Abstract

We demonstrated a novel approach of imaging the anterior segment including the ciliary muscle using combined and synchronized two spectral domain optical coherence tomography devices (SD-OCT). In one SD-OCT, a Complementary Metal-Oxide-Semiconductor Transistor (CMOS) camera and an alternating reference arm was used to image the anterior segment from the cornea to the lens. Another SD-OCT for imaging the ciliary muscle was equipped with a light source with a center wavelength of 1,310 nm and a bandwidth of 75 nm. Repeated measurements were performed under relaxed and 4.00 D accommodative stimulus states in six eyes from 6 subjects. We also imaged dynamic changes in the anterior segment in one eye during accommodation. The biometry of the anterior segment and the ciliary muscle was obtained. The combined system appeared to be capable to simultaneously real-time image the biometry of the anterior segment, including the ciliary muscle, in vivo during accommodation.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. von Helmholtz, “Uber die akkommodation des auges,” Arch. Ophthalmol. 1, 1–74 (1855).
  2. D. A. Atchison, “Accommodation and presbyopia,” Ophthalmic Physiol. Opt. 15(4), 255–272 (1995).
    [Crossref] [PubMed]
  3. M. T. Pardue and J. G. Sivak, “Age-related changes in human ciliary muscle,” Optom. Vis. Sci. 77(4), 204–210 (2000).
    [Crossref] [PubMed]
  4. S. Tamm, E. Tamm, and J. W. Rohen, “Age-related changes of the human ciliary muscle. A quantitative morphometric study,” Mech. Ageing Dev. 62(2), 209–221 (1992).
    [Crossref] [PubMed]
  5. H. J. Wyatt, “Application of a simple mechanical model of accommodation to the aging eye,” Vision Res. 33(5-6), 731–738 (1993).
    [Crossref] [PubMed]
  6. L. Stark, “Presbyopia in light of accommodation,” Am. J. Optom. Physiol. Opt. 65(5), 407–416 (1988).
    [Crossref] [PubMed]
  7. S. A. Strenk, L. M. Strenk, and J. F. Koretz, “The mechanism of presbyopia,” Prog. Retin. Eye Res. 24(3), 379–393 (2005).
    [Crossref] [PubMed]
  8. C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology 119(12), 2479–2485 (2012).
    [Crossref] [PubMed]
  9. P. S. Yan, H. T. Lin, Q. L. Wang, and Z. P. Zhang, “Anterior segment variations with age and accommodation demonstrated by slit-lamp-adapted optical coherence tomography,” Ophthalmology 117(12), 2301–2307 (2010).
    [Crossref] [PubMed]
  10. M. Shen, L. Cui, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Extended scan depth optical coherence tomography for evaluating ocular surface shape,” J. Biomed. Opt. 16(5), 056007 (2011).
    [Crossref] [PubMed]
  11. Y. Yuan, F. Chen, M. Shen, F. Lu, and J. Wang, “Repeated measurements of the anterior segment during accommodation using long scan depth optical coherence tomography,” Eye Contact Lens 38(2), 102–108 (2012).
    [Crossref] [PubMed]
  12. L. A. Lossing, L. T. Sinnott, C. Y. Kao, K. Richdale, and M. D. Bailey, “Measuring changes in ciliary muscle thickness with accommodation in young adults,” Optom. Vis. Sci. 89(5), 719–726 (2012).
    [Crossref] [PubMed]
  13. A. L. Sheppard and L. N. Davies, “The effect of ageing on in vivo human ciliary muscle morphology and contractility,” Invest. Ophthalmol. Vis. Sci. 52(3), 1809–1816 (2011).
    [Crossref] [PubMed]
  14. K. Richdale, M. D. Bailey, L. T. Sinnott, C. Y. Kao, K. Zadnik, and M. A. Bullimore, “The effect of phenylephrine on the ciliary muscle and accommodation,” Optom. Vis. Sci. 89(10), e1507–e1511 (2012).
    [Crossref] [PubMed]
  15. H. Furukawa, H. Hiro-Oka, N. Satoh, R. Yoshimura, D. Choi, M. Nakanishi, A. Igarashi, H. Ishikawa, K. Ohbayashi, and K. Shimizu, “Full-range imaging of eye accommodation by high-speed long-depth range optical frequency domain imaging,” Biomed. Opt. Express 1(5), 1491–1501 (2010).
    [Crossref] [PubMed]
  16. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17(17), 14880–14894 (2009).
    [Crossref] [PubMed]
  17. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
    [Crossref] [PubMed]
  18. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
    [Crossref] [PubMed]
  19. C. Zhou, J. Wang, and S. Jiao, “Dual channel dual focus optical coherence tomography for imaging accommodation of the eye,” Opt. Express 17(11), 8947–8955 (2009).
    [Crossref] [PubMed]
  20. C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express 20(6), 6109–6115 (2012).
    [Crossref] [PubMed]
  21. C. Du, D. Zhu, M. Shen, M. Li, M. R. Wang, and J. Wang, “Novel optical coherence tomography for imaging the entire anterior segment of the eye,” Invest. Ophthalmol. Vis. Sci. 52, ARVO E-Abstract 3023 (2011).
    [PubMed]
  22. M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
    [Crossref] [PubMed]
  23. T. Ide, J. Wang, A. Tao, T. Leng, G. D. Kymionis, T. P. O’Brien, and S. H. Yoo, “Intraoperative use of three-dimensional spectral-domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 41(2), 250–254 (2010).
    [Crossref] [PubMed]
  24. T. Leng, B. J. Lujan, S. H. Yoo, and J. Wang, “Three-dimensional spectral domain optical coherence tomography of a clear corneal cataract incision,” Ophthalmic Surg. Lasers Imaging 39(4Suppl), S132–S134 (2008).
    [PubMed]
  25. American National Standards Institute, “American national standard for safe use of lasers,” in Laser Institute of America (Orlando, FL, 2000), pp. 45–49.
  26. S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
    [Crossref] [PubMed]
  27. S. Ortiz, P. Pérez-Merino, N. Alejandre, E. Gambra, I. Jimenez-Alfaro, and S. Marcos, “Quantitative OCT-based corneal topography in keratoconus with intracorneal ring segments,” Biomed. Opt. Express 3(5), 814–824 (2012).
    [Crossref] [PubMed]
  28. D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
    [Crossref] [PubMed]
  29. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
    [Crossref] [PubMed]
  30. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
    [Crossref] [PubMed]
  31. C. Du, J. Wang, L. Cui, M. Shen, and Y. Yuan, “Vertical and horizontal corneal epithelial thickness profiles determined by ultrahigh resolution optical coherence tomography,” Cornea 31(9), 1036–1043 (2012).
    [Crossref] [PubMed]
  32. S. R. Uhlhorn, F. Manns, H. Tahi, P. O. Rol, and J.-M. A. Parel, “Corneal group refractive index measurement using low-coherence interferometry,” Proc. SPIE 3246, 14–21 (1998).
    [Crossref]
  33. D. A. Atchison and G. Smith, “Chromatic dispersion of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
    [Crossref]
  34. S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
    [Crossref] [PubMed]
  35. M. D. Bailey, L. T. Sinnott, and D. O. Mutti, “Ciliary body thickness and refractive error in children,” Invest. Ophthalmol. Vis. Sci. 49(10), 4353–4360 (2008).
    [Crossref] [PubMed]
  36. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
    [Crossref] [PubMed]
  37. A. L. Sheppard and L. N. Davies, “In vivo analysis of ciliary muscle morphologic changes with accommodation and axial ametropia,” Invest. Ophthalmol. Vis. Sci. 51(12), 6882–6889 (2010).
    [Crossref] [PubMed]
  38. M. V. Sarunic, S. Asrani, and J. A. Izatt, “Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography,” Arch. Ophthalmol. 126(4), 537–542 (2008).
    [Crossref] [PubMed]
  39. S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
    [PubMed]
  40. A. P. Beers and G. L. van der Heijde, “Age-related changes in the accommodation mechanism,” Optom. Vis. Sci. 73(4), 235–242 (1996).
    [Crossref] [PubMed]
  41. A. P. Beers and G. L. Van Der Heijde, “In vivo determination of the biomechanical properties of the component elements of the accommodation mechanism,” Vision Res. 34(21), 2897–2905 (1994).
    [Crossref] [PubMed]
  42. M. A. Croft, A. Glasser, G. Heatley, J. McDonald, T. Ebbert, D. B. Dahl, N. V. Nadkarni, and P. L. Kaufman, “Accommodative ciliary body and lens function in rhesus monkeys, I: normal lens, zonule and ciliary process configuration in the iridectomized eye,” Invest. Ophthalmol. Vis. Sci. 47(3), 1076–1086 (2006).
    [Crossref] [PubMed]
  43. S. Jeon, W. K. Lee, K. Lee, and N. J. Moon, “Diminished ciliary muscle movement on accommodation in myopia,” Exp. Eye Res. 105, 9–14 (2012).
    [Crossref] [PubMed]
  44. M. A. Croft, P. L. Kaufman, K. S. Crawford, M. W. Neider, A. Glasser, and L. Z. Bito, “Accommodation dynamics in aging rhesus monkeys,” Am. J. Physiol. 275(6 Pt 2), R1885–R1897 (1998).
    [PubMed]
  45. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27(16), 1415–1417 (2002).
    [Crossref] [PubMed]
  46. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
    [Crossref] [PubMed]
  47. D. Zhu, M. Shen, H. Jiang, M. Li, M. R. Wang, Y. Wang, L. Ge, J. Qu, and J. Wang, “Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging,” J. Biomed. Opt. 16(12), 126006 (2011).
    [Crossref] [PubMed]
  48. J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt. 14(5), 050501 (2009).
    [Crossref] [PubMed]
  49. C. Kerbage, H. Lim, W. Sun, M. Mujat, and J. F. de Boer, “Large depth-high resolution full 3D imaging of the anterior segments of the eye using high speed optical frequency domain imaging,” Opt. Express 15(12), 7117–7125 (2007).
    [Crossref] [PubMed]
  50. H. Wang, Y. Pan, and A. M. Rollins, “Extending the effective imaging range of Fourier-domain optical coherence tomography using a fiber optic switch,” Opt. Lett. 33(22), 2632–2634 (2008).
    [Crossref] [PubMed]
  51. H. A. Lewis, C. Y. Kao, L. T. Sinnott, and M. D. Bailey, “Changes in ciliary muscle thickness during accommodation in children,” Optom. Vis. Sci. 89(5), 727–737 (2012).
    [Crossref] [PubMed]
  52. J. F. Koretz, C. A. Cook, and P. L. Kaufman, “Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus,” Invest. Ophthalmol. Vis. Sci. 38(3), 569–578 (1997).
    [PubMed]
  53. A. Glasser and P. L. Kaufman, “The mechanism of accommodation in primates,” Ophthalmology 106(5), 863–872 (1999).
    [Crossref] [PubMed]
  54. T. E. Lockhart and W. Shi, “Effects of age on dynamic accommodation,” Ergonomics 53(7), 892–903 (2010).
    [Crossref] [PubMed]
  55. J. A. Mordi and K. J. Ciuffreda, “Dynamic aspects of accommodation: age and presbyopia,” Vision Res. 44(6), 591–601 (2004).
    [Crossref] [PubMed]
  56. H. W. Jeong, S. W. Lee, and B. M. Kim, “Spectral-domain OCT with dual illumination and interlaced detection for simultaneous anterior segment and retina imaging,” Opt. Express 20(17), 19148–19159 (2012).
    [Crossref] [PubMed]

2012 (14)

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology 119(12), 2479–2485 (2012).
[Crossref] [PubMed]

Y. Yuan, F. Chen, M. Shen, F. Lu, and J. Wang, “Repeated measurements of the anterior segment during accommodation using long scan depth optical coherence tomography,” Eye Contact Lens 38(2), 102–108 (2012).
[Crossref] [PubMed]

L. A. Lossing, L. T. Sinnott, C. Y. Kao, K. Richdale, and M. D. Bailey, “Measuring changes in ciliary muscle thickness with accommodation in young adults,” Optom. Vis. Sci. 89(5), 719–726 (2012).
[Crossref] [PubMed]

K. Richdale, M. D. Bailey, L. T. Sinnott, C. Y. Kao, K. Zadnik, and M. A. Bullimore, “The effect of phenylephrine on the ciliary muscle and accommodation,” Optom. Vis. Sci. 89(10), e1507–e1511 (2012).
[Crossref] [PubMed]

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
[Crossref] [PubMed]

C. Du, J. Wang, L. Cui, M. Shen, and Y. Yuan, “Vertical and horizontal corneal epithelial thickness profiles determined by ultrahigh resolution optical coherence tomography,” Cornea 31(9), 1036–1043 (2012).
[Crossref] [PubMed]

S. Jeon, W. K. Lee, K. Lee, and N. J. Moon, “Diminished ciliary muscle movement on accommodation in myopia,” Exp. Eye Res. 105, 9–14 (2012).
[Crossref] [PubMed]

H. A. Lewis, C. Y. Kao, L. T. Sinnott, and M. D. Bailey, “Changes in ciliary muscle thickness during accommodation in children,” Optom. Vis. Sci. 89(5), 727–737 (2012).
[Crossref] [PubMed]

C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express 20(6), 6109–6115 (2012).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, N. Alejandre, E. Gambra, I. Jimenez-Alfaro, and S. Marcos, “Quantitative OCT-based corneal topography in keratoconus with intracorneal ring segments,” Biomed. Opt. Express 3(5), 814–824 (2012).
[Crossref] [PubMed]

M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
[Crossref] [PubMed]

H. W. Jeong, S. W. Lee, and B. M. Kim, “Spectral-domain OCT with dual illumination and interlaced detection for simultaneous anterior segment and retina imaging,” Opt. Express 20(17), 19148–19159 (2012).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
[Crossref] [PubMed]

2011 (4)

D. Zhu, M. Shen, H. Jiang, M. Li, M. R. Wang, Y. Wang, L. Ge, J. Qu, and J. Wang, “Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging,” J. Biomed. Opt. 16(12), 126006 (2011).
[Crossref] [PubMed]

C. Du, D. Zhu, M. Shen, M. Li, M. R. Wang, and J. Wang, “Novel optical coherence tomography for imaging the entire anterior segment of the eye,” Invest. Ophthalmol. Vis. Sci. 52, ARVO E-Abstract 3023 (2011).
[PubMed]

A. L. Sheppard and L. N. Davies, “The effect of ageing on in vivo human ciliary muscle morphology and contractility,” Invest. Ophthalmol. Vis. Sci. 52(3), 1809–1816 (2011).
[Crossref] [PubMed]

M. Shen, L. Cui, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Extended scan depth optical coherence tomography for evaluating ocular surface shape,” J. Biomed. Opt. 16(5), 056007 (2011).
[Crossref] [PubMed]

2010 (7)

T. Ide, J. Wang, A. Tao, T. Leng, G. D. Kymionis, T. P. O’Brien, and S. H. Yoo, “Intraoperative use of three-dimensional spectral-domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 41(2), 250–254 (2010).
[Crossref] [PubMed]

P. S. Yan, H. T. Lin, Q. L. Wang, and Z. P. Zhang, “Anterior segment variations with age and accommodation demonstrated by slit-lamp-adapted optical coherence tomography,” Ophthalmology 117(12), 2301–2307 (2010).
[Crossref] [PubMed]

A. L. Sheppard and L. N. Davies, “In vivo analysis of ciliary muscle morphologic changes with accommodation and axial ametropia,” Invest. Ophthalmol. Vis. Sci. 51(12), 6882–6889 (2010).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref] [PubMed]

H. Furukawa, H. Hiro-Oka, N. Satoh, R. Yoshimura, D. Choi, M. Nakanishi, A. Igarashi, H. Ishikawa, K. Ohbayashi, and K. Shimizu, “Full-range imaging of eye accommodation by high-speed long-depth range optical frequency domain imaging,” Biomed. Opt. Express 1(5), 1491–1501 (2010).
[Crossref] [PubMed]

T. E. Lockhart and W. Shi, “Effects of age on dynamic accommodation,” Ergonomics 53(7), 892–903 (2010).
[Crossref] [PubMed]

2009 (5)

2008 (5)

M. V. Sarunic, S. Asrani, and J. A. Izatt, “Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography,” Arch. Ophthalmol. 126(4), 537–542 (2008).
[Crossref] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

M. D. Bailey, L. T. Sinnott, and D. O. Mutti, “Ciliary body thickness and refractive error in children,” Invest. Ophthalmol. Vis. Sci. 49(10), 4353–4360 (2008).
[Crossref] [PubMed]

T. Leng, B. J. Lujan, S. H. Yoo, and J. Wang, “Three-dimensional spectral domain optical coherence tomography of a clear corneal cataract incision,” Ophthalmic Surg. Lasers Imaging 39(4Suppl), S132–S134 (2008).
[PubMed]

H. Wang, Y. Pan, and A. M. Rollins, “Extending the effective imaging range of Fourier-domain optical coherence tomography using a fiber optic switch,” Opt. Lett. 33(22), 2632–2634 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

M. A. Croft, A. Glasser, G. Heatley, J. McDonald, T. Ebbert, D. B. Dahl, N. V. Nadkarni, and P. L. Kaufman, “Accommodative ciliary body and lens function in rhesus monkeys, I: normal lens, zonule and ciliary process configuration in the iridectomized eye,” Invest. Ophthalmol. Vis. Sci. 47(3), 1076–1086 (2006).
[Crossref] [PubMed]

2005 (2)

S. A. Strenk, L. M. Strenk, and J. F. Koretz, “The mechanism of presbyopia,” Prog. Retin. Eye Res. 24(3), 379–393 (2005).
[Crossref] [PubMed]

D. A. Atchison and G. Smith, “Chromatic dispersion of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
[Crossref]

2004 (1)

J. A. Mordi and K. J. Ciuffreda, “Dynamic aspects of accommodation: age and presbyopia,” Vision Res. 44(6), 591–601 (2004).
[Crossref] [PubMed]

2002 (2)

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27(16), 1415–1417 (2002).
[Crossref] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

2000 (1)

M. T. Pardue and J. G. Sivak, “Age-related changes in human ciliary muscle,” Optom. Vis. Sci. 77(4), 204–210 (2000).
[Crossref] [PubMed]

1999 (2)

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

A. Glasser and P. L. Kaufman, “The mechanism of accommodation in primates,” Ophthalmology 106(5), 863–872 (1999).
[Crossref] [PubMed]

1998 (2)

S. R. Uhlhorn, F. Manns, H. Tahi, P. O. Rol, and J.-M. A. Parel, “Corneal group refractive index measurement using low-coherence interferometry,” Proc. SPIE 3246, 14–21 (1998).
[Crossref]

M. A. Croft, P. L. Kaufman, K. S. Crawford, M. W. Neider, A. Glasser, and L. Z. Bito, “Accommodation dynamics in aging rhesus monkeys,” Am. J. Physiol. 275(6 Pt 2), R1885–R1897 (1998).
[PubMed]

1997 (1)

J. F. Koretz, C. A. Cook, and P. L. Kaufman, “Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus,” Invest. Ophthalmol. Vis. Sci. 38(3), 569–578 (1997).
[PubMed]

1996 (1)

A. P. Beers and G. L. van der Heijde, “Age-related changes in the accommodation mechanism,” Optom. Vis. Sci. 73(4), 235–242 (1996).
[Crossref] [PubMed]

1995 (1)

D. A. Atchison, “Accommodation and presbyopia,” Ophthalmic Physiol. Opt. 15(4), 255–272 (1995).
[Crossref] [PubMed]

1994 (1)

A. P. Beers and G. L. Van Der Heijde, “In vivo determination of the biomechanical properties of the component elements of the accommodation mechanism,” Vision Res. 34(21), 2897–2905 (1994).
[Crossref] [PubMed]

1993 (1)

H. J. Wyatt, “Application of a simple mechanical model of accommodation to the aging eye,” Vision Res. 33(5-6), 731–738 (1993).
[Crossref] [PubMed]

1992 (1)

S. Tamm, E. Tamm, and J. W. Rohen, “Age-related changes of the human ciliary muscle. A quantitative morphometric study,” Mech. Ageing Dev. 62(2), 209–221 (1992).
[Crossref] [PubMed]

1988 (1)

L. Stark, “Presbyopia in light of accommodation,” Am. J. Optom. Physiol. Opt. 65(5), 407–416 (1988).
[Crossref] [PubMed]

1855 (1)

H. von Helmholtz, “Uber die akkommodation des auges,” Arch. Ophthalmol. 1, 1–74 (1855).

Alejandre, N.

Asrani, S.

M. V. Sarunic, S. Asrani, and J. A. Izatt, “Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography,” Arch. Ophthalmol. 126(4), 537–542 (2008).
[Crossref] [PubMed]

Atchison, D. A.

Bailey, M. D.

L. A. Lossing, L. T. Sinnott, C. Y. Kao, K. Richdale, and M. D. Bailey, “Measuring changes in ciliary muscle thickness with accommodation in young adults,” Optom. Vis. Sci. 89(5), 719–726 (2012).
[Crossref] [PubMed]

K. Richdale, M. D. Bailey, L. T. Sinnott, C. Y. Kao, K. Zadnik, and M. A. Bullimore, “The effect of phenylephrine on the ciliary muscle and accommodation,” Optom. Vis. Sci. 89(10), e1507–e1511 (2012).
[Crossref] [PubMed]

H. A. Lewis, C. Y. Kao, L. T. Sinnott, and M. D. Bailey, “Changes in ciliary muscle thickness during accommodation in children,” Optom. Vis. Sci. 89(5), 727–737 (2012).
[Crossref] [PubMed]

M. D. Bailey, L. T. Sinnott, and D. O. Mutti, “Ciliary body thickness and refractive error in children,” Invest. Ophthalmol. Vis. Sci. 49(10), 4353–4360 (2008).
[Crossref] [PubMed]

Bajraszewski, T.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

Barry, S.

Baumann, B.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref] [PubMed]

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt. 14(5), 050501 (2009).
[Crossref] [PubMed]

Beers, A. P.

A. P. Beers and G. L. van der Heijde, “Age-related changes in the accommodation mechanism,” Optom. Vis. Sci. 73(4), 235–242 (1996).
[Crossref] [PubMed]

A. P. Beers and G. L. Van Der Heijde, “In vivo determination of the biomechanical properties of the component elements of the accommodation mechanism,” Vision Res. 34(21), 2897–2905 (1994).
[Crossref] [PubMed]

Bito, L. Z.

M. A. Croft, P. L. Kaufman, K. S. Crawford, M. W. Neider, A. Glasser, and L. Z. Bito, “Accommodation dynamics in aging rhesus monkeys,” Am. J. Physiol. 275(6 Pt 2), R1885–R1897 (1998).
[PubMed]

Borja, D.

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
[Crossref] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

Bullimore, M. A.

K. Richdale, M. D. Bailey, L. T. Sinnott, C. Y. Kao, K. Zadnik, and M. A. Bullimore, “The effect of phenylephrine on the ciliary muscle and accommodation,” Optom. Vis. Sci. 89(10), e1507–e1511 (2012).
[Crossref] [PubMed]

Cable, A. E.

Chai, X.

Chen, F.

Y. Yuan, F. Chen, M. Shen, F. Lu, and J. Wang, “Repeated measurements of the anterior segment during accommodation using long scan depth optical coherence tomography,” Eye Contact Lens 38(2), 102–108 (2012).
[Crossref] [PubMed]

Chen, Z.

Choi, D.

Ciuffreda, K. J.

J. A. Mordi and K. J. Ciuffreda, “Dynamic aspects of accommodation: age and presbyopia,” Vision Res. 44(6), 591–601 (2004).
[Crossref] [PubMed]

Cook, C. A.

J. F. Koretz, C. A. Cook, and P. L. Kaufman, “Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus,” Invest. Ophthalmol. Vis. Sci. 38(3), 569–578 (1997).
[PubMed]

Crawford, K. S.

M. A. Croft, P. L. Kaufman, K. S. Crawford, M. W. Neider, A. Glasser, and L. Z. Bito, “Accommodation dynamics in aging rhesus monkeys,” Am. J. Physiol. 275(6 Pt 2), R1885–R1897 (1998).
[PubMed]

Croft, M. A.

M. A. Croft, A. Glasser, G. Heatley, J. McDonald, T. Ebbert, D. B. Dahl, N. V. Nadkarni, and P. L. Kaufman, “Accommodative ciliary body and lens function in rhesus monkeys, I: normal lens, zonule and ciliary process configuration in the iridectomized eye,” Invest. Ophthalmol. Vis. Sci. 47(3), 1076–1086 (2006).
[Crossref] [PubMed]

M. A. Croft, P. L. Kaufman, K. S. Crawford, M. W. Neider, A. Glasser, and L. Z. Bito, “Accommodation dynamics in aging rhesus monkeys,” Am. J. Physiol. 275(6 Pt 2), R1885–R1897 (1998).
[PubMed]

Cui, L.

C. Du, J. Wang, L. Cui, M. Shen, and Y. Yuan, “Vertical and horizontal corneal epithelial thickness profiles determined by ultrahigh resolution optical coherence tomography,” Cornea 31(9), 1036–1043 (2012).
[Crossref] [PubMed]

M. Shen, L. Cui, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Extended scan depth optical coherence tomography for evaluating ocular surface shape,” J. Biomed. Opt. 16(5), 056007 (2011).
[Crossref] [PubMed]

Dahl, D. B.

M. A. Croft, A. Glasser, G. Heatley, J. McDonald, T. Ebbert, D. B. Dahl, N. V. Nadkarni, and P. L. Kaufman, “Accommodative ciliary body and lens function in rhesus monkeys, I: normal lens, zonule and ciliary process configuration in the iridectomized eye,” Invest. Ophthalmol. Vis. Sci. 47(3), 1076–1086 (2006).
[Crossref] [PubMed]

Dai, C.

Davies, L. N.

A. L. Sheppard and L. N. Davies, “The effect of ageing on in vivo human ciliary muscle morphology and contractility,” Invest. Ophthalmol. Vis. Sci. 52(3), 1809–1816 (2011).
[Crossref] [PubMed]

A. L. Sheppard and L. N. Davies, “In vivo analysis of ciliary muscle morphologic changes with accommodation and axial ametropia,” Invest. Ophthalmol. Vis. Sci. 51(12), 6882–6889 (2010).
[Crossref] [PubMed]

de Boer, J. F.

de Castro, A.

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref] [PubMed]

De Freitas, C.

DeMarco, J. K.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Du, C.

C. Du, J. Wang, L. Cui, M. Shen, and Y. Yuan, “Vertical and horizontal corneal epithelial thickness profiles determined by ultrahigh resolution optical coherence tomography,” Cornea 31(9), 1036–1043 (2012).
[Crossref] [PubMed]

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology 119(12), 2479–2485 (2012).
[Crossref] [PubMed]

C. Du, D. Zhu, M. Shen, M. Li, M. R. Wang, and J. Wang, “Novel optical coherence tomography for imaging the entire anterior segment of the eye,” Invest. Ophthalmol. Vis. Sci. 52, ARVO E-Abstract 3023 (2011).
[PubMed]

Duker, J. S.

Ebbert, T.

M. A. Croft, A. Glasser, G. Heatley, J. McDonald, T. Ebbert, D. B. Dahl, N. V. Nadkarni, and P. L. Kaufman, “Accommodative ciliary body and lens function in rhesus monkeys, I: normal lens, zonule and ciliary process configuration in the iridectomized eye,” Invest. Ophthalmol. Vis. Sci. 47(3), 1076–1086 (2006).
[Crossref] [PubMed]

Fan, S.

Fercher, A. F.

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27(16), 1415–1417 (2002).
[Crossref] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

Fujimoto, J. G.

Furukawa, H.

Gambra, E.

Ge, L.

D. Zhu, M. Shen, H. Jiang, M. Li, M. R. Wang, Y. Wang, L. Ge, J. Qu, and J. Wang, “Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging,” J. Biomed. Opt. 16(12), 126006 (2011).
[Crossref] [PubMed]

Glasser, A.

M. A. Croft, A. Glasser, G. Heatley, J. McDonald, T. Ebbert, D. B. Dahl, N. V. Nadkarni, and P. L. Kaufman, “Accommodative ciliary body and lens function in rhesus monkeys, I: normal lens, zonule and ciliary process configuration in the iridectomized eye,” Invest. Ophthalmol. Vis. Sci. 47(3), 1076–1086 (2006).
[Crossref] [PubMed]

A. Glasser and P. L. Kaufman, “The mechanism of accommodation in primates,” Ophthalmology 106(5), 863–872 (1999).
[Crossref] [PubMed]

M. A. Croft, P. L. Kaufman, K. S. Crawford, M. W. Neider, A. Glasser, and L. Z. Bito, “Accommodation dynamics in aging rhesus monkeys,” Am. J. Physiol. 275(6 Pt 2), R1885–R1897 (1998).
[PubMed]

Gora, M.

Gorczynska, I.

Götzinger, E.

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt. 14(5), 050501 (2009).
[Crossref] [PubMed]

Gronlund-Jacob, J.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Grulkowski, I.

Heatley, G.

M. A. Croft, A. Glasser, G. Heatley, J. McDonald, T. Ebbert, D. B. Dahl, N. V. Nadkarni, and P. L. Kaufman, “Accommodative ciliary body and lens function in rhesus monkeys, I: normal lens, zonule and ciliary process configuration in the iridectomized eye,” Invest. Ophthalmol. Vis. Sci. 47(3), 1076–1086 (2006).
[Crossref] [PubMed]

Hiro-Oka, H.

Hitzenberger, C. K.

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt. 14(5), 050501 (2009).
[Crossref] [PubMed]

Ho, A.

Huang, D.

Huber, R.

Ide, T.

T. Ide, J. Wang, A. Tao, T. Leng, G. D. Kymionis, T. P. O’Brien, and S. H. Yoo, “Intraoperative use of three-dimensional spectral-domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 41(2), 250–254 (2010).
[Crossref] [PubMed]

Igarashi, A.

Ishikawa, H.

Izatt, J. A.

M. V. Sarunic, S. Asrani, and J. A. Izatt, “Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography,” Arch. Ophthalmol. 126(4), 537–542 (2008).
[Crossref] [PubMed]

Jayaraman, V.

Jeon, S.

S. Jeon, W. K. Lee, K. Lee, and N. J. Moon, “Diminished ciliary muscle movement on accommodation in myopia,” Exp. Eye Res. 105, 9–14 (2012).
[Crossref] [PubMed]

Jeong, H. W.

Jiang, H.

D. Zhu, M. Shen, H. Jiang, M. Li, M. R. Wang, Y. Wang, L. Ge, J. Qu, and J. Wang, “Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging,” J. Biomed. Opt. 16(12), 126006 (2011).
[Crossref] [PubMed]

Jiang, J.

Jiao, S.

Jimenez-Alfaro, I.

Jungwirth, J.

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt. 14(5), 050501 (2009).
[Crossref] [PubMed]

Kaluzny, B. J.

Kao, C. Y.

K. Richdale, M. D. Bailey, L. T. Sinnott, C. Y. Kao, K. Zadnik, and M. A. Bullimore, “The effect of phenylephrine on the ciliary muscle and accommodation,” Optom. Vis. Sci. 89(10), e1507–e1511 (2012).
[Crossref] [PubMed]

L. A. Lossing, L. T. Sinnott, C. Y. Kao, K. Richdale, and M. D. Bailey, “Measuring changes in ciliary muscle thickness with accommodation in young adults,” Optom. Vis. Sci. 89(5), 719–726 (2012).
[Crossref] [PubMed]

H. A. Lewis, C. Y. Kao, L. T. Sinnott, and M. D. Bailey, “Changes in ciliary muscle thickness during accommodation in children,” Optom. Vis. Sci. 89(5), 727–737 (2012).
[Crossref] [PubMed]

Karnowski, K.

Kaufman, P. L.

M. A. Croft, A. Glasser, G. Heatley, J. McDonald, T. Ebbert, D. B. Dahl, N. V. Nadkarni, and P. L. Kaufman, “Accommodative ciliary body and lens function in rhesus monkeys, I: normal lens, zonule and ciliary process configuration in the iridectomized eye,” Invest. Ophthalmol. Vis. Sci. 47(3), 1076–1086 (2006).
[Crossref] [PubMed]

A. Glasser and P. L. Kaufman, “The mechanism of accommodation in primates,” Ophthalmology 106(5), 863–872 (1999).
[Crossref] [PubMed]

M. A. Croft, P. L. Kaufman, K. S. Crawford, M. W. Neider, A. Glasser, and L. Z. Bito, “Accommodation dynamics in aging rhesus monkeys,” Am. J. Physiol. 275(6 Pt 2), R1885–R1897 (1998).
[PubMed]

J. F. Koretz, C. A. Cook, and P. L. Kaufman, “Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus,” Invest. Ophthalmol. Vis. Sci. 38(3), 569–578 (1997).
[PubMed]

Kerbage, C.

Kim, B. M.

Koretz, J. F.

S. A. Strenk, L. M. Strenk, and J. F. Koretz, “The mechanism of presbyopia,” Prog. Retin. Eye Res. 24(3), 379–393 (2005).
[Crossref] [PubMed]

J. F. Koretz, C. A. Cook, and P. L. Kaufman, “Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus,” Invest. Ophthalmol. Vis. Sci. 38(3), 569–578 (1997).
[PubMed]

Kowalczyk, A.

Kymionis, G. D.

T. Ide, J. Wang, A. Tao, T. Leng, G. D. Kymionis, T. P. O’Brien, and S. H. Yoo, “Intraoperative use of three-dimensional spectral-domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 41(2), 250–254 (2010).
[Crossref] [PubMed]

Lee, K.

S. Jeon, W. K. Lee, K. Lee, and N. J. Moon, “Diminished ciliary muscle movement on accommodation in myopia,” Exp. Eye Res. 105, 9–14 (2012).
[Crossref] [PubMed]

Lee, S. W.

Lee, W. K.

S. Jeon, W. K. Lee, K. Lee, and N. J. Moon, “Diminished ciliary muscle movement on accommodation in myopia,” Exp. Eye Res. 105, 9–14 (2012).
[Crossref] [PubMed]

Leitgeb, R.

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27(16), 1415–1417 (2002).
[Crossref] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

Leng, T.

T. Ide, J. Wang, A. Tao, T. Leng, G. D. Kymionis, T. P. O’Brien, and S. H. Yoo, “Intraoperative use of three-dimensional spectral-domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 41(2), 250–254 (2010).
[Crossref] [PubMed]

T. Leng, B. J. Lujan, S. H. Yoo, and J. Wang, “Three-dimensional spectral domain optical coherence tomography of a clear corneal cataract incision,” Ophthalmic Surg. Lasers Imaging 39(4Suppl), S132–S134 (2008).
[PubMed]

Lewis, H. A.

H. A. Lewis, C. Y. Kao, L. T. Sinnott, and M. D. Bailey, “Changes in ciliary muscle thickness during accommodation in children,” Optom. Vis. Sci. 89(5), 727–737 (2012).
[Crossref] [PubMed]

Li, M.

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology 119(12), 2479–2485 (2012).
[Crossref] [PubMed]

M. Shen, L. Cui, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Extended scan depth optical coherence tomography for evaluating ocular surface shape,” J. Biomed. Opt. 16(5), 056007 (2011).
[Crossref] [PubMed]

C. Du, D. Zhu, M. Shen, M. Li, M. R. Wang, and J. Wang, “Novel optical coherence tomography for imaging the entire anterior segment of the eye,” Invest. Ophthalmol. Vis. Sci. 52, ARVO E-Abstract 3023 (2011).
[PubMed]

D. Zhu, M. Shen, H. Jiang, M. Li, M. R. Wang, Y. Wang, L. Ge, J. Qu, and J. Wang, “Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging,” J. Biomed. Opt. 16(12), 126006 (2011).
[Crossref] [PubMed]

Lim, H.

Lin, H. T.

P. S. Yan, H. T. Lin, Q. L. Wang, and Z. P. Zhang, “Anterior segment variations with age and accommodation demonstrated by slit-lamp-adapted optical coherence tomography,” Ophthalmology 117(12), 2301–2307 (2010).
[Crossref] [PubMed]

Liu, J. J.

Lockhart, T. E.

T. E. Lockhart and W. Shi, “Effects of age on dynamic accommodation,” Ergonomics 53(7), 892–903 (2010).
[Crossref] [PubMed]

Lossing, L. A.

L. A. Lossing, L. T. Sinnott, C. Y. Kao, K. Richdale, and M. D. Bailey, “Measuring changes in ciliary muscle thickness with accommodation in young adults,” Optom. Vis. Sci. 89(5), 719–726 (2012).
[Crossref] [PubMed]

Lu, C. D.

Lu, F.

Y. Yuan, F. Chen, M. Shen, F. Lu, and J. Wang, “Repeated measurements of the anterior segment during accommodation using long scan depth optical coherence tomography,” Eye Contact Lens 38(2), 102–108 (2012).
[Crossref] [PubMed]

Lujan, B. J.

T. Leng, B. J. Lujan, S. H. Yoo, and J. Wang, “Three-dimensional spectral domain optical coherence tomography of a clear corneal cataract incision,” Ophthalmic Surg. Lasers Imaging 39(4Suppl), S132–S134 (2008).
[PubMed]

Manns, F.

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
[Crossref] [PubMed]

M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
[Crossref] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

S. R. Uhlhorn, F. Manns, H. Tahi, P. O. Rol, and J.-M. A. Parel, “Corneal group refractive index measurement using low-coherence interferometry,” Proc. SPIE 3246, 14–21 (1998).
[Crossref]

Marcos, S.

McDonald, J.

M. A. Croft, A. Glasser, G. Heatley, J. McDonald, T. Ebbert, D. B. Dahl, N. V. Nadkarni, and P. L. Kaufman, “Accommodative ciliary body and lens function in rhesus monkeys, I: normal lens, zonule and ciliary process configuration in the iridectomized eye,” Invest. Ophthalmol. Vis. Sci. 47(3), 1076–1086 (2006).
[Crossref] [PubMed]

Moon, N. J.

S. Jeon, W. K. Lee, K. Lee, and N. J. Moon, “Diminished ciliary muscle movement on accommodation in myopia,” Exp. Eye Res. 105, 9–14 (2012).
[Crossref] [PubMed]

Mordi, J. A.

J. A. Mordi and K. J. Ciuffreda, “Dynamic aspects of accommodation: age and presbyopia,” Vision Res. 44(6), 591–601 (2004).
[Crossref] [PubMed]

Mujat, M.

Munoz, P.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Mutti, D. O.

M. D. Bailey, L. T. Sinnott, and D. O. Mutti, “Ciliary body thickness and refractive error in children,” Invest. Ophthalmol. Vis. Sci. 49(10), 4353–4360 (2008).
[Crossref] [PubMed]

Nadkarni, N. V.

M. A. Croft, A. Glasser, G. Heatley, J. McDonald, T. Ebbert, D. B. Dahl, N. V. Nadkarni, and P. L. Kaufman, “Accommodative ciliary body and lens function in rhesus monkeys, I: normal lens, zonule and ciliary process configuration in the iridectomized eye,” Invest. Ophthalmol. Vis. Sci. 47(3), 1076–1086 (2006).
[Crossref] [PubMed]

Nakanishi, M.

Neider, M. W.

M. A. Croft, P. L. Kaufman, K. S. Crawford, M. W. Neider, A. Glasser, and L. Z. Bito, “Accommodation dynamics in aging rhesus monkeys,” Am. J. Physiol. 275(6 Pt 2), R1885–R1897 (1998).
[PubMed]

O’Brien, T. P.

T. Ide, J. Wang, A. Tao, T. Leng, G. D. Kymionis, T. P. O’Brien, and S. H. Yoo, “Intraoperative use of three-dimensional spectral-domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 41(2), 250–254 (2010).
[Crossref] [PubMed]

Ohbayashi, K.

Ortiz, S.

Pan, Y.

Pardue, M. T.

M. T. Pardue and J. G. Sivak, “Age-related changes in human ciliary muscle,” Optom. Vis. Sci. 77(4), 204–210 (2000).
[Crossref] [PubMed]

Parel, J. M.

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
[Crossref] [PubMed]

M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
[Crossref] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

Parel, J.-M. A.

S. R. Uhlhorn, F. Manns, H. Tahi, P. O. Rol, and J.-M. A. Parel, “Corneal group refractive index measurement using low-coherence interferometry,” Proc. SPIE 3246, 14–21 (1998).
[Crossref]

Pascual, D.

Pérez-Merino, P.

Pircher, M.

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt. 14(5), 050501 (2009).
[Crossref] [PubMed]

Potsaid, B.

Qu, J.

D. Zhu, M. Shen, H. Jiang, M. Li, M. R. Wang, Y. Wang, L. Ge, J. Qu, and J. Wang, “Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging,” J. Biomed. Opt. 16(12), 126006 (2011).
[Crossref] [PubMed]

Remon, L.

Ren, Q.

Richdale, K.

L. A. Lossing, L. T. Sinnott, C. Y. Kao, K. Richdale, and M. D. Bailey, “Measuring changes in ciliary muscle thickness with accommodation in young adults,” Optom. Vis. Sci. 89(5), 719–726 (2012).
[Crossref] [PubMed]

K. Richdale, M. D. Bailey, L. T. Sinnott, C. Y. Kao, K. Zadnik, and M. A. Bullimore, “The effect of phenylephrine on the ciliary muscle and accommodation,” Optom. Vis. Sci. 89(10), e1507–e1511 (2012).
[Crossref] [PubMed]

Rohen, J. W.

S. Tamm, E. Tamm, and J. W. Rohen, “Age-related changes of the human ciliary muscle. A quantitative morphometric study,” Mech. Ageing Dev. 62(2), 209–221 (1992).
[Crossref] [PubMed]

Rol, P. O.

S. R. Uhlhorn, F. Manns, H. Tahi, P. O. Rol, and J.-M. A. Parel, “Corneal group refractive index measurement using low-coherence interferometry,” Proc. SPIE 3246, 14–21 (1998).
[Crossref]

Rollins, A. M.

Ruggeri, M.

Sarunic, M. V.

M. V. Sarunic, S. Asrani, and J. A. Izatt, “Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography,” Arch. Ophthalmol. 126(4), 537–542 (2008).
[Crossref] [PubMed]

Satoh, N.

Schuman, J. S.

Semmlow, J. L.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Shen, M.

C. Du, J. Wang, L. Cui, M. Shen, and Y. Yuan, “Vertical and horizontal corneal epithelial thickness profiles determined by ultrahigh resolution optical coherence tomography,” Cornea 31(9), 1036–1043 (2012).
[Crossref] [PubMed]

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology 119(12), 2479–2485 (2012).
[Crossref] [PubMed]

Y. Yuan, F. Chen, M. Shen, F. Lu, and J. Wang, “Repeated measurements of the anterior segment during accommodation using long scan depth optical coherence tomography,” Eye Contact Lens 38(2), 102–108 (2012).
[Crossref] [PubMed]

M. Shen, L. Cui, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Extended scan depth optical coherence tomography for evaluating ocular surface shape,” J. Biomed. Opt. 16(5), 056007 (2011).
[Crossref] [PubMed]

C. Du, D. Zhu, M. Shen, M. Li, M. R. Wang, and J. Wang, “Novel optical coherence tomography for imaging the entire anterior segment of the eye,” Invest. Ophthalmol. Vis. Sci. 52, ARVO E-Abstract 3023 (2011).
[PubMed]

D. Zhu, M. Shen, H. Jiang, M. Li, M. R. Wang, Y. Wang, L. Ge, J. Qu, and J. Wang, “Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging,” J. Biomed. Opt. 16(12), 126006 (2011).
[Crossref] [PubMed]

Sheppard, A. L.

A. L. Sheppard and L. N. Davies, “The effect of ageing on in vivo human ciliary muscle morphology and contractility,” Invest. Ophthalmol. Vis. Sci. 52(3), 1809–1816 (2011).
[Crossref] [PubMed]

A. L. Sheppard and L. N. Davies, “In vivo analysis of ciliary muscle morphologic changes with accommodation and axial ametropia,” Invest. Ophthalmol. Vis. Sci. 51(12), 6882–6889 (2010).
[Crossref] [PubMed]

Shi, W.

T. E. Lockhart and W. Shi, “Effects of age on dynamic accommodation,” Ergonomics 53(7), 892–903 (2010).
[Crossref] [PubMed]

Shimizu, K.

Siedlecki, D.

Sinnott, L. T.

K. Richdale, M. D. Bailey, L. T. Sinnott, C. Y. Kao, K. Zadnik, and M. A. Bullimore, “The effect of phenylephrine on the ciliary muscle and accommodation,” Optom. Vis. Sci. 89(10), e1507–e1511 (2012).
[Crossref] [PubMed]

L. A. Lossing, L. T. Sinnott, C. Y. Kao, K. Richdale, and M. D. Bailey, “Measuring changes in ciliary muscle thickness with accommodation in young adults,” Optom. Vis. Sci. 89(5), 719–726 (2012).
[Crossref] [PubMed]

H. A. Lewis, C. Y. Kao, L. T. Sinnott, and M. D. Bailey, “Changes in ciliary muscle thickness during accommodation in children,” Optom. Vis. Sci. 89(5), 727–737 (2012).
[Crossref] [PubMed]

M. D. Bailey, L. T. Sinnott, and D. O. Mutti, “Ciliary body thickness and refractive error in children,” Invest. Ophthalmol. Vis. Sci. 49(10), 4353–4360 (2008).
[Crossref] [PubMed]

Sivak, J. G.

M. T. Pardue and J. G. Sivak, “Age-related changes in human ciliary muscle,” Optom. Vis. Sci. 77(4), 204–210 (2000).
[Crossref] [PubMed]

Smith, G.

Stark, L.

L. Stark, “Presbyopia in light of accommodation,” Am. J. Optom. Physiol. Opt. 65(5), 407–416 (1988).
[Crossref] [PubMed]

Strenk, L. M.

S. A. Strenk, L. M. Strenk, and J. F. Koretz, “The mechanism of presbyopia,” Prog. Retin. Eye Res. 24(3), 379–393 (2005).
[Crossref] [PubMed]

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Strenk, S. A.

S. A. Strenk, L. M. Strenk, and J. F. Koretz, “The mechanism of presbyopia,” Prog. Retin. Eye Res. 24(3), 379–393 (2005).
[Crossref] [PubMed]

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Sun, W.

Szkulmowski, M.

Szlag, D.

Tahi, H.

S. R. Uhlhorn, F. Manns, H. Tahi, P. O. Rol, and J.-M. A. Parel, “Corneal group refractive index measurement using low-coherence interferometry,” Proc. SPIE 3246, 14–21 (1998).
[Crossref]

Tamm, E.

S. Tamm, E. Tamm, and J. W. Rohen, “Age-related changes of the human ciliary muscle. A quantitative morphometric study,” Mech. Ageing Dev. 62(2), 209–221 (1992).
[Crossref] [PubMed]

Tamm, S.

S. Tamm, E. Tamm, and J. W. Rohen, “Age-related changes of the human ciliary muscle. A quantitative morphometric study,” Mech. Ageing Dev. 62(2), 209–221 (1992).
[Crossref] [PubMed]

Tao, A.

T. Ide, J. Wang, A. Tao, T. Leng, G. D. Kymionis, T. P. O’Brien, and S. H. Yoo, “Intraoperative use of three-dimensional spectral-domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 41(2), 250–254 (2010).
[Crossref] [PubMed]

Uhlhorn, S.

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
[Crossref] [PubMed]

Uhlhorn, S. R.

M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
[Crossref] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

S. R. Uhlhorn, F. Manns, H. Tahi, P. O. Rol, and J.-M. A. Parel, “Corneal group refractive index measurement using low-coherence interferometry,” Proc. SPIE 3246, 14–21 (1998).
[Crossref]

van der Heijde, G. L.

A. P. Beers and G. L. van der Heijde, “Age-related changes in the accommodation mechanism,” Optom. Vis. Sci. 73(4), 235–242 (1996).
[Crossref] [PubMed]

A. P. Beers and G. L. Van Der Heijde, “In vivo determination of the biomechanical properties of the component elements of the accommodation mechanism,” Vision Res. 34(21), 2897–2905 (1994).
[Crossref] [PubMed]

von Helmholtz, H.

H. von Helmholtz, “Uber die akkommodation des auges,” Arch. Ophthalmol. 1, 1–74 (1855).

Wang, H.

Wang, J.

C. Du, J. Wang, L. Cui, M. Shen, and Y. Yuan, “Vertical and horizontal corneal epithelial thickness profiles determined by ultrahigh resolution optical coherence tomography,” Cornea 31(9), 1036–1043 (2012).
[Crossref] [PubMed]

Y. Yuan, F. Chen, M. Shen, F. Lu, and J. Wang, “Repeated measurements of the anterior segment during accommodation using long scan depth optical coherence tomography,” Eye Contact Lens 38(2), 102–108 (2012).
[Crossref] [PubMed]

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology 119(12), 2479–2485 (2012).
[Crossref] [PubMed]

M. Shen, L. Cui, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Extended scan depth optical coherence tomography for evaluating ocular surface shape,” J. Biomed. Opt. 16(5), 056007 (2011).
[Crossref] [PubMed]

C. Du, D. Zhu, M. Shen, M. Li, M. R. Wang, and J. Wang, “Novel optical coherence tomography for imaging the entire anterior segment of the eye,” Invest. Ophthalmol. Vis. Sci. 52, ARVO E-Abstract 3023 (2011).
[PubMed]

D. Zhu, M. Shen, H. Jiang, M. Li, M. R. Wang, Y. Wang, L. Ge, J. Qu, and J. Wang, “Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging,” J. Biomed. Opt. 16(12), 126006 (2011).
[Crossref] [PubMed]

T. Ide, J. Wang, A. Tao, T. Leng, G. D. Kymionis, T. P. O’Brien, and S. H. Yoo, “Intraoperative use of three-dimensional spectral-domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 41(2), 250–254 (2010).
[Crossref] [PubMed]

C. Zhou, J. Wang, and S. Jiao, “Dual channel dual focus optical coherence tomography for imaging accommodation of the eye,” Opt. Express 17(11), 8947–8955 (2009).
[Crossref] [PubMed]

T. Leng, B. J. Lujan, S. H. Yoo, and J. Wang, “Three-dimensional spectral domain optical coherence tomography of a clear corneal cataract incision,” Ophthalmic Surg. Lasers Imaging 39(4Suppl), S132–S134 (2008).
[PubMed]

Wang, M. R.

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology 119(12), 2479–2485 (2012).
[Crossref] [PubMed]

M. Shen, L. Cui, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Extended scan depth optical coherence tomography for evaluating ocular surface shape,” J. Biomed. Opt. 16(5), 056007 (2011).
[Crossref] [PubMed]

C. Du, D. Zhu, M. Shen, M. Li, M. R. Wang, and J. Wang, “Novel optical coherence tomography for imaging the entire anterior segment of the eye,” Invest. Ophthalmol. Vis. Sci. 52, ARVO E-Abstract 3023 (2011).
[PubMed]

D. Zhu, M. Shen, H. Jiang, M. Li, M. R. Wang, Y. Wang, L. Ge, J. Qu, and J. Wang, “Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging,” J. Biomed. Opt. 16(12), 126006 (2011).
[Crossref] [PubMed]

Wang, Q. L.

P. S. Yan, H. T. Lin, Q. L. Wang, and Z. P. Zhang, “Anterior segment variations with age and accommodation demonstrated by slit-lamp-adapted optical coherence tomography,” Ophthalmology 117(12), 2301–2307 (2010).
[Crossref] [PubMed]

Wang, Y.

D. Zhu, M. Shen, H. Jiang, M. Li, M. R. Wang, Y. Wang, L. Ge, J. Qu, and J. Wang, “Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging,” J. Biomed. Opt. 16(12), 126006 (2011).
[Crossref] [PubMed]

Wojtkowski, M.

Wyatt, H. J.

H. J. Wyatt, “Application of a simple mechanical model of accommodation to the aging eye,” Vision Res. 33(5-6), 731–738 (1993).
[Crossref] [PubMed]

Yan, P. S.

P. S. Yan, H. T. Lin, Q. L. Wang, and Z. P. Zhang, “Anterior segment variations with age and accommodation demonstrated by slit-lamp-adapted optical coherence tomography,” Ophthalmology 117(12), 2301–2307 (2010).
[Crossref] [PubMed]

Yoo, S. H.

T. Ide, J. Wang, A. Tao, T. Leng, G. D. Kymionis, T. P. O’Brien, and S. H. Yoo, “Intraoperative use of three-dimensional spectral-domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 41(2), 250–254 (2010).
[Crossref] [PubMed]

T. Leng, B. J. Lujan, S. H. Yoo, and J. Wang, “Three-dimensional spectral domain optical coherence tomography of a clear corneal cataract incision,” Ophthalmic Surg. Lasers Imaging 39(4Suppl), S132–S134 (2008).
[PubMed]

Yoshimura, R.

Yuan, Y.

Y. Yuan, F. Chen, M. Shen, F. Lu, and J. Wang, “Repeated measurements of the anterior segment during accommodation using long scan depth optical coherence tomography,” Eye Contact Lens 38(2), 102–108 (2012).
[Crossref] [PubMed]

C. Du, J. Wang, L. Cui, M. Shen, and Y. Yuan, “Vertical and horizontal corneal epithelial thickness profiles determined by ultrahigh resolution optical coherence tomography,” Cornea 31(9), 1036–1043 (2012).
[Crossref] [PubMed]

Zadnik, K.

K. Richdale, M. D. Bailey, L. T. Sinnott, C. Y. Kao, K. Zadnik, and M. A. Bullimore, “The effect of phenylephrine on the ciliary muscle and accommodation,” Optom. Vis. Sci. 89(10), e1507–e1511 (2012).
[Crossref] [PubMed]

Zhang, Z. P.

P. S. Yan, H. T. Lin, Q. L. Wang, and Z. P. Zhang, “Anterior segment variations with age and accommodation demonstrated by slit-lamp-adapted optical coherence tomography,” Ophthalmology 117(12), 2301–2307 (2010).
[Crossref] [PubMed]

Zhou, C.

Zhu, D.

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology 119(12), 2479–2485 (2012).
[Crossref] [PubMed]

M. Shen, L. Cui, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Extended scan depth optical coherence tomography for evaluating ocular surface shape,” J. Biomed. Opt. 16(5), 056007 (2011).
[Crossref] [PubMed]

C. Du, D. Zhu, M. Shen, M. Li, M. R. Wang, and J. Wang, “Novel optical coherence tomography for imaging the entire anterior segment of the eye,” Invest. Ophthalmol. Vis. Sci. 52, ARVO E-Abstract 3023 (2011).
[PubMed]

D. Zhu, M. Shen, H. Jiang, M. Li, M. R. Wang, Y. Wang, L. Ge, J. Qu, and J. Wang, “Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging,” J. Biomed. Opt. 16(12), 126006 (2011).
[Crossref] [PubMed]

Am. J. Optom. Physiol. Opt. (1)

L. Stark, “Presbyopia in light of accommodation,” Am. J. Optom. Physiol. Opt. 65(5), 407–416 (1988).
[Crossref] [PubMed]

Am. J. Physiol. (1)

M. A. Croft, P. L. Kaufman, K. S. Crawford, M. W. Neider, A. Glasser, and L. Z. Bito, “Accommodation dynamics in aging rhesus monkeys,” Am. J. Physiol. 275(6 Pt 2), R1885–R1897 (1998).
[PubMed]

Appl. Opt. (1)

Arch. Ophthalmol. (2)

H. von Helmholtz, “Uber die akkommodation des auges,” Arch. Ophthalmol. 1, 1–74 (1855).

M. V. Sarunic, S. Asrani, and J. A. Izatt, “Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography,” Arch. Ophthalmol. 126(4), 537–542 (2008).
[Crossref] [PubMed]

Biomed. Opt. Express (5)

Cornea (1)

C. Du, J. Wang, L. Cui, M. Shen, and Y. Yuan, “Vertical and horizontal corneal epithelial thickness profiles determined by ultrahigh resolution optical coherence tomography,” Cornea 31(9), 1036–1043 (2012).
[Crossref] [PubMed]

Ergonomics (1)

T. E. Lockhart and W. Shi, “Effects of age on dynamic accommodation,” Ergonomics 53(7), 892–903 (2010).
[Crossref] [PubMed]

Exp. Eye Res. (1)

S. Jeon, W. K. Lee, K. Lee, and N. J. Moon, “Diminished ciliary muscle movement on accommodation in myopia,” Exp. Eye Res. 105, 9–14 (2012).
[Crossref] [PubMed]

Eye Contact Lens (1)

Y. Yuan, F. Chen, M. Shen, F. Lu, and J. Wang, “Repeated measurements of the anterior segment during accommodation using long scan depth optical coherence tomography,” Eye Contact Lens 38(2), 102–108 (2012).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (7)

A. L. Sheppard and L. N. Davies, “The effect of ageing on in vivo human ciliary muscle morphology and contractility,” Invest. Ophthalmol. Vis. Sci. 52(3), 1809–1816 (2011).
[Crossref] [PubMed]

M. D. Bailey, L. T. Sinnott, and D. O. Mutti, “Ciliary body thickness and refractive error in children,” Invest. Ophthalmol. Vis. Sci. 49(10), 4353–4360 (2008).
[Crossref] [PubMed]

A. L. Sheppard and L. N. Davies, “In vivo analysis of ciliary muscle morphologic changes with accommodation and axial ametropia,” Invest. Ophthalmol. Vis. Sci. 51(12), 6882–6889 (2010).
[Crossref] [PubMed]

C. Du, D. Zhu, M. Shen, M. Li, M. R. Wang, and J. Wang, “Novel optical coherence tomography for imaging the entire anterior segment of the eye,” Invest. Ophthalmol. Vis. Sci. 52, ARVO E-Abstract 3023 (2011).
[PubMed]

M. A. Croft, A. Glasser, G. Heatley, J. McDonald, T. Ebbert, D. B. Dahl, N. V. Nadkarni, and P. L. Kaufman, “Accommodative ciliary body and lens function in rhesus monkeys, I: normal lens, zonule and ciliary process configuration in the iridectomized eye,” Invest. Ophthalmol. Vis. Sci. 47(3), 1076–1086 (2006).
[Crossref] [PubMed]

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

J. F. Koretz, C. A. Cook, and P. L. Kaufman, “Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus,” Invest. Ophthalmol. Vis. Sci. 38(3), 569–578 (1997).
[PubMed]

J. Biomed. Opt. (4)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

D. Zhu, M. Shen, H. Jiang, M. Li, M. R. Wang, Y. Wang, L. Ge, J. Qu, and J. Wang, “Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging,” J. Biomed. Opt. 16(12), 126006 (2011).
[Crossref] [PubMed]

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt. 14(5), 050501 (2009).
[Crossref] [PubMed]

M. Shen, L. Cui, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Extended scan depth optical coherence tomography for evaluating ocular surface shape,” J. Biomed. Opt. 16(5), 056007 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Mech. Ageing Dev. (1)

S. Tamm, E. Tamm, and J. W. Rohen, “Age-related changes of the human ciliary muscle. A quantitative morphometric study,” Mech. Ageing Dev. 62(2), 209–221 (1992).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (1)

D. A. Atchison, “Accommodation and presbyopia,” Ophthalmic Physiol. Opt. 15(4), 255–272 (1995).
[Crossref] [PubMed]

Ophthalmic Surg. Lasers Imaging (2)

T. Ide, J. Wang, A. Tao, T. Leng, G. D. Kymionis, T. P. O’Brien, and S. H. Yoo, “Intraoperative use of three-dimensional spectral-domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging 41(2), 250–254 (2010).
[Crossref] [PubMed]

T. Leng, B. J. Lujan, S. H. Yoo, and J. Wang, “Three-dimensional spectral domain optical coherence tomography of a clear corneal cataract incision,” Ophthalmic Surg. Lasers Imaging 39(4Suppl), S132–S134 (2008).
[PubMed]

Ophthalmology (3)

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology 119(12), 2479–2485 (2012).
[Crossref] [PubMed]

P. S. Yan, H. T. Lin, Q. L. Wang, and Z. P. Zhang, “Anterior segment variations with age and accommodation demonstrated by slit-lamp-adapted optical coherence tomography,” Ophthalmology 117(12), 2301–2307 (2010).
[Crossref] [PubMed]

A. Glasser and P. L. Kaufman, “The mechanism of accommodation in primates,” Ophthalmology 106(5), 863–872 (1999).
[Crossref] [PubMed]

Opt. Express (8)

C. Kerbage, H. Lim, W. Sun, M. Mujat, and J. F. de Boer, “Large depth-high resolution full 3D imaging of the anterior segments of the eye using high speed optical frequency domain imaging,” Opt. Express 15(12), 7117–7125 (2007).
[Crossref] [PubMed]

H. W. Jeong, S. W. Lee, and B. M. Kim, “Spectral-domain OCT with dual illumination and interlaced detection for simultaneous anterior segment and retina imaging,” Opt. Express 20(17), 19148–19159 (2012).
[Crossref] [PubMed]

C. Zhou, J. Wang, and S. Jiao, “Dual channel dual focus optical coherence tomography for imaging accommodation of the eye,” Opt. Express 17(11), 8947–8955 (2009).
[Crossref] [PubMed]

C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express 20(6), 6109–6115 (2012).
[Crossref] [PubMed]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17(17), 14880–14894 (2009).
[Crossref] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref] [PubMed]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[Crossref] [PubMed]

Opt. Lett. (2)

Optom. Vis. Sci. (6)

A. P. Beers and G. L. van der Heijde, “Age-related changes in the accommodation mechanism,” Optom. Vis. Sci. 73(4), 235–242 (1996).
[Crossref] [PubMed]

H. A. Lewis, C. Y. Kao, L. T. Sinnott, and M. D. Bailey, “Changes in ciliary muscle thickness during accommodation in children,” Optom. Vis. Sci. 89(5), 727–737 (2012).
[Crossref] [PubMed]

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
[Crossref] [PubMed]

K. Richdale, M. D. Bailey, L. T. Sinnott, C. Y. Kao, K. Zadnik, and M. A. Bullimore, “The effect of phenylephrine on the ciliary muscle and accommodation,” Optom. Vis. Sci. 89(10), e1507–e1511 (2012).
[Crossref] [PubMed]

L. A. Lossing, L. T. Sinnott, C. Y. Kao, K. Richdale, and M. D. Bailey, “Measuring changes in ciliary muscle thickness with accommodation in young adults,” Optom. Vis. Sci. 89(5), 719–726 (2012).
[Crossref] [PubMed]

M. T. Pardue and J. G. Sivak, “Age-related changes in human ciliary muscle,” Optom. Vis. Sci. 77(4), 204–210 (2000).
[Crossref] [PubMed]

Proc. SPIE (1)

S. R. Uhlhorn, F. Manns, H. Tahi, P. O. Rol, and J.-M. A. Parel, “Corneal group refractive index measurement using low-coherence interferometry,” Proc. SPIE 3246, 14–21 (1998).
[Crossref]

Prog. Retin. Eye Res. (1)

S. A. Strenk, L. M. Strenk, and J. F. Koretz, “The mechanism of presbyopia,” Prog. Retin. Eye Res. 24(3), 379–393 (2005).
[Crossref] [PubMed]

Vision Res. (4)

H. J. Wyatt, “Application of a simple mechanical model of accommodation to the aging eye,” Vision Res. 33(5-6), 731–738 (1993).
[Crossref] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

J. A. Mordi and K. J. Ciuffreda, “Dynamic aspects of accommodation: age and presbyopia,” Vision Res. 44(6), 591–601 (2004).
[Crossref] [PubMed]

A. P. Beers and G. L. Van Der Heijde, “In vivo determination of the biomechanical properties of the component elements of the accommodation mechanism,” Vision Res. 34(21), 2897–2905 (1994).
[Crossref] [PubMed]

Other (1)

American National Standards Institute, “American national standard for safe use of lasers,” in Laser Institute of America (Orlando, FL, 2000), pp. 45–49.

Supplementary Material (2)

» Media 1: MP4 (545 KB)     
» Media 2: MP4 (468 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram depicting the combined spectral-domain OCT systems. SLD1310: superluminescent diode with a central wavelength of 1,310 nm, SLD840: superluminescent diode with a central wavelength of 840 nm, FC: fiber coupler, PC: polarization controller, CL1-4: collimating lenses, DC: dispersion compensator, L1-3: objective lenses, M1-3: refractive mirror, GM: galvanometer mirror, NDF: neutral density filter, LCD: liquid-crystal display, DG: diffraction grating, CMOS: complementary metal-oxide-semiconductor transistor camera, InGaAs: indium gallium arsenide. Insert: X-Y alignment.

Fig. 2
Fig. 2

Schematic diagram depicting the combination of the probes. LCD: liquid-crystal display.

Fig. 3
Fig. 3

Anterior segment from the cornea through the crystalline lens obtained from a 26-year-old subject. A: Frame 1 of the anterior segment; B: Frame 2 of the anterior segment; C: Combined image of the anterior segment. PD: pupil diameter; CCT: central corneal thickness; ACD: anterior chamber depth; CLT: central lens thickness. Bar = 1 mm.

Fig. 4
Fig. 4

Ciliary muscle obtained from a 26-year-old human subject. A: Enhanced image of the ciliary muscle; Note the iris was flipped as the mirror image due to placement of the zero-delay line inside the eye (bottom of the image). B: Semi-automatic segmentation of the boundaries of the cornea, the sclera, and the ciliary muscle. C: Optical correction for image distortion followed Snell’s principle; D: The calculation of the ciliary muscle thickness. CMT1-3: the thickness of the ciliary muscle at 1 mm, 2 mm, and 3 mm posterior to the scleral spur; CMTM: the maximum thickness of the ciliary muscle. Bar = 1 mm.

Fig. 5
Fig. 5

The entire anterior segment (A and B) and the ciliary muscle (C and D) obtained from a 26-year-old subject using the combined devices in relaxed (A and C) and accommodative (B and D) states. The scan width of the anterior segment was set to 12 mm, with an image size of 2,048 × 4,096 pixels (lateral × axial), and to 10.3 mm for the ciliary muscle, with an image size of 1,000 × 1,223 pixels (lateral × axial). Bar = 1 mm. Note the iris (C and D) was flipped as the mirror image due to placement of the delay line inside the eye (bottom of the image).

Fig. 6
Fig. 6

Biometry of the anterior segment at the horizontal (A) and the vertical (B) meridians, as well as the ciliary muscle (C), within two visits during accommodation. PD: pupil diameter; ACD: anterior chamber depth; CAL: curvature radius of the anterior surface of the lens; CPL: curvature radius of the posterior surface of the lens; CLT: central lens thickness; CMT1-3: ciliary muscle thickness; CMTM: maximum thickness of the ciliary muscle. P value: difference of the mean values between the relaxed and the accommodative states. non-ACC: Relax status; ACC: Accommodative status; V1: visit 1; V2: visit 2.

Fig. 7
Fig. 7

Real-time display of the anterior segment (A) and the ciliary muscle (B) from a 26-year-old subject during 4.00D accommodation (Media 1 and Media 2). The frame rates of the movies were 8.33 fps (A) and 7 fps (B), respectively. Bar = 1 mm. Note the iris (B and Media 2) was flipped as the mirror image due to placement of the delay line inside the eye (bottom of the image).

Fig. 8
Fig. 8

Dynamics of the biometry of the ciliary muscle (A and B) and the anterior segment (C-F) during accommodation acquired at two visits (v1 and v2). Accommodative stimulus was set at 1 second after the start point of the scanning. CMT1: ciliary muscle thickness at 1 mm posterior to the sclera spur (A); CMTM: maximum thickness of the ciliary muscle (B); CAL: curvature radius of the anterior surface of the lens (C); CLT: central lens thickness (D); PD: pupil diameter (E); ACD: anterior chamber depth (F). V1: visit 1; V2: visit 2.

Tables (1)

Tables Icon

Table 1 The biometry of the ciliary muscle and the anterior segment before and after accommodation in a 26-year-old subject (unit: mm)

Metrics