen, L. Gattinoni, D. C. Palmer, N. P. Restifo, S. A. Rosenberg, and R. A. Morgan, “High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation,” Mol. Ther.13(1), 151–159 (2006).
[CrossRef] [PubMed]

Zharov, V. P.

V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett.5(11), 775–792 (2008).
[CrossRef]

R. R. Letfullin, C. Joenathan, T. F. George, and V. P. Zharov, “Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer,” Nanomedicine (Lond)1(4), 473–480 (2006).
[CrossRef] [PubMed]

Zheng, Z.

Y. Zhao, Z. Zheng, C. J. Cohen, L. Gattinoni, D. C. Palmer, N. P. Restifo, S. A. Rosenberg, and R. A. Morgan, “High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation,” Mol. Ther.13(1), 151–159 (2006).
[CrossRef] [PubMed]

ACS Nano (2)

O. C. Farokhzad and R. Langer, “Impact of nanotechnology on drug delivery,” ACS Nano3(1), 16–20 (2009).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano4(4), 2109–2123 (2010).
[CrossRef] [PubMed]

Appl. Phys. B (1)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

Appl. Phys. Express (1)

S. Takano, S. Sato, M. Terakawa, H. Asida, H. Okano, and M. Obara, “Enhanced transfection efficiency in laser-induced stress wave-assisted gene transfer at low laser fluence by increasing pressure impulse,” Appl. Phys. Express1, 038001 (2008).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

R. Lachaine, E. Boulais, E. Bourbeau, and M. Meunier, “Effect of pulse duration on plasmonic enhanced ultrafast laser-induced bubble generation in water,” Appl. Phys., A Mater. Sci. Process.2012(Sept.) 1–4 (2012).

Arthritis Res. Ther. (1)

C. H. Evans, S. C. Ghivizzani, and P. D. Robbins, “Arthritis gene therapy’s first death,” Arthritis Res. Ther.10(3), 110 (2008).
[CrossRef] [PubMed]

Bioessays (1)

Y. Zhang and L. C. Yu, “Single-cell microinjection technology in cell biology,” Bioessays30(6), 606–610 (2008).
[CrossRef] [PubMed]

Biomaterials (3)

J. Baumgart, L. Humbert, É. Boulais, R. Lachaine, J. J. Lebrun, and M. Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials33(7), 2345–2350 (2012).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, A. Belyanin, S. Kashinath, X. Wu, and D. O. Lapotko, “Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells,” Biomaterials33(6), 1821–1826 (2012).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, D. S. Wagner, M. K. Brenner, and D. O. Lapotko, “Cell-specific transmembrane injection of molecular cargo with gold nanoparticle-generated transient plasmonic nanobubbles,” Biomaterials33(21), 5441–5450 (2012).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

Biophys. J. (2)

P. J. Canatella, J. F. Karr, J. A. Petros, and M. R. Prausnitz, “Quantitative study of electroporation-mediated molecular uptake and cell viability,” Biophys. J.80(2), 755–764 (2001).
[CrossRef] [PubMed]

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J.84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Biotechnol. J. (1)

A. Pathak, S. Patnaik, and K. C. Gupta, “Recent trends in non-viral vector-mediated gene delivery,” Biotechnol. J.4(11), 1559–1572 (2009).
[CrossRef] [PubMed]

Cancer Lett. (1)

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett.239(1), 36–45 (2006).
[CrossRef] [PubMed]

Cell Commun. Adhes. (1)

A. V. Nikolskaya, V. P. Nikolski, and I. R. Efimov, “Gene printer: laser-scanning targeted transfection of cultured cardiac neonatal rat cells,” Cell Commun. Adhes.13(4), 217–222 (2006).
[CrossRef] [PubMed]

Chem. Rev. (1)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103(2), 577–644 (2003).
[CrossRef] [PubMed]

Chem. Soc. Rev. (1)

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev.35(3), 209–217 (2006).
[CrossRef] [PubMed]

Fungal Genet. Biol. (1)

S. Florea, K. Andreeva, C. Machado, P. M. Mirabito, and C. L. Schardl, “Elimination of marker genes from transformed filamentous fungi by unselected transient transfection with a Cre-expressing plasmid,” Fungal Genet. Biol.46(10), 721–730 (2009).
[CrossRef] [PubMed]

Gene Ther. (1)

S. D. Li and L. Huang, “Gene therapy progress and prospects: non-viral gene therapy by systemic delivery,” Gene Ther.13(18), 1313–1319 (2006).
[CrossRef] [PubMed]

Int. J. Genetics (1)

P. M. Patil, P. D. Chaudharie, M. Sahu, and J. Duragkar, “Review article on gene therapy,” Int. J. Genetics4, 74–79 (2012).

J. Biomed. Opt. (2)

C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, “Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,” J. Biomed. Opt.10(6), 064012 (2005).
[CrossRef] [PubMed]

C. Yao, X. Qu, Z. Zhang, G. Hüttmann, and R. Rahmanzadeh, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” J. Biomed. Opt.14(5), 054034 (2009).
[CrossRef] [PubMed]

J. Control. Release (1)

E. Y. Lukianova-Hleb, A. P. Samaniego, J. Wen, L. S. Metelitsa, C. C. Chang, and D. O. Lapotko, “Selective gene transfection of individual cells in vitro with plasmonic nanobubbles,” J. Control. Release152(2), 286–293 (2011).
[CrossRef] [PubMed]

J. Nanomater. (1)

P. M. Tiwari, K. Vig, V. A. Dennis, and S. R. Singh, “Functionalized gold nanoparticles and their biomedical applications,” J. Nanomater.1(1), 31–63 (2011).
[CrossRef]

J. Neurosci. Methods (1)

M. Lei, H. Xu, H. Yang, and B. Yao, “Femtosecond laser-assisted microinjection into living neurons,” J. Neurosci. Methods174(2), 215–218 (2008).
[CrossRef] [PubMed]

J. Phys. Chem. B (3)

S. Link and M. A. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” J. Phys. Chem. B103(40), 8410–8426 (1999).
[CrossRef]

S. Inasawa, M. Sugiyama, and Y. Yamaguchi, “Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting,” J. Phys. Chem. B109(8), 3104–3111 (2005).
[CrossRef] [PubMed]

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B103(8), 1226–1232 (1999).
[CrossRef]

J. Phys. D Appl. Phys. (2)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D Appl. Phys.41(18), 185501 (2008).
[CrossRef] [PubMed]

Laser Phys. Lett. (1)

V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett.5(11), 775–792 (2008).
[CrossRef]

Lasers Surg. Med. (2)

D. O. Lapotko, E. Y. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med.38(6), 631–642 (2006).
[CrossRef] [PubMed]

M. Ogura, S. Sato, K. Nakanishi, M. Uenoyama, T. Kiyozumi, D. Saitoh, T. Ikeda, H. Ashida, and M. Obara, “In vivo targeted gene transfer in skin by the use of laser-induced stress waves,” Lasers Surg. Med.34(3), 242–248 (2004).
[CrossRef] [PubMed]

Mol. Biotechnol. (1)

L. M. Mir, “Nucleic acids electrotransfer-based gene therapy (electrogenetherapy): past, current, and future,” Mol. Biotechnol.43(2), 167–176 (2009).
[CrossRef] [PubMed]

Mol. Ther. (1)

Y. Zhao, Z. Zheng, C. J. Cohen, L. Gattinoni, D. C. Palmer, N. P. Restifo, S. A. Rosenberg, and R. A. Morgan, “High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation,” Mol. Ther.13(1), 151–159 (2006).
[CrossRef] [PubMed]

Nano Lett. (1)

É. Boulais, R. Lachaine, and M. Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett.12(9), 4763–4769 (2012).
[CrossRef] [PubMed]

Nano Today (1)

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today2(1), 18–29 (2007).
[CrossRef]

Nanomedicine (Lond) (1)

R. R. Letfullin, C. Joenathan, T. F. George, and V. P. Zharov, “Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer,” Nanomedicine (Lond)1(4), 473–480 (2006).
[CrossRef] [PubMed]

Nanoscale (1)

N. M. Schaeublin, L. K. Braydich-Stolle, A. M. Schrand, J. M. Miller, J. Hutchison, J. J. Schlager, and S. M. Hussain, “Surface charge of gold nanoparticles mediates mechanism of toxicity,” Nanoscale3(2), 410–420 (2011).
[CrossRef] [PubMed]

Nanotechnology (2)

E. Y. Lukianova-Hleb, C. Santiago, D. S. Wagner, J. H. Hafner, and D. O. Lapotko, “Generation and detection of plasmonic nanobubbles in zebrafish,” Nanotechnology21(22), 225102 (2010).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, E. Y. Hanna, J. H. Hafner, and D. O. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology21(8), 085102 (2010).
[CrossRef] [PubMed]

Nat. Rev. Drug Discov. (1)

K. A. Whitehead, R. Langer, and D. G. Anderson, “Knocking down barriers: advances in siRNA delivery,” Nat. Rev. Drug Discov.8(2), 129–138 (2009).
[CrossRef] [PubMed]

Nature (1)

S. Lehrman, “Virus treatment questioned after gene therapy death,” Nature401(6753), 517–518 (1999).
[CrossRef] [PubMed]

Opt. Express (1)

Trends Biotechnol. (1)

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol.24(2), 62–67 (2006).
[CrossRef] [PubMed]

Other (2)

K. Sankaranarayanan, S. Radhakrishnan, S. Kanagaraj, R. Rajendran, S. Shahid, P. Kathirvel, V. Sundaresan, V. K. Udayakumar, R. Ramachandran, and R. Sundararajan, “Effect of Irreversible electroporation on cell proliferation in fibroblasts,” Proceedings of the ESA Annual Meeting on Electrostatics (2011), pp. 1–8.

B. Alberts, D. Bray, K. Hopkin, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Essential Cell Biology, 2nd ed. (Garland Science, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Permeabilization rate measured by LY introduction in melanoma cells and 2 h viability (by PI exclusion) in the operating range of fluence for 532 nm and 1064 nm wavelengths. (a) and (b) are cells irradiated without AuNPs while (c) and (d) represent cells with 100 nm AuNPs (n = 3 or 4, the error bars represent the standard deviation).

Fig. 2
Fig. 2

(a) Comparison of MTT assay for both lasers up to 72 h after treatment. The cells were able to fully recover without any noticeable effect (n = 4, the error bars represent the standard deviation, results from 2 independent experiences). (b) Phase contrast image showing rounded cells (red arrows) after treatment and (c) corresponding fluorescent image showing intake of LY.

Fig. 3
Fig. 3

SEM images showing AuNPs (red arrows) on cells before and after treatment with their size distribution for both wavelengths. Bar is 2 μm (n = 2, results from 2 independent experiences).

Metrics