Abstract

In this paper, we present and validate a new method for optical properties recovery of turbid media with slab geometry. This method is an iterative method that compares diffuse reflectance and transmittance, measured using integrating spheres, with those obtained using the known algorithm MCML. The search procedure is based in the evolution of a population due to selection of the best individual, i.e., using a genetic algorithm. This new method includes several corrections such as non-linear effects in integrating spheres measurements and loss of light due to the finite size of the sample. As a potential application and proof-of-principle experiment of this new method, we use this new algorithm in the recovery of optical properties of blood samples at different degrees of coagulation.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
  2. A. Roggan, K. Dorschel, G. Muller, M. Friebel, and A. Hahn, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt.4, 36–46 (1999).
    [CrossRef] [PubMed]
  3. L. V. Wang and H. Wu, Biomedical Optics (Wiley, 2007).
  4. P. Kubelka, “New contributions to the optics of intensely light-scattering materials,” J. Opt. Soc. Am.38, 448–457 (1948).
    [CrossRef] [PubMed]
  5. P. Kubelka, “New contributions to the optics of intensely light-scattering materials. part ii: Nonhomogeneus layers,” J. Opt. Soc. Am.44, 330–335 (1954).
    [CrossRef]
  6. S. Q. Duntley, “The optical properties of diffusing materials,” J. Opt. Soc. Am.32, 61–70 (1942).
    [CrossRef]
  7. A. L. Lathrop, “Diffuse scattered radiation theories of duntley and of kubelka-munk,” J. Opt. Soc. Am.55, 1097–1104 (1965).
    [CrossRef]
  8. B. L. Diffey, “A mathematical model for ultraviolet optics in skin,” Phys. Med. Biol.28, 647–657 (1983).
    [CrossRef] [PubMed]
  9. P. S. Mudgett and L. W. Richards, “Multiple scattering calculations for technology,” Appl. Opt.10, 1485–1502 (1971).
    [CrossRef] [PubMed]
  10. S. A. Prahl, I. A. Vitkin, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol.37, 1203–1217 (1992).
    [CrossRef] [PubMed]
  11. M. S. Patterson, B. Chance, and B. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurements of tissue optical properties,” Appl. Opt.28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  12. M. S. Patterson, E. Schwarts, and B. Wilson, “Quantitative reflectance spectrophotometry for the noninvasive measurement of photosensitizer concentration in tissue during photodynamic therapy,” Proc. SPIE1065, 115–122, (1989).
    [CrossRef]
  13. S. K. Jacques and S. A. Prahl, “Modeling optical and thermal distributions in tissue during laser irradiation,” Lasers Surg. Med.6, 494–503 (1987).
    [CrossRef] [PubMed]
  14. G. Yoon, F. Liu, and R. R. Alfano, “Accuracies of the diffusion approximation and its similarity relations for laser irradiated biological media,” Appl. Opt.28, 2250–2255 (1989).
    [CrossRef] [PubMed]
  15. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt.32, 559–568 (1993).
    [CrossRef] [PubMed]
  16. H. C. van de Hulst, Multiple Light Scattering (Academic, New York, 1980), Vol 1.
  17. A. Roggan, G. Muller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt.11, 34021 (2006).
    [CrossRef] [PubMed]
  18. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Rev. Biol.43, 2465–2478 (1998).
  19. J. S. Dam, T. Dalgaard, P. E. Fabricius, and S. Andersson-Engels, “Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements,” Appl. Opt.39, 1202–1209 (2000).
    [CrossRef]
  20. A. M. K. Nilsson, R. Berg, and S. Andersson-Engels, “Measurements of the optical properties of tissue in conjunction with photodynamic therapy,” Appl. Opt.34, 4609–4619 (1995).
    [CrossRef] [PubMed]
  21. I. V. Yaroslavsky, A. N. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Inverse hybrid technique for determining the optical properties of turbid media from integrating-sphere measurements,” Appl. Opt.34, 6797–6809 (1996)
    [CrossRef]
  22. M. Hammer, A. Roggan, D. Schweitzer, and G. Mller, “Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol.40, 963–978 (1995).
    [CrossRef] [PubMed]
  23. M. Meinke, G. Muller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt.12, 014024 (2007).
    [CrossRef] [PubMed]
  24. A. M. Nilsson, G. W. Lucassen, W. Verkruysse, S. Andersson-Engels, and M. J. C. van Gemert, “Changes in optical properties of human whole blood in vitro due to slow heating,” Photochem. Photobiol.65, 366–373 (1997).
    [CrossRef] [PubMed]
  25. P. Starukhin, S. Ulyanov, E. Galanzha, and V. Tuchin, “Blood-flow measurements with a small number of scattering events,” Appl. Opt.39, 2823–2830 (2000).
    [CrossRef]
  26. D. Sardar and L. Levy, “Optical properties of whole blood,” Lasers Med. Sci.13, 106–111 (1998).
    [CrossRef]
  27. H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, and B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous nir light,” Phys. Med. Biol.40, 1983–1993 (1995).
    [CrossRef] [PubMed]
  28. D. J. Faber, M. C. Aalders, E. G. Mik, B. A. Hooper, M. J. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett.93(2), 028102 (2004).
    [CrossRef] [PubMed]
  29. A. C. Guyton and T. E. Hall, Medical Physiology (Elsevier Science, 2006).
  30. T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt.11, 041103 (2006).
    [CrossRef] [PubMed]
  31. L.-H. Wang, S. L. Jacques, and L. Q. Zheng, “Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Meth. Prog. Biol.47, 131–146 (1995).
    [CrossRef]
  32. S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Müller and D. H. Sliney, eds. (SPIE, Bellingham, WA, 1989), pp. 102–111.
  33. M. Gen and R. Cheng, Genetic Algorithms and Engineering Design (Wiley, 1997).
  34. M. B and S. V. y Montiel, “Obtención de los parámetros ópticos de la piel usando algoritmos genéticos y mcml,” Rev. Mex. Fis.57, 375–381 (2011).
  35. T. Vo-Dinh, Biomedical Photonics (CRC Press, 2003).
    [CrossRef]
  36. B. Morales, S. V. y Montiel, and J. A. D. Atencio, “Behavior of optical properties of coagulated blood sample at 633 nm wavelength,” Proc. SPIE7897, 78970S (2011).
    [CrossRef]
  37. B. Morales, S. A. Prahl, J. A. D. Atencio, and S. V. y Montiel, “Validation of ga-mcml algorithm against iad program,” Proc. SPIE8011, 80118O (2011).
    [CrossRef]
  38. S. Prahl, Inverse Adding-Doubling for Optical Property Measurements (2007), http://omlc.ogi.edu/software/iad/index.html .
  39. J. H. Torres, A. J. Welch, I. Çilesiz, and M. Motamedi, “Tissue optical property measurements: overestimation of absorption coefficient with spectrophotometric techniques,” Lasers Surg. Med.14, 249–257 (1994).
    [CrossRef] [PubMed]
  40. G. de Vries, J. F. Beek, G. W. Lucassen, and M. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron.5, 944–947 (1999).
    [CrossRef]
  41. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt.32, 399–410 (1993).
    [CrossRef] [PubMed]
  42. J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, and M. J. C. van Gemert, “Two integrating sphere with an intervening scattering sample,” J. Opt. Soc. Am9, 621–631 (1992).
    [CrossRef]
  43. A. M. Nilsson, P. Alsholm, A. Karlsson, and S. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt.37, 2735–2748 (1998).
    [CrossRef]
  44. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Elsevier Science, 2006).
  45. W. F. Cheong, S. A. Prahl, and A. J. Welch, “Review of the optical properties of a biological tissues,” IEEE J. Quantum Electron.26, 2166–2185 (1990).
    [CrossRef]

2011 (3)

M. B and S. V. y Montiel, “Obtención de los parámetros ópticos de la piel usando algoritmos genéticos y mcml,” Rev. Mex. Fis.57, 375–381 (2011).

B. Morales, S. V. y Montiel, and J. A. D. Atencio, “Behavior of optical properties of coagulated blood sample at 633 nm wavelength,” Proc. SPIE7897, 78970S (2011).
[CrossRef]

B. Morales, S. A. Prahl, J. A. D. Atencio, and S. V. y Montiel, “Validation of ga-mcml algorithm against iad program,” Proc. SPIE8011, 80118O (2011).
[CrossRef]

2007 (1)

M. Meinke, G. Muller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt.12, 014024 (2007).
[CrossRef] [PubMed]

2006 (2)

T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt.11, 041103 (2006).
[CrossRef] [PubMed]

A. Roggan, G. Muller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt.11, 34021 (2006).
[CrossRef] [PubMed]

2004 (1)

D. J. Faber, M. C. Aalders, E. G. Mik, B. A. Hooper, M. J. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett.93(2), 028102 (2004).
[CrossRef] [PubMed]

2000 (2)

1999 (2)

A. Roggan, K. Dorschel, G. Muller, M. Friebel, and A. Hahn, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt.4, 36–46 (1999).
[CrossRef] [PubMed]

G. de Vries, J. F. Beek, G. W. Lucassen, and M. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron.5, 944–947 (1999).
[CrossRef]

1998 (3)

D. Sardar and L. Levy, “Optical properties of whole blood,” Lasers Med. Sci.13, 106–111 (1998).
[CrossRef]

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Rev. Biol.43, 2465–2478 (1998).

A. M. Nilsson, P. Alsholm, A. Karlsson, and S. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt.37, 2735–2748 (1998).
[CrossRef]

1997 (1)

A. M. Nilsson, G. W. Lucassen, W. Verkruysse, S. Andersson-Engels, and M. J. C. van Gemert, “Changes in optical properties of human whole blood in vitro due to slow heating,” Photochem. Photobiol.65, 366–373 (1997).
[CrossRef] [PubMed]

1996 (1)

I. V. Yaroslavsky, A. N. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Inverse hybrid technique for determining the optical properties of turbid media from integrating-sphere measurements,” Appl. Opt.34, 6797–6809 (1996)
[CrossRef]

1995 (4)

M. Hammer, A. Roggan, D. Schweitzer, and G. Mller, “Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol.40, 963–978 (1995).
[CrossRef] [PubMed]

H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, and B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous nir light,” Phys. Med. Biol.40, 1983–1993 (1995).
[CrossRef] [PubMed]

L.-H. Wang, S. L. Jacques, and L. Q. Zheng, “Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Meth. Prog. Biol.47, 131–146 (1995).
[CrossRef]

A. M. K. Nilsson, R. Berg, and S. Andersson-Engels, “Measurements of the optical properties of tissue in conjunction with photodynamic therapy,” Appl. Opt.34, 4609–4619 (1995).
[CrossRef] [PubMed]

1994 (1)

J. H. Torres, A. J. Welch, I. Çilesiz, and M. Motamedi, “Tissue optical property measurements: overestimation of absorption coefficient with spectrophotometric techniques,” Lasers Surg. Med.14, 249–257 (1994).
[CrossRef] [PubMed]

1993 (2)

1992 (2)

J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, and M. J. C. van Gemert, “Two integrating sphere with an intervening scattering sample,” J. Opt. Soc. Am9, 621–631 (1992).
[CrossRef]

S. A. Prahl, I. A. Vitkin, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol.37, 1203–1217 (1992).
[CrossRef] [PubMed]

1990 (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “Review of the optical properties of a biological tissues,” IEEE J. Quantum Electron.26, 2166–2185 (1990).
[CrossRef]

1989 (3)

1987 (1)

S. K. Jacques and S. A. Prahl, “Modeling optical and thermal distributions in tissue during laser irradiation,” Lasers Surg. Med.6, 494–503 (1987).
[CrossRef] [PubMed]

1983 (1)

B. L. Diffey, “A mathematical model for ultraviolet optics in skin,” Phys. Med. Biol.28, 647–657 (1983).
[CrossRef] [PubMed]

1971 (1)

1965 (1)

1954 (1)

1948 (1)

1942 (1)

Aalders, M. C.

D. J. Faber, M. C. Aalders, E. G. Mik, B. A. Hooper, M. J. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett.93(2), 028102 (2004).
[CrossRef] [PubMed]

Alfano, R. R.

Alsholm, P.

Anderson, R. R.

S. A. Prahl, I. A. Vitkin, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol.37, 1203–1217 (1992).
[CrossRef] [PubMed]

Andersson-Engels, S.

Atencio, J. A. D.

B. Morales, S. A. Prahl, J. A. D. Atencio, and S. V. y Montiel, “Validation of ga-mcml algorithm against iad program,” Proc. SPIE8011, 80118O (2011).
[CrossRef]

B. Morales, S. V. y Montiel, and J. A. D. Atencio, “Behavior of optical properties of coagulated blood sample at 633 nm wavelength,” Proc. SPIE7897, 78970S (2011).
[CrossRef]

B, M.

M. B and S. V. y Montiel, “Obtención de los parámetros ópticos de la piel usando algoritmos genéticos y mcml,” Rev. Mex. Fis.57, 375–381 (2011).

Beek, J. F.

G. de Vries, J. F. Beek, G. W. Lucassen, and M. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron.5, 944–947 (1999).
[CrossRef]

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt.32, 399–410 (1993).
[CrossRef] [PubMed]

Berg, R.

Boas, D. A.

H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, and B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous nir light,” Phys. Med. Biol.40, 1983–1993 (1995).
[CrossRef] [PubMed]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Elsevier Science, 2006).

Chance, B.

H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, and B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous nir light,” Phys. Med. Biol.40, 1983–1993 (1995).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, and B. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurements of tissue optical properties,” Appl. Opt.28, 2331–2336 (1989).
[CrossRef] [PubMed]

Chen, Y. C.

T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt.11, 041103 (2006).
[CrossRef] [PubMed]

Cheng, R.

M. Gen and R. Cheng, Genetic Algorithms and Engineering Design (Wiley, 1997).

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “Review of the optical properties of a biological tissues,” IEEE J. Quantum Electron.26, 2166–2185 (1990).
[CrossRef]

Çilesiz, I.

J. H. Torres, A. J. Welch, I. Çilesiz, and M. Motamedi, “Tissue optical property measurements: overestimation of absorption coefficient with spectrophotometric techniques,” Lasers Surg. Med.14, 249–257 (1994).
[CrossRef] [PubMed]

Cope, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Rev. Biol.43, 2465–2478 (1998).

Dalgaard, T.

Dam, J. S.

de Vries, G.

G. de Vries, J. F. Beek, G. W. Lucassen, and M. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron.5, 944–947 (1999).
[CrossRef]

Diffey, B. L.

B. L. Diffey, “A mathematical model for ultraviolet optics in skin,” Phys. Med. Biol.28, 647–657 (1983).
[CrossRef] [PubMed]

Dorschel, K.

A. Roggan, K. Dorschel, G. Muller, M. Friebel, and A. Hahn, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt.4, 36–46 (1999).
[CrossRef] [PubMed]

Duntley, S. Q.

Essenpreis, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Rev. Biol.43, 2465–2478 (1998).

Faber, D. J.

D. J. Faber, M. C. Aalders, E. G. Mik, B. A. Hooper, M. J. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett.93(2), 028102 (2004).
[CrossRef] [PubMed]

Fabricius, P. E.

Friebel, M.

M. Meinke, G. Muller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt.12, 014024 (2007).
[CrossRef] [PubMed]

A. Roggan, K. Dorschel, G. Muller, M. Friebel, and A. Hahn, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt.4, 36–46 (1999).
[CrossRef] [PubMed]

Galanzha, E.

Gen, M.

M. Gen and R. Cheng, Genetic Algorithms and Engineering Design (Wiley, 1997).

Goldbach, T.

I. V. Yaroslavsky, A. N. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Inverse hybrid technique for determining the optical properties of turbid media from integrating-sphere measurements,” Appl. Opt.34, 6797–6809 (1996)
[CrossRef]

Guyton, A. C.

A. C. Guyton and T. E. Hall, Medical Physiology (Elsevier Science, 2006).

Hahn, A.

A. Roggan, K. Dorschel, G. Muller, M. Friebel, and A. Hahn, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt.4, 36–46 (1999).
[CrossRef] [PubMed]

Hall, T. E.

A. C. Guyton and T. E. Hall, Medical Physiology (Elsevier Science, 2006).

Hammer, M.

M. Hammer, A. Roggan, D. Schweitzer, and G. Mller, “Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol.40, 963–978 (1995).
[CrossRef] [PubMed]

Helfmann, J.

M. Meinke, G. Muller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt.12, 014024 (2007).
[CrossRef] [PubMed]

Hooper, B. A.

D. J. Faber, M. C. Aalders, E. G. Mik, B. A. Hooper, M. J. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett.93(2), 028102 (2004).
[CrossRef] [PubMed]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Elsevier Science, 2006).

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).

Jacques, S. K.

S. K. Jacques and S. A. Prahl, “Modeling optical and thermal distributions in tissue during laser irradiation,” Lasers Surg. Med.6, 494–503 (1987).
[CrossRef] [PubMed]

Jacques, S. L.

L.-H. Wang, S. L. Jacques, and L. Q. Zheng, “Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Meth. Prog. Biol.47, 131–146 (1995).
[CrossRef]

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Müller and D. H. Sliney, eds. (SPIE, Bellingham, WA, 1989), pp. 102–111.

Karlsson, A.

Keijzer, M.

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Müller and D. H. Sliney, eds. (SPIE, Bellingham, WA, 1989), pp. 102–111.

Kohl, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Rev. Biol.43, 2465–2478 (1998).

Kubelka, P.

Lathrop, A. L.

Levy, L.

D. Sardar and L. Levy, “Optical properties of whole blood,” Lasers Med. Sci.13, 106–111 (1998).
[CrossRef]

Liu, F.

Liu, H.

H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, and B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous nir light,” Phys. Med. Biol.40, 1983–1993 (1995).
[CrossRef] [PubMed]

Lucassen, G. W.

G. de Vries, J. F. Beek, G. W. Lucassen, and M. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron.5, 944–947 (1999).
[CrossRef]

A. M. Nilsson, G. W. Lucassen, W. Verkruysse, S. Andersson-Engels, and M. J. C. van Gemert, “Changes in optical properties of human whole blood in vitro due to slow heating,” Photochem. Photobiol.65, 366–373 (1997).
[CrossRef] [PubMed]

Meinke, M.

M. Meinke, G. Muller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt.12, 014024 (2007).
[CrossRef] [PubMed]

A. Roggan, G. Muller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt.11, 34021 (2006).
[CrossRef] [PubMed]

Mik, E. G.

D. J. Faber, M. C. Aalders, E. G. Mik, B. A. Hooper, M. J. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett.93(2), 028102 (2004).
[CrossRef] [PubMed]

Mller, G.

M. Hammer, A. Roggan, D. Schweitzer, and G. Mller, “Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol.40, 963–978 (1995).
[CrossRef] [PubMed]

Moes, C. J. M.

J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, and M. J. C. van Gemert, “Two integrating sphere with an intervening scattering sample,” J. Opt. Soc. Am9, 621–631 (1992).
[CrossRef]

Moffitt, T.

T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt.11, 041103 (2006).
[CrossRef] [PubMed]

Morales, B.

B. Morales, S. A. Prahl, J. A. D. Atencio, and S. V. y Montiel, “Validation of ga-mcml algorithm against iad program,” Proc. SPIE8011, 80118O (2011).
[CrossRef]

B. Morales, S. V. y Montiel, and J. A. D. Atencio, “Behavior of optical properties of coagulated blood sample at 633 nm wavelength,” Proc. SPIE7897, 78970S (2011).
[CrossRef]

Motamedi, M.

J. H. Torres, A. J. Welch, I. Çilesiz, and M. Motamedi, “Tissue optical property measurements: overestimation of absorption coefficient with spectrophotometric techniques,” Lasers Surg. Med.14, 249–257 (1994).
[CrossRef] [PubMed]

Mudgett, P. S.

Muller, G.

M. Meinke, G. Muller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt.12, 014024 (2007).
[CrossRef] [PubMed]

A. Roggan, G. Muller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt.11, 34021 (2006).
[CrossRef] [PubMed]

A. Roggan, K. Dorschel, G. Muller, M. Friebel, and A. Hahn, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt.4, 36–46 (1999).
[CrossRef] [PubMed]

Nilsson, A. M.

A. M. Nilsson, P. Alsholm, A. Karlsson, and S. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt.37, 2735–2748 (1998).
[CrossRef]

A. M. Nilsson, G. W. Lucassen, W. Verkruysse, S. Andersson-Engels, and M. J. C. van Gemert, “Changes in optical properties of human whole blood in vitro due to slow heating,” Photochem. Photobiol.65, 366–373 (1997).
[CrossRef] [PubMed]

Nilsson, A. M. K.

Patterson, M. S.

M. S. Patterson, B. Chance, and B. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurements of tissue optical properties,” Appl. Opt.28, 2331–2336 (1989).
[CrossRef] [PubMed]

M. S. Patterson, E. Schwarts, and B. Wilson, “Quantitative reflectance spectrophotometry for the noninvasive measurement of photosensitizer concentration in tissue during photodynamic therapy,” Proc. SPIE1065, 115–122, (1989).
[CrossRef]

Pickering, J. W.

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt.32, 399–410 (1993).
[CrossRef] [PubMed]

J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, and M. J. C. van Gemert, “Two integrating sphere with an intervening scattering sample,” J. Opt. Soc. Am9, 621–631 (1992).
[CrossRef]

Prahl, S. A.

B. Morales, S. A. Prahl, J. A. D. Atencio, and S. V. y Montiel, “Validation of ga-mcml algorithm against iad program,” Proc. SPIE8011, 80118O (2011).
[CrossRef]

T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt.11, 041103 (2006).
[CrossRef] [PubMed]

S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt.32, 559–568 (1993).
[CrossRef] [PubMed]

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt.32, 399–410 (1993).
[CrossRef] [PubMed]

J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, and M. J. C. van Gemert, “Two integrating sphere with an intervening scattering sample,” J. Opt. Soc. Am9, 621–631 (1992).
[CrossRef]

S. A. Prahl, I. A. Vitkin, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol.37, 1203–1217 (1992).
[CrossRef] [PubMed]

W. F. Cheong, S. A. Prahl, and A. J. Welch, “Review of the optical properties of a biological tissues,” IEEE J. Quantum Electron.26, 2166–2185 (1990).
[CrossRef]

S. K. Jacques and S. A. Prahl, “Modeling optical and thermal distributions in tissue during laser irradiation,” Lasers Surg. Med.6, 494–503 (1987).
[CrossRef] [PubMed]

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Müller and D. H. Sliney, eds. (SPIE, Bellingham, WA, 1989), pp. 102–111.

Richards, L. W.

Roggan, A.

A. Roggan, G. Muller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt.11, 34021 (2006).
[CrossRef] [PubMed]

A. Roggan, K. Dorschel, G. Muller, M. Friebel, and A. Hahn, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt.4, 36–46 (1999).
[CrossRef] [PubMed]

M. Hammer, A. Roggan, D. Schweitzer, and G. Mller, “Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol.40, 963–978 (1995).
[CrossRef] [PubMed]

Sardar, D.

D. Sardar and L. Levy, “Optical properties of whole blood,” Lasers Med. Sci.13, 106–111 (1998).
[CrossRef]

Schwarts, E.

M. S. Patterson, E. Schwarts, and B. Wilson, “Quantitative reflectance spectrophotometry for the noninvasive measurement of photosensitizer concentration in tissue during photodynamic therapy,” Proc. SPIE1065, 115–122, (1989).
[CrossRef]

Schwarzmaier, H.-J.

I. V. Yaroslavsky, A. N. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Inverse hybrid technique for determining the optical properties of turbid media from integrating-sphere measurements,” Appl. Opt.34, 6797–6809 (1996)
[CrossRef]

Schweitzer, D.

M. Hammer, A. Roggan, D. Schweitzer, and G. Mller, “Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol.40, 963–978 (1995).
[CrossRef] [PubMed]

Simpson, C. R.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Rev. Biol.43, 2465–2478 (1998).

Starukhin, P.

Sterenborg, H. J. C. M.

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt.32, 399–410 (1993).
[CrossRef] [PubMed]

J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, and M. J. C. van Gemert, “Two integrating sphere with an intervening scattering sample,” J. Opt. Soc. Am9, 621–631 (1992).
[CrossRef]

Torres, J. H.

J. H. Torres, A. J. Welch, I. Çilesiz, and M. Motamedi, “Tissue optical property measurements: overestimation of absorption coefficient with spectrophotometric techniques,” Lasers Surg. Med.14, 249–257 (1994).
[CrossRef] [PubMed]

Tuchin, V.

Ulyanov, S.

van de Hulst, H. C.

H. C. van de Hulst, Multiple Light Scattering (Academic, New York, 1980), Vol 1.

van Gemert, M.

G. de Vries, J. F. Beek, G. W. Lucassen, and M. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron.5, 944–947 (1999).
[CrossRef]

van Gemert, M. J.

D. J. Faber, M. C. Aalders, E. G. Mik, B. A. Hooper, M. J. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett.93(2), 028102 (2004).
[CrossRef] [PubMed]

van Gemert, M. J. C.

A. M. Nilsson, G. W. Lucassen, W. Verkruysse, S. Andersson-Engels, and M. J. C. van Gemert, “Changes in optical properties of human whole blood in vitro due to slow heating,” Photochem. Photobiol.65, 366–373 (1997).
[CrossRef] [PubMed]

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt.32, 399–410 (1993).
[CrossRef] [PubMed]

S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt.32, 559–568 (1993).
[CrossRef] [PubMed]

J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, and M. J. C. van Gemert, “Two integrating sphere with an intervening scattering sample,” J. Opt. Soc. Am9, 621–631 (1992).
[CrossRef]

van Leeuwen, T. G.

D. J. Faber, M. C. Aalders, E. G. Mik, B. A. Hooper, M. J. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett.93(2), 028102 (2004).
[CrossRef] [PubMed]

van Wieringen, N.

Verkruysse, W.

A. M. Nilsson, G. W. Lucassen, W. Verkruysse, S. Andersson-Engels, and M. J. C. van Gemert, “Changes in optical properties of human whole blood in vitro due to slow heating,” Photochem. Photobiol.65, 366–373 (1997).
[CrossRef] [PubMed]

Vitkin, I. A.

S. A. Prahl, I. A. Vitkin, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol.37, 1203–1217 (1992).
[CrossRef] [PubMed]

Vo-Dinh, T.

T. Vo-Dinh, Biomedical Photonics (CRC Press, 2003).
[CrossRef]

Wang, L. V.

L. V. Wang and H. Wu, Biomedical Optics (Wiley, 2007).

Wang, L.-H.

L.-H. Wang, S. L. Jacques, and L. Q. Zheng, “Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Meth. Prog. Biol.47, 131–146 (1995).
[CrossRef]

Welch, A. J.

J. H. Torres, A. J. Welch, I. Çilesiz, and M. Motamedi, “Tissue optical property measurements: overestimation of absorption coefficient with spectrophotometric techniques,” Lasers Surg. Med.14, 249–257 (1994).
[CrossRef] [PubMed]

S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt.32, 559–568 (1993).
[CrossRef] [PubMed]

W. F. Cheong, S. A. Prahl, and A. J. Welch, “Review of the optical properties of a biological tissues,” IEEE J. Quantum Electron.26, 2166–2185 (1990).
[CrossRef]

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Müller and D. H. Sliney, eds. (SPIE, Bellingham, WA, 1989), pp. 102–111.

Wilson, B.

M. S. Patterson, B. Chance, and B. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurements of tissue optical properties,” Appl. Opt.28, 2331–2336 (1989).
[CrossRef] [PubMed]

M. S. Patterson, E. Schwarts, and B. Wilson, “Quantitative reflectance spectrophotometry for the noninvasive measurement of photosensitizer concentration in tissue during photodynamic therapy,” Proc. SPIE1065, 115–122, (1989).
[CrossRef]

Wilson, B. C.

S. A. Prahl, I. A. Vitkin, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol.37, 1203–1217 (1992).
[CrossRef] [PubMed]

Wu, H.

L. V. Wang and H. Wu, Biomedical Optics (Wiley, 2007).

y Montiel, S. V.

B. Morales, S. V. y Montiel, and J. A. D. Atencio, “Behavior of optical properties of coagulated blood sample at 633 nm wavelength,” Proc. SPIE7897, 78970S (2011).
[CrossRef]

M. B and S. V. y Montiel, “Obtención de los parámetros ópticos de la piel usando algoritmos genéticos y mcml,” Rev. Mex. Fis.57, 375–381 (2011).

B. Morales, S. A. Prahl, J. A. D. Atencio, and S. V. y Montiel, “Validation of ga-mcml algorithm against iad program,” Proc. SPIE8011, 80118O (2011).
[CrossRef]

Yaroslavsky, A. N.

I. V. Yaroslavsky, A. N. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Inverse hybrid technique for determining the optical properties of turbid media from integrating-sphere measurements,” Appl. Opt.34, 6797–6809 (1996)
[CrossRef]

Yaroslavsky, I. V.

I. V. Yaroslavsky, A. N. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Inverse hybrid technique for determining the optical properties of turbid media from integrating-sphere measurements,” Appl. Opt.34, 6797–6809 (1996)
[CrossRef]

Yodh, A. G.

H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, and B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous nir light,” Phys. Med. Biol.40, 1983–1993 (1995).
[CrossRef] [PubMed]

Yoon, G.

Zhang, Y.

H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, and B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous nir light,” Phys. Med. Biol.40, 1983–1993 (1995).
[CrossRef] [PubMed]

Zheng, L. Q.

L.-H. Wang, S. L. Jacques, and L. Q. Zheng, “Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Meth. Prog. Biol.47, 131–146 (1995).
[CrossRef]

Appl. Opt. (10)

I. V. Yaroslavsky, A. N. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Inverse hybrid technique for determining the optical properties of turbid media from integrating-sphere measurements,” Appl. Opt.34, 6797–6809 (1996)
[CrossRef]

G. Yoon, F. Liu, and R. R. Alfano, “Accuracies of the diffusion approximation and its similarity relations for laser irradiated biological media,” Appl. Opt.28, 2250–2255 (1989).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, and B. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurements of tissue optical properties,” Appl. Opt.28, 2331–2336 (1989).
[CrossRef] [PubMed]

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt.32, 399–410 (1993).
[CrossRef] [PubMed]

S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt.32, 559–568 (1993).
[CrossRef] [PubMed]

A. M. Nilsson, P. Alsholm, A. Karlsson, and S. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt.37, 2735–2748 (1998).
[CrossRef]

J. S. Dam, T. Dalgaard, P. E. Fabricius, and S. Andersson-Engels, “Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements,” Appl. Opt.39, 1202–1209 (2000).
[CrossRef]

A. M. K. Nilsson, R. Berg, and S. Andersson-Engels, “Measurements of the optical properties of tissue in conjunction with photodynamic therapy,” Appl. Opt.34, 4609–4619 (1995).
[CrossRef] [PubMed]

P. Starukhin, S. Ulyanov, E. Galanzha, and V. Tuchin, “Blood-flow measurements with a small number of scattering events,” Appl. Opt.39, 2823–2830 (2000).
[CrossRef]

P. S. Mudgett and L. W. Richards, “Multiple scattering calculations for technology,” Appl. Opt.10, 1485–1502 (1971).
[CrossRef] [PubMed]

Comput. Meth. Prog. Biol. (1)

L.-H. Wang, S. L. Jacques, and L. Q. Zheng, “Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Meth. Prog. Biol.47, 131–146 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “Review of the optical properties of a biological tissues,” IEEE J. Quantum Electron.26, 2166–2185 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

G. de Vries, J. F. Beek, G. W. Lucassen, and M. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron.5, 944–947 (1999).
[CrossRef]

J. Biomed. Opt. (4)

T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt.11, 041103 (2006).
[CrossRef] [PubMed]

A. Roggan, K. Dorschel, G. Muller, M. Friebel, and A. Hahn, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt.4, 36–46 (1999).
[CrossRef] [PubMed]

A. Roggan, G. Muller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt.11, 34021 (2006).
[CrossRef] [PubMed]

M. Meinke, G. Muller, J. Helfmann, and M. Friebel, “Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range,” J. Biomed. Opt.12, 014024 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am (1)

J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, and M. J. C. van Gemert, “Two integrating sphere with an intervening scattering sample,” J. Opt. Soc. Am9, 621–631 (1992).
[CrossRef]

J. Opt. Soc. Am. (4)

Lasers Med. Sci. (1)

D. Sardar and L. Levy, “Optical properties of whole blood,” Lasers Med. Sci.13, 106–111 (1998).
[CrossRef]

Lasers Surg. Med. (2)

S. K. Jacques and S. A. Prahl, “Modeling optical and thermal distributions in tissue during laser irradiation,” Lasers Surg. Med.6, 494–503 (1987).
[CrossRef] [PubMed]

J. H. Torres, A. J. Welch, I. Çilesiz, and M. Motamedi, “Tissue optical property measurements: overestimation of absorption coefficient with spectrophotometric techniques,” Lasers Surg. Med.14, 249–257 (1994).
[CrossRef] [PubMed]

Photochem. Photobiol. (1)

A. M. Nilsson, G. W. Lucassen, W. Verkruysse, S. Andersson-Engels, and M. J. C. van Gemert, “Changes in optical properties of human whole blood in vitro due to slow heating,” Photochem. Photobiol.65, 366–373 (1997).
[CrossRef] [PubMed]

Phys. Med. Biol. (4)

S. A. Prahl, I. A. Vitkin, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol.37, 1203–1217 (1992).
[CrossRef] [PubMed]

M. Hammer, A. Roggan, D. Schweitzer, and G. Mller, “Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol.40, 963–978 (1995).
[CrossRef] [PubMed]

B. L. Diffey, “A mathematical model for ultraviolet optics in skin,” Phys. Med. Biol.28, 647–657 (1983).
[CrossRef] [PubMed]

H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, and B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous nir light,” Phys. Med. Biol.40, 1983–1993 (1995).
[CrossRef] [PubMed]

Phys. Rev. Biol. (1)

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Rev. Biol.43, 2465–2478 (1998).

Phys. Rev. Lett. (1)

D. J. Faber, M. C. Aalders, E. G. Mik, B. A. Hooper, M. J. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett.93(2), 028102 (2004).
[CrossRef] [PubMed]

Proc. SPIE (3)

M. S. Patterson, E. Schwarts, and B. Wilson, “Quantitative reflectance spectrophotometry for the noninvasive measurement of photosensitizer concentration in tissue during photodynamic therapy,” Proc. SPIE1065, 115–122, (1989).
[CrossRef]

B. Morales, S. V. y Montiel, and J. A. D. Atencio, “Behavior of optical properties of coagulated blood sample at 633 nm wavelength,” Proc. SPIE7897, 78970S (2011).
[CrossRef]

B. Morales, S. A. Prahl, J. A. D. Atencio, and S. V. y Montiel, “Validation of ga-mcml algorithm against iad program,” Proc. SPIE8011, 80118O (2011).
[CrossRef]

Rev. Mex. Fis. (1)

M. B and S. V. y Montiel, “Obtención de los parámetros ópticos de la piel usando algoritmos genéticos y mcml,” Rev. Mex. Fis.57, 375–381 (2011).

Other (9)

T. Vo-Dinh, Biomedical Photonics (CRC Press, 2003).
[CrossRef]

S. Prahl, Inverse Adding-Doubling for Optical Property Measurements (2007), http://omlc.ogi.edu/software/iad/index.html .

L. V. Wang and H. Wu, Biomedical Optics (Wiley, 2007).

H. C. van de Hulst, Multiple Light Scattering (Academic, New York, 1980), Vol 1.

A. C. Guyton and T. E. Hall, Medical Physiology (Elsevier Science, 2006).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Müller and D. H. Sliney, eds. (SPIE, Bellingham, WA, 1989), pp. 102–111.

M. Gen and R. Cheng, Genetic Algorithms and Engineering Design (Wiley, 1997).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Elsevier Science, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for Rd and Td measurements using a system of two integrating spheres.

Fig. 2
Fig. 2

The general structure of a genetic algorithm.

Fig. 3
Fig. 3

Anisotropy factor as a function of anticoagulant (sodium citrate) concentration.

Fig. 4
Fig. 4

Scattering coefficient for human blood as a function of anticoagulant concentration at 633nm wavelength.

Fig. 5
Fig. 5

Anticoagulant concentration effect on the reduced scattering coefficient for human blood at 633nm wavelength.

Tables (5)

Tables Icon

Table 1 Experimental measurements of synthetic phantoms and microspheres solutions used for the GA-MCML validation

Tables Icon

Table 2 Results of the recovery of the optical properties of synthetic phantoms and microspheres solutions using GA-MCML and IAD. Numbers in parenthesis represents percentage errors relative to Mie calculations

Tables Icon

Table 3 Experimental measurements of diffuse reflectance and diffuse transmittance for whole blood at different anticoagulant concentrations

Tables Icon

Table 4 Behavior of μa of whole blood at different anticoagulant concentrations

Tables Icon

Table 5 Optical parameters, mus and g, of blood at different anticoagulant concentrations

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R d = r std R s R dark R 0 R dark
T d = T s T dark T 0 T dark
2 m j 1 < ( b j a j ) × 10 q 2 m j 1
x j = a j + decimal ( substring j ) × b j a j 2 m j 1

Metrics