Abstract

Knowledge of myocardial fiber architecture is essential towards understanding heart functions. We demonstrated in this study a method to map cardiac muscle structure using the local optical axis obtained from polarization-sensitive optical coherence tomography (PSOCT). An algorithm was developed to extract the true local depth-resolved optical axis, retardance, and diattenuation from conventional round-trip results obtained in a Jones matrix-based PSOCT system. This method was applied to image the myocardial fiber orientation in a bovine heart muscle sample.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Taccardi, E. Macchi, R. L. Lux, P. R. Ershler, S. Spaggiari, S. Baruffi, and Y. Vyhmeister, “Effect of myocardial fiber direction on epicardial potentials,” Circulation90(6), 3076–3090 (1994).
    [CrossRef] [PubMed]
  2. I. J. LeGrice, Y. Takayama, and J. W. Covell, “Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening,” Circ. Res.77(1), 182–193 (1995).
    [CrossRef] [PubMed]
  3. D. D. Streeter, H. M. Spotnitz, D. P. Patel, J. Ross, and E. H. Sonnenblick, “Fiber orientation in the canine left ventricle during diastole and systole,” Circ. Res.24(3), 339–347 (1969).
    [CrossRef] [PubMed]
  4. D. D. Streeter and D. L. Bassett, “An engineering analysis of myocardial fiber orientation in pig’s left ventricle in systole,” Anat. Rec.155(4), 503–511 (1966).
    [CrossRef]
  5. D. E. Sosnovik, R. Wang, G. Dai, T. G. Reese, and V. J. Wedeen, “Diffusion MR tractography of the heart,” J. Cardiovasc. Magn. Reson.11(1), 47–61 (2009).
    [CrossRef] [PubMed]
  6. W. N. Lee, B. Larrat, M. Pernot, and M. Tanter, “Ultrasound elastic tensor imaging: comparison with MR diffusion tensor imaging in the myocardium,” Phys. Med. Biol.57(16), 5075–5095 (2012).
    [CrossRef] [PubMed]
  7. C. P. Fleming, C. M. Ripplinger, B. Webb, I. R. Efimov, and A. M. Rollins, “Quantification of cardiac fiber orientation using optical coherence tomography,” J. Biomed. Opt.13(3), 030505 (2008).
    [CrossRef] [PubMed]
  8. C. M. Ambrosi, V. V. Fedorov, R. B. Schuessler, A. M. Rollins, and I. R. Efimov, “Quantification of fiber orientation in the canine atrial pacemaker complex using optical coherence tomography,” J. Biomed. Opt.17(7), 071309 (2012).
    [CrossRef] [PubMed]
  9. C. J. Goergen, H. Radhakrishnan, S. Sakadžić, E. T. Mandeville, E. H. Lo, D. E. Sosnovik, and V. J. Srinivasan, “Optical coherence tractography using intrinsic contrast,” Opt. Lett.37(18), 3882–3884 (2012).
    [PubMed]
  10. H. Nakaji, N. Kouyama, Y. Muragaki, Y. Kawakami, and H. Iseki, “Localization of nerve fiber bundles by polarization-sensitive optical coherence tomography,” J. Neurosci. Methods174(1), 82–90 (2008).
    [CrossRef] [PubMed]
  11. H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage58(4), 984–992 (2011).
    [CrossRef] [PubMed]
  12. C. Fan and G. Yao, “Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography,” Opt. Lett.37(9), 1415–1417 (2012).
    [CrossRef] [PubMed]
  13. C. Fan and G. Yao, “Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(11), 110501 (2012).
    [CrossRef] [PubMed]
  14. C. Fan and G. Yao, “Full-range spectral domain Jones matrix optical coherence tomography using a single spectral camera,” Opt. Express20(20), 22360–22371 (2012).
    [CrossRef] [PubMed]
  15. S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express18(2), 854–876 (2010).
    [CrossRef] [PubMed]

2012

W. N. Lee, B. Larrat, M. Pernot, and M. Tanter, “Ultrasound elastic tensor imaging: comparison with MR diffusion tensor imaging in the myocardium,” Phys. Med. Biol.57(16), 5075–5095 (2012).
[CrossRef] [PubMed]

C. M. Ambrosi, V. V. Fedorov, R. B. Schuessler, A. M. Rollins, and I. R. Efimov, “Quantification of fiber orientation in the canine atrial pacemaker complex using optical coherence tomography,” J. Biomed. Opt.17(7), 071309 (2012).
[CrossRef] [PubMed]

C. J. Goergen, H. Radhakrishnan, S. Sakadžić, E. T. Mandeville, E. H. Lo, D. E. Sosnovik, and V. J. Srinivasan, “Optical coherence tractography using intrinsic contrast,” Opt. Lett.37(18), 3882–3884 (2012).
[PubMed]

C. Fan and G. Yao, “Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography,” Opt. Lett.37(9), 1415–1417 (2012).
[CrossRef] [PubMed]

C. Fan and G. Yao, “Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(11), 110501 (2012).
[CrossRef] [PubMed]

C. Fan and G. Yao, “Full-range spectral domain Jones matrix optical coherence tomography using a single spectral camera,” Opt. Express20(20), 22360–22371 (2012).
[CrossRef] [PubMed]

2011

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage58(4), 984–992 (2011).
[CrossRef] [PubMed]

2010

2009

D. E. Sosnovik, R. Wang, G. Dai, T. G. Reese, and V. J. Wedeen, “Diffusion MR tractography of the heart,” J. Cardiovasc. Magn. Reson.11(1), 47–61 (2009).
[CrossRef] [PubMed]

2008

H. Nakaji, N. Kouyama, Y. Muragaki, Y. Kawakami, and H. Iseki, “Localization of nerve fiber bundles by polarization-sensitive optical coherence tomography,” J. Neurosci. Methods174(1), 82–90 (2008).
[CrossRef] [PubMed]

C. P. Fleming, C. M. Ripplinger, B. Webb, I. R. Efimov, and A. M. Rollins, “Quantification of cardiac fiber orientation using optical coherence tomography,” J. Biomed. Opt.13(3), 030505 (2008).
[CrossRef] [PubMed]

1995

I. J. LeGrice, Y. Takayama, and J. W. Covell, “Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening,” Circ. Res.77(1), 182–193 (1995).
[CrossRef] [PubMed]

1994

B. Taccardi, E. Macchi, R. L. Lux, P. R. Ershler, S. Spaggiari, S. Baruffi, and Y. Vyhmeister, “Effect of myocardial fiber direction on epicardial potentials,” Circulation90(6), 3076–3090 (1994).
[CrossRef] [PubMed]

1969

D. D. Streeter, H. M. Spotnitz, D. P. Patel, J. Ross, and E. H. Sonnenblick, “Fiber orientation in the canine left ventricle during diastole and systole,” Circ. Res.24(3), 339–347 (1969).
[CrossRef] [PubMed]

1966

D. D. Streeter and D. L. Bassett, “An engineering analysis of myocardial fiber orientation in pig’s left ventricle in systole,” Anat. Rec.155(4), 503–511 (1966).
[CrossRef]

Abosch, A.

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage58(4), 984–992 (2011).
[CrossRef] [PubMed]

Akkin, T.

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage58(4), 984–992 (2011).
[CrossRef] [PubMed]

Al-Qaisi, M. K.

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage58(4), 984–992 (2011).
[CrossRef] [PubMed]

Ambrosi, C. M.

C. M. Ambrosi, V. V. Fedorov, R. B. Schuessler, A. M. Rollins, and I. R. Efimov, “Quantification of fiber orientation in the canine atrial pacemaker complex using optical coherence tomography,” J. Biomed. Opt.17(7), 071309 (2012).
[CrossRef] [PubMed]

Baruffi, S.

B. Taccardi, E. Macchi, R. L. Lux, P. R. Ershler, S. Spaggiari, S. Baruffi, and Y. Vyhmeister, “Effect of myocardial fiber direction on epicardial potentials,” Circulation90(6), 3076–3090 (1994).
[CrossRef] [PubMed]

Bassett, D. L.

D. D. Streeter and D. L. Bassett, “An engineering analysis of myocardial fiber orientation in pig’s left ventricle in systole,” Anat. Rec.155(4), 503–511 (1966).
[CrossRef]

Black, A. J.

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage58(4), 984–992 (2011).
[CrossRef] [PubMed]

Covell, J. W.

I. J. LeGrice, Y. Takayama, and J. W. Covell, “Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening,” Circ. Res.77(1), 182–193 (1995).
[CrossRef] [PubMed]

Dai, G.

D. E. Sosnovik, R. Wang, G. Dai, T. G. Reese, and V. J. Wedeen, “Diffusion MR tractography of the heart,” J. Cardiovasc. Magn. Reson.11(1), 47–61 (2009).
[CrossRef] [PubMed]

Efimov, I. R.

C. M. Ambrosi, V. V. Fedorov, R. B. Schuessler, A. M. Rollins, and I. R. Efimov, “Quantification of fiber orientation in the canine atrial pacemaker complex using optical coherence tomography,” J. Biomed. Opt.17(7), 071309 (2012).
[CrossRef] [PubMed]

C. P. Fleming, C. M. Ripplinger, B. Webb, I. R. Efimov, and A. M. Rollins, “Quantification of cardiac fiber orientation using optical coherence tomography,” J. Biomed. Opt.13(3), 030505 (2008).
[CrossRef] [PubMed]

Ershler, P. R.

B. Taccardi, E. Macchi, R. L. Lux, P. R. Ershler, S. Spaggiari, S. Baruffi, and Y. Vyhmeister, “Effect of myocardial fiber direction on epicardial potentials,” Circulation90(6), 3076–3090 (1994).
[CrossRef] [PubMed]

Fan, C.

Fedorov, V. V.

C. M. Ambrosi, V. V. Fedorov, R. B. Schuessler, A. M. Rollins, and I. R. Efimov, “Quantification of fiber orientation in the canine atrial pacemaker complex using optical coherence tomography,” J. Biomed. Opt.17(7), 071309 (2012).
[CrossRef] [PubMed]

Fleming, C. P.

C. P. Fleming, C. M. Ripplinger, B. Webb, I. R. Efimov, and A. M. Rollins, “Quantification of cardiac fiber orientation using optical coherence tomography,” J. Biomed. Opt.13(3), 030505 (2008).
[CrossRef] [PubMed]

Goergen, C. J.

Iseki, H.

H. Nakaji, N. Kouyama, Y. Muragaki, Y. Kawakami, and H. Iseki, “Localization of nerve fiber bundles by polarization-sensitive optical coherence tomography,” J. Neurosci. Methods174(1), 82–90 (2008).
[CrossRef] [PubMed]

Kawakami, Y.

H. Nakaji, N. Kouyama, Y. Muragaki, Y. Kawakami, and H. Iseki, “Localization of nerve fiber bundles by polarization-sensitive optical coherence tomography,” J. Neurosci. Methods174(1), 82–90 (2008).
[CrossRef] [PubMed]

Kouyama, N.

H. Nakaji, N. Kouyama, Y. Muragaki, Y. Kawakami, and H. Iseki, “Localization of nerve fiber bundles by polarization-sensitive optical coherence tomography,” J. Neurosci. Methods174(1), 82–90 (2008).
[CrossRef] [PubMed]

Larrat, B.

W. N. Lee, B. Larrat, M. Pernot, and M. Tanter, “Ultrasound elastic tensor imaging: comparison with MR diffusion tensor imaging in the myocardium,” Phys. Med. Biol.57(16), 5075–5095 (2012).
[CrossRef] [PubMed]

Lee, W. N.

W. N. Lee, B. Larrat, M. Pernot, and M. Tanter, “Ultrasound elastic tensor imaging: comparison with MR diffusion tensor imaging in the myocardium,” Phys. Med. Biol.57(16), 5075–5095 (2012).
[CrossRef] [PubMed]

LeGrice, I. J.

I. J. LeGrice, Y. Takayama, and J. W. Covell, “Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening,” Circ. Res.77(1), 182–193 (1995).
[CrossRef] [PubMed]

Lo, E. H.

Lux, R. L.

B. Taccardi, E. Macchi, R. L. Lux, P. R. Ershler, S. Spaggiari, S. Baruffi, and Y. Vyhmeister, “Effect of myocardial fiber direction on epicardial potentials,” Circulation90(6), 3076–3090 (1994).
[CrossRef] [PubMed]

Macchi, E.

B. Taccardi, E. Macchi, R. L. Lux, P. R. Ershler, S. Spaggiari, S. Baruffi, and Y. Vyhmeister, “Effect of myocardial fiber direction on epicardial potentials,” Circulation90(6), 3076–3090 (1994).
[CrossRef] [PubMed]

Makita, S.

Mandeville, E. T.

Muragaki, Y.

H. Nakaji, N. Kouyama, Y. Muragaki, Y. Kawakami, and H. Iseki, “Localization of nerve fiber bundles by polarization-sensitive optical coherence tomography,” J. Neurosci. Methods174(1), 82–90 (2008).
[CrossRef] [PubMed]

Nakaji, H.

H. Nakaji, N. Kouyama, Y. Muragaki, Y. Kawakami, and H. Iseki, “Localization of nerve fiber bundles by polarization-sensitive optical coherence tomography,” J. Neurosci. Methods174(1), 82–90 (2008).
[CrossRef] [PubMed]

Netoff, T. I.

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage58(4), 984–992 (2011).
[CrossRef] [PubMed]

Patel, D. P.

D. D. Streeter, H. M. Spotnitz, D. P. Patel, J. Ross, and E. H. Sonnenblick, “Fiber orientation in the canine left ventricle during diastole and systole,” Circ. Res.24(3), 339–347 (1969).
[CrossRef] [PubMed]

Pernot, M.

W. N. Lee, B. Larrat, M. Pernot, and M. Tanter, “Ultrasound elastic tensor imaging: comparison with MR diffusion tensor imaging in the myocardium,” Phys. Med. Biol.57(16), 5075–5095 (2012).
[CrossRef] [PubMed]

Radhakrishnan, H.

Reese, T. G.

D. E. Sosnovik, R. Wang, G. Dai, T. G. Reese, and V. J. Wedeen, “Diffusion MR tractography of the heart,” J. Cardiovasc. Magn. Reson.11(1), 47–61 (2009).
[CrossRef] [PubMed]

Ripplinger, C. M.

C. P. Fleming, C. M. Ripplinger, B. Webb, I. R. Efimov, and A. M. Rollins, “Quantification of cardiac fiber orientation using optical coherence tomography,” J. Biomed. Opt.13(3), 030505 (2008).
[CrossRef] [PubMed]

Rollins, A. M.

C. M. Ambrosi, V. V. Fedorov, R. B. Schuessler, A. M. Rollins, and I. R. Efimov, “Quantification of fiber orientation in the canine atrial pacemaker complex using optical coherence tomography,” J. Biomed. Opt.17(7), 071309 (2012).
[CrossRef] [PubMed]

C. P. Fleming, C. M. Ripplinger, B. Webb, I. R. Efimov, and A. M. Rollins, “Quantification of cardiac fiber orientation using optical coherence tomography,” J. Biomed. Opt.13(3), 030505 (2008).
[CrossRef] [PubMed]

Ross, J.

D. D. Streeter, H. M. Spotnitz, D. P. Patel, J. Ross, and E. H. Sonnenblick, “Fiber orientation in the canine left ventricle during diastole and systole,” Circ. Res.24(3), 339–347 (1969).
[CrossRef] [PubMed]

Sakadžic, S.

Schuessler, R. B.

C. M. Ambrosi, V. V. Fedorov, R. B. Schuessler, A. M. Rollins, and I. R. Efimov, “Quantification of fiber orientation in the canine atrial pacemaker complex using optical coherence tomography,” J. Biomed. Opt.17(7), 071309 (2012).
[CrossRef] [PubMed]

Sonnenblick, E. H.

D. D. Streeter, H. M. Spotnitz, D. P. Patel, J. Ross, and E. H. Sonnenblick, “Fiber orientation in the canine left ventricle during diastole and systole,” Circ. Res.24(3), 339–347 (1969).
[CrossRef] [PubMed]

Sosnovik, D. E.

C. J. Goergen, H. Radhakrishnan, S. Sakadžić, E. T. Mandeville, E. H. Lo, D. E. Sosnovik, and V. J. Srinivasan, “Optical coherence tractography using intrinsic contrast,” Opt. Lett.37(18), 3882–3884 (2012).
[PubMed]

D. E. Sosnovik, R. Wang, G. Dai, T. G. Reese, and V. J. Wedeen, “Diffusion MR tractography of the heart,” J. Cardiovasc. Magn. Reson.11(1), 47–61 (2009).
[CrossRef] [PubMed]

Spaggiari, S.

B. Taccardi, E. Macchi, R. L. Lux, P. R. Ershler, S. Spaggiari, S. Baruffi, and Y. Vyhmeister, “Effect of myocardial fiber direction on epicardial potentials,” Circulation90(6), 3076–3090 (1994).
[CrossRef] [PubMed]

Spotnitz, H. M.

D. D. Streeter, H. M. Spotnitz, D. P. Patel, J. Ross, and E. H. Sonnenblick, “Fiber orientation in the canine left ventricle during diastole and systole,” Circ. Res.24(3), 339–347 (1969).
[CrossRef] [PubMed]

Srinivasan, V. J.

Stigen, T. W.

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage58(4), 984–992 (2011).
[CrossRef] [PubMed]

Streeter, D. D.

D. D. Streeter, H. M. Spotnitz, D. P. Patel, J. Ross, and E. H. Sonnenblick, “Fiber orientation in the canine left ventricle during diastole and systole,” Circ. Res.24(3), 339–347 (1969).
[CrossRef] [PubMed]

D. D. Streeter and D. L. Bassett, “An engineering analysis of myocardial fiber orientation in pig’s left ventricle in systole,” Anat. Rec.155(4), 503–511 (1966).
[CrossRef]

Taccardi, B.

B. Taccardi, E. Macchi, R. L. Lux, P. R. Ershler, S. Spaggiari, S. Baruffi, and Y. Vyhmeister, “Effect of myocardial fiber direction on epicardial potentials,” Circulation90(6), 3076–3090 (1994).
[CrossRef] [PubMed]

Takayama, Y.

I. J. LeGrice, Y. Takayama, and J. W. Covell, “Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening,” Circ. Res.77(1), 182–193 (1995).
[CrossRef] [PubMed]

Tanter, M.

W. N. Lee, B. Larrat, M. Pernot, and M. Tanter, “Ultrasound elastic tensor imaging: comparison with MR diffusion tensor imaging in the myocardium,” Phys. Med. Biol.57(16), 5075–5095 (2012).
[CrossRef] [PubMed]

Vyhmeister, Y.

B. Taccardi, E. Macchi, R. L. Lux, P. R. Ershler, S. Spaggiari, S. Baruffi, and Y. Vyhmeister, “Effect of myocardial fiber direction on epicardial potentials,” Circulation90(6), 3076–3090 (1994).
[CrossRef] [PubMed]

Wang, H.

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage58(4), 984–992 (2011).
[CrossRef] [PubMed]

Wang, R.

D. E. Sosnovik, R. Wang, G. Dai, T. G. Reese, and V. J. Wedeen, “Diffusion MR tractography of the heart,” J. Cardiovasc. Magn. Reson.11(1), 47–61 (2009).
[CrossRef] [PubMed]

Webb, B.

C. P. Fleming, C. M. Ripplinger, B. Webb, I. R. Efimov, and A. M. Rollins, “Quantification of cardiac fiber orientation using optical coherence tomography,” J. Biomed. Opt.13(3), 030505 (2008).
[CrossRef] [PubMed]

Wedeen, V. J.

D. E. Sosnovik, R. Wang, G. Dai, T. G. Reese, and V. J. Wedeen, “Diffusion MR tractography of the heart,” J. Cardiovasc. Magn. Reson.11(1), 47–61 (2009).
[CrossRef] [PubMed]

Yamanari, M.

Yao, G.

Yasuno, Y.

Zhu, J.

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage58(4), 984–992 (2011).
[CrossRef] [PubMed]

Anat. Rec.

D. D. Streeter and D. L. Bassett, “An engineering analysis of myocardial fiber orientation in pig’s left ventricle in systole,” Anat. Rec.155(4), 503–511 (1966).
[CrossRef]

Circ. Res.

I. J. LeGrice, Y. Takayama, and J. W. Covell, “Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening,” Circ. Res.77(1), 182–193 (1995).
[CrossRef] [PubMed]

D. D. Streeter, H. M. Spotnitz, D. P. Patel, J. Ross, and E. H. Sonnenblick, “Fiber orientation in the canine left ventricle during diastole and systole,” Circ. Res.24(3), 339–347 (1969).
[CrossRef] [PubMed]

Circulation

B. Taccardi, E. Macchi, R. L. Lux, P. R. Ershler, S. Spaggiari, S. Baruffi, and Y. Vyhmeister, “Effect of myocardial fiber direction on epicardial potentials,” Circulation90(6), 3076–3090 (1994).
[CrossRef] [PubMed]

J. Biomed. Opt.

C. Fan and G. Yao, “Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(11), 110501 (2012).
[CrossRef] [PubMed]

C. P. Fleming, C. M. Ripplinger, B. Webb, I. R. Efimov, and A. M. Rollins, “Quantification of cardiac fiber orientation using optical coherence tomography,” J. Biomed. Opt.13(3), 030505 (2008).
[CrossRef] [PubMed]

C. M. Ambrosi, V. V. Fedorov, R. B. Schuessler, A. M. Rollins, and I. R. Efimov, “Quantification of fiber orientation in the canine atrial pacemaker complex using optical coherence tomography,” J. Biomed. Opt.17(7), 071309 (2012).
[CrossRef] [PubMed]

J. Cardiovasc. Magn. Reson.

D. E. Sosnovik, R. Wang, G. Dai, T. G. Reese, and V. J. Wedeen, “Diffusion MR tractography of the heart,” J. Cardiovasc. Magn. Reson.11(1), 47–61 (2009).
[CrossRef] [PubMed]

J. Neurosci. Methods

H. Nakaji, N. Kouyama, Y. Muragaki, Y. Kawakami, and H. Iseki, “Localization of nerve fiber bundles by polarization-sensitive optical coherence tomography,” J. Neurosci. Methods174(1), 82–90 (2008).
[CrossRef] [PubMed]

Neuroimage

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage58(4), 984–992 (2011).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

W. N. Lee, B. Larrat, M. Pernot, and M. Tanter, “Ultrasound elastic tensor imaging: comparison with MR diffusion tensor imaging in the myocardium,” Phys. Med. Biol.57(16), 5075–5095 (2012).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Example PSOCT images of a bovine heart muscle sample. On the first row are cross sectional images of (a) structure, (b) relative optical axis, (c) relative retardance, and (d) relative diattenuation. On the second row are images of (e) local optical axis, (f) local retardance, and (g) local diattenuation. The scale bar in (a) represents 0.5mm.

Fig. 2
Fig. 2

3D PSOCT images of a bovine heart muscle sample: (a) structure; (b) local optical axis; (c) local retardance; and (d) local diattenuation. The 3D image covers a sample volume of 6.0mm × 6.0mm × 2.03mm (in B × C × A).

Fig. 3
Fig. 3

(a) The en face structural image of the sample at depth denoted by the dashed line in Fig. 1(a). (b) The relative optical axis. (c) The local optical axis. (d) The streamline representation of (c).

Fig. 4
Fig. 4

The streamline representation of local fiber tract within (a) ROI-1, (b) ROI-2, and (c) ROI-3 as marked in Fig. 2(a). The three slices shown were obtained at depths of 0.3mm, 0.4mm, and 0.5mm from the surface. (d) The local optical axis extracted at different depths from the center of the three ROIs within a small area of 3pixel × 3pixel.

Fig. 5
Fig. 5

(a) 3D structure image and (b) streamline representation at 0.4, 0.5, and 0.6mm depth of another piece of sample excised at a different location of the bovine heart. Also shown are (c) relative and (d) local optical axes calculated from the same sample slice in Fig. 1 without removing the diattenuation.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

J i = J L ( θ i , γ i )=R( θ i )Λ( γ i )R( θ i ),
Λ( γ i )=( e i γ i /2 0 0 e i γ i /2 )=( e (i δ i σ i )/2 0 0 e (i δ i σ i )/2 ),
J ST (n)= J n J n1 J 2 J 1 =R( α n ) J L ( ϕ n , ρ n )=R( α n )R( ϕ n )Λ( ρ n )R( ϕ n ),
J RT (n)= J ST T (n) J ST (n)=R( ϕ n )Λ(2 ρ n )R( ϕ n )= J L ( ϕ n ,2 ρ n ),
N n+1 = J L 1 ( ϕ n , ρ n ) J RT (n+1) J L 1 ( ϕ n , ρ n )=R( α n ) J n+1 T J n+1 R( α n ).
J RTM (n)=R( ϕ n )Λ(2 κ n )R( ϕ n ),
J n T J n = [ J STM T (n1) ] 1 J RTM (n) [ J STM (n1) ] 1 ,

Metrics