Abstract

We describe a novel dual-modality imaging approach that integrates diffuse optical tomography (DOT) and photoacoustic imaging (PAI) through a miniaturized handheld probe based on microelectromechanical systems (MEMS) scanning mirror. We validate this dual-modal DOT/PAI approach using extensive phantom experiments, and demonstrate its application for tumor imaging using tumor-bearing mice systematically injected with targeted contrast agents.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Jiang, Diffuse Optical Tomography: Principles and Applications (CRC Press, 2010).
  2. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics3(9), 503–509 (2009).
    [CrossRef] [PubMed]
  3. H. Jiang, N. V. Iftimia, Y. Xu, J. A. Eggert, L. L. Fajardo, and K. L. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol.9(2), 186–194 (2002).
    [CrossRef] [PubMed]
  4. B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008).
    [CrossRef] [PubMed]
  5. Z. Yuan, Q. Zhang, E. Sobel, and H. Jiang, “Three-dimensional diffuse optical tomography of osteoarthritis: initial results in the finger joints,” J. Biomed. Opt.12(3), 034001 (2007).
    [CrossRef] [PubMed]
  6. Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray-guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” J. Biomed. Opt.13(4), 044006 (2008).
    [CrossRef] [PubMed]
  7. J. C. Hebden, “Advances in optical imaging of the newborn infant brain,” Psychophysiology40(4), 501–510 (2003).
    [CrossRef] [PubMed]
  8. D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage23(1Suppl 1), S275–S288 (2004).
    [CrossRef] [PubMed]
  9. C. Li, H. Zhao, B. Anderson, and H. Jiang, “Multispectral breast imaging using a ten-wavelength, 64 x 64 source/detector channels silicon photodiode-based diffuse optical tomography system,” Med. Phys.33(3), 627–636 (2006).
    [CrossRef] [PubMed]
  10. H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multitarget tissuelike phantoms,” Med. Phys.25(2), 183–193 (1998).
    [CrossRef] [PubMed]
  11. Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol.53(7), 1921–1931 (2008).
    [CrossRef] [PubMed]
  12. L. Yin, Q. Wang, Q. Zhang, and H. Jiang, “Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements,” Opt. Lett.32(17), 2556–2558 (2007).
    [CrossRef] [PubMed]
  13. X. Li, L. Xi, R. Jiang, L. Yao, and H. Jiang, “Integrated diffuse optical tomography and photoacoustic tomography: phantom validations,” Biomed. Opt. Express2(8), 2348–2353 (2011).
    [CrossRef] [PubMed]
  14. A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt.16(9), 096016 (2011).
    [CrossRef] [PubMed]
  15. C. Xu, P. D. Kumavor, A. Aguirre, and Q. Zhu, “Investigation of a diffuse optical tomography-assisted quantitative photoacoustic tomography in reflection geometry,” Proc. SPIE7899, 78990U (2011).
    [CrossRef]
  16. W. Jung, D. T. McCormick, Y. C. Ahn, A. Sepehr, M. Brenner, B. Wong, N. C. Tien, and Z. Chen, “In vivo three-dimensional spectral domain endoscopic optical coherence tomography using a microelectromechanical system mirror,” Opt. Lett.32(22), 3239–3241 (2007).
    [CrossRef] [PubMed]
  17. W. Piyawattanametha and T. D. Wang, “MEMS-based dual axes confocal microendoscopy,” IEEE J. Sel. Top. Quantum Electron.16(4), 804–814 (2010).
    [CrossRef] [PubMed]
  18. L. Xi, J. Sun, Y. Zhu, L. Wu, H. Xie, and H. Jiang, “Photoacoustic imaging based on MEMS mirror scanning,” Biomed. Opt. Express1(5), 1278–1283 (2010).
    [CrossRef] [PubMed]
  19. L. Xi, S. R. Grobmyer, L. Wu, R. Chen, G. Zhou, L. G. Gutwein, J. Sun, W. Liao, Q. Zhou, H. Xie, and H. Jiang, “Evaluation of breast tumor margins in vivo with intraoperative photoacoustic imaging,” Opt. Express20(8), 8726–8731 (2012).
    [CrossRef] [PubMed]
  20. C. Li and H. Jiang, “A calibration method in diffuse optical tomography,” J. Opt. A, Pure Appl. Opt.6(9), 844–852 (2004).
    [CrossRef]
  21. H. Jiang, Y. Xu, and N. Iftimia, “Experimental three-dimensional optical image reconstruction of heterogeneous turbid media from continuous-wave data,” Opt. Express7(5), 204–209 (2000).
    [CrossRef] [PubMed]
  22. H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol.43(3), 675–693 (1998).
    [CrossRef] [PubMed]
  23. C. Wu, X. Liang, and H. Jiang, “Metal nanoshells as a contrast agent in near-infrared diffuse optical tomography,” Opt. Commun.253(1-3), 214–221 (2005).
    [CrossRef]
  24. L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res.15(14), 4722–4732 (2009).
    [CrossRef] [PubMed]

2012 (1)

2011 (3)

X. Li, L. Xi, R. Jiang, L. Yao, and H. Jiang, “Integrated diffuse optical tomography and photoacoustic tomography: phantom validations,” Biomed. Opt. Express2(8), 2348–2353 (2011).
[CrossRef] [PubMed]

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt.16(9), 096016 (2011).
[CrossRef] [PubMed]

C. Xu, P. D. Kumavor, A. Aguirre, and Q. Zhu, “Investigation of a diffuse optical tomography-assisted quantitative photoacoustic tomography in reflection geometry,” Proc. SPIE7899, 78990U (2011).
[CrossRef]

2010 (2)

W. Piyawattanametha and T. D. Wang, “MEMS-based dual axes confocal microendoscopy,” IEEE J. Sel. Top. Quantum Electron.16(4), 804–814 (2010).
[CrossRef] [PubMed]

L. Xi, J. Sun, Y. Zhu, L. Wu, H. Xie, and H. Jiang, “Photoacoustic imaging based on MEMS mirror scanning,” Biomed. Opt. Express1(5), 1278–1283 (2010).
[CrossRef] [PubMed]

2009 (2)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics3(9), 503–509 (2009).
[CrossRef] [PubMed]

L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res.15(14), 4722–4732 (2009).
[CrossRef] [PubMed]

2008 (3)

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008).
[CrossRef] [PubMed]

Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray-guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” J. Biomed. Opt.13(4), 044006 (2008).
[CrossRef] [PubMed]

Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol.53(7), 1921–1931 (2008).
[CrossRef] [PubMed]

2007 (3)

2006 (1)

C. Li, H. Zhao, B. Anderson, and H. Jiang, “Multispectral breast imaging using a ten-wavelength, 64 x 64 source/detector channels silicon photodiode-based diffuse optical tomography system,” Med. Phys.33(3), 627–636 (2006).
[CrossRef] [PubMed]

2005 (1)

C. Wu, X. Liang, and H. Jiang, “Metal nanoshells as a contrast agent in near-infrared diffuse optical tomography,” Opt. Commun.253(1-3), 214–221 (2005).
[CrossRef]

2004 (2)

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage23(1Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

C. Li and H. Jiang, “A calibration method in diffuse optical tomography,” J. Opt. A, Pure Appl. Opt.6(9), 844–852 (2004).
[CrossRef]

2003 (1)

J. C. Hebden, “Advances in optical imaging of the newborn infant brain,” Psychophysiology40(4), 501–510 (2003).
[CrossRef] [PubMed]

2002 (1)

H. Jiang, N. V. Iftimia, Y. Xu, J. A. Eggert, L. L. Fajardo, and K. L. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol.9(2), 186–194 (2002).
[CrossRef] [PubMed]

2000 (1)

1998 (2)

H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol.43(3), 675–693 (1998).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multitarget tissuelike phantoms,” Med. Phys.25(2), 183–193 (1998).
[CrossRef] [PubMed]

Aguirre, A.

C. Xu, P. D. Kumavor, A. Aguirre, and Q. Zhu, “Investigation of a diffuse optical tomography-assisted quantitative photoacoustic tomography in reflection geometry,” Proc. SPIE7899, 78990U (2011).
[CrossRef]

Ahn, Y. C.

Anderson, B.

C. Li, H. Zhao, B. Anderson, and H. Jiang, “Multispectral breast imaging using a ten-wavelength, 64 x 64 source/detector channels silicon photodiode-based diffuse optical tomography system,” Med. Phys.33(3), 627–636 (2006).
[CrossRef] [PubMed]

Bauer, A. Q.

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt.16(9), 096016 (2011).
[CrossRef] [PubMed]

Boas, D. A.

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage23(1Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

Brenner, M.

Cao, Z.

L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res.15(14), 4722–4732 (2009).
[CrossRef] [PubMed]

Carney, P. R.

Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol.53(7), 1921–1931 (2008).
[CrossRef] [PubMed]

Cerussi, A. E.

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008).
[CrossRef] [PubMed]

Chen, H.

Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol.53(7), 1921–1931 (2008).
[CrossRef] [PubMed]

Chen, R.

Chen, Z.

Culver, J. P.

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt.16(9), 096016 (2011).
[CrossRef] [PubMed]

Dale, A. M.

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage23(1Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

Eggert, J. A.

H. Jiang, N. V. Iftimia, Y. Xu, J. A. Eggert, L. L. Fajardo, and K. L. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol.9(2), 186–194 (2002).
[CrossRef] [PubMed]

Erpelding, T. N.

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt.16(9), 096016 (2011).
[CrossRef] [PubMed]

Fajardo, L. L.

H. Jiang, N. V. Iftimia, Y. Xu, J. A. Eggert, L. L. Fajardo, and K. L. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol.9(2), 186–194 (2002).
[CrossRef] [PubMed]

Franceschini, M. A.

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage23(1Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

Gao, X.

L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res.15(14), 4722–4732 (2009).
[CrossRef] [PubMed]

Grobmyer, S. R.

Gutwein, L. G.

Hebden, J. C.

J. C. Hebden, “Advances in optical imaging of the newborn infant brain,” Psychophysiology40(4), 501–510 (2003).
[CrossRef] [PubMed]

Iftimia, N.

Iftimia, N. V.

H. Jiang, N. V. Iftimia, Y. Xu, J. A. Eggert, L. L. Fajardo, and K. L. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol.9(2), 186–194 (2002).
[CrossRef] [PubMed]

Jiang, H.

L. Xi, S. R. Grobmyer, L. Wu, R. Chen, G. Zhou, L. G. Gutwein, J. Sun, W. Liao, Q. Zhou, H. Xie, and H. Jiang, “Evaluation of breast tumor margins in vivo with intraoperative photoacoustic imaging,” Opt. Express20(8), 8726–8731 (2012).
[CrossRef] [PubMed]

X. Li, L. Xi, R. Jiang, L. Yao, and H. Jiang, “Integrated diffuse optical tomography and photoacoustic tomography: phantom validations,” Biomed. Opt. Express2(8), 2348–2353 (2011).
[CrossRef] [PubMed]

L. Xi, J. Sun, Y. Zhu, L. Wu, H. Xie, and H. Jiang, “Photoacoustic imaging based on MEMS mirror scanning,” Biomed. Opt. Express1(5), 1278–1283 (2010).
[CrossRef] [PubMed]

Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray-guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” J. Biomed. Opt.13(4), 044006 (2008).
[CrossRef] [PubMed]

Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol.53(7), 1921–1931 (2008).
[CrossRef] [PubMed]

Z. Yuan, Q. Zhang, E. Sobel, and H. Jiang, “Three-dimensional diffuse optical tomography of osteoarthritis: initial results in the finger joints,” J. Biomed. Opt.12(3), 034001 (2007).
[CrossRef] [PubMed]

L. Yin, Q. Wang, Q. Zhang, and H. Jiang, “Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements,” Opt. Lett.32(17), 2556–2558 (2007).
[CrossRef] [PubMed]

C. Li, H. Zhao, B. Anderson, and H. Jiang, “Multispectral breast imaging using a ten-wavelength, 64 x 64 source/detector channels silicon photodiode-based diffuse optical tomography system,” Med. Phys.33(3), 627–636 (2006).
[CrossRef] [PubMed]

C. Wu, X. Liang, and H. Jiang, “Metal nanoshells as a contrast agent in near-infrared diffuse optical tomography,” Opt. Commun.253(1-3), 214–221 (2005).
[CrossRef]

C. Li and H. Jiang, “A calibration method in diffuse optical tomography,” J. Opt. A, Pure Appl. Opt.6(9), 844–852 (2004).
[CrossRef]

H. Jiang, N. V. Iftimia, Y. Xu, J. A. Eggert, L. L. Fajardo, and K. L. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol.9(2), 186–194 (2002).
[CrossRef] [PubMed]

H. Jiang, Y. Xu, and N. Iftimia, “Experimental three-dimensional optical image reconstruction of heterogeneous turbid media from continuous-wave data,” Opt. Express7(5), 204–209 (2000).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multitarget tissuelike phantoms,” Med. Phys.25(2), 183–193 (1998).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol.43(3), 675–693 (1998).
[CrossRef] [PubMed]

Jiang, R.

Jung, W.

Karna, P.

L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res.15(14), 4722–4732 (2009).
[CrossRef] [PubMed]

Klove, K. L.

H. Jiang, N. V. Iftimia, Y. Xu, J. A. Eggert, L. L. Fajardo, and K. L. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol.9(2), 186–194 (2002).
[CrossRef] [PubMed]

Kumavor, P. D.

C. Xu, P. D. Kumavor, A. Aguirre, and Q. Zhu, “Investigation of a diffuse optical tomography-assisted quantitative photoacoustic tomography in reflection geometry,” Proc. SPIE7899, 78990U (2011).
[CrossRef]

Li, C.

C. Li, H. Zhao, B. Anderson, and H. Jiang, “Multispectral breast imaging using a ten-wavelength, 64 x 64 source/detector channels silicon photodiode-based diffuse optical tomography system,” Med. Phys.33(3), 627–636 (2006).
[CrossRef] [PubMed]

C. Li and H. Jiang, “A calibration method in diffuse optical tomography,” J. Opt. A, Pure Appl. Opt.6(9), 844–852 (2004).
[CrossRef]

Li, X.

Liang, X.

C. Wu, X. Liang, and H. Jiang, “Metal nanoshells as a contrast agent in near-infrared diffuse optical tomography,” Opt. Commun.253(1-3), 214–221 (2005).
[CrossRef]

Liao, W.

Liu, Z.

Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol.53(7), 1921–1931 (2008).
[CrossRef] [PubMed]

Mao, H.

L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res.15(14), 4722–4732 (2009).
[CrossRef] [PubMed]

McCormick, D. T.

Ni, C.

L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res.15(14), 4722–4732 (2009).
[CrossRef] [PubMed]

Nie, S.

L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res.15(14), 4722–4732 (2009).
[CrossRef] [PubMed]

Nothdurft, R. E.

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt.16(9), 096016 (2011).
[CrossRef] [PubMed]

Osterberg, U. L.

H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol.43(3), 675–693 (1998).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multitarget tissuelike phantoms,” Med. Phys.25(2), 183–193 (1998).
[CrossRef] [PubMed]

Patterson, M. S.

H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multitarget tissuelike phantoms,” Med. Phys.25(2), 183–193 (1998).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol.43(3), 675–693 (1998).
[CrossRef] [PubMed]

Paulsen, K. D.

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multitarget tissuelike phantoms,” Med. Phys.25(2), 183–193 (1998).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol.43(3), 675–693 (1998).
[CrossRef] [PubMed]

Peng, X. H.

L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res.15(14), 4722–4732 (2009).
[CrossRef] [PubMed]

Piyawattanametha, W.

W. Piyawattanametha and T. D. Wang, “MEMS-based dual axes confocal microendoscopy,” IEEE J. Sel. Top. Quantum Electron.16(4), 804–814 (2010).
[CrossRef] [PubMed]

Pogue, B. W.

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008).
[CrossRef] [PubMed]

Roper, S. N.

Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol.53(7), 1921–1931 (2008).
[CrossRef] [PubMed]

Sepehr, A.

Sobel, E.

Z. Yuan, Q. Zhang, E. Sobel, and H. Jiang, “Three-dimensional diffuse optical tomography of osteoarthritis: initial results in the finger joints,” J. Biomed. Opt.12(3), 034001 (2007).
[CrossRef] [PubMed]

Sobel, E. S.

Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray-guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” J. Biomed. Opt.13(4), 044006 (2008).
[CrossRef] [PubMed]

Sun, J.

Tien, N. C.

Tromberg, B. J.

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008).
[CrossRef] [PubMed]

Wang, L. V.

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt.16(9), 096016 (2011).
[CrossRef] [PubMed]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics3(9), 503–509 (2009).
[CrossRef] [PubMed]

Wang, Q.

Wang, T. D.

W. Piyawattanametha and T. D. Wang, “MEMS-based dual axes confocal microendoscopy,” IEEE J. Sel. Top. Quantum Electron.16(4), 804–814 (2010).
[CrossRef] [PubMed]

Wang, X.

L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res.15(14), 4722–4732 (2009).
[CrossRef] [PubMed]

Wang, Y. A.

L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res.15(14), 4722–4732 (2009).
[CrossRef] [PubMed]

Wong, B.

Wood, W. C.

L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res.15(14), 4722–4732 (2009).
[CrossRef] [PubMed]

Wu, C.

C. Wu, X. Liang, and H. Jiang, “Metal nanoshells as a contrast agent in near-infrared diffuse optical tomography,” Opt. Commun.253(1-3), 214–221 (2005).
[CrossRef]

Wu, L.

Xi, L.

Xie, H.

Xu, C.

C. Xu, P. D. Kumavor, A. Aguirre, and Q. Zhu, “Investigation of a diffuse optical tomography-assisted quantitative photoacoustic tomography in reflection geometry,” Proc. SPIE7899, 78990U (2011).
[CrossRef]

Xu, Y.

H. Jiang, N. V. Iftimia, Y. Xu, J. A. Eggert, L. L. Fajardo, and K. L. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol.9(2), 186–194 (2002).
[CrossRef] [PubMed]

H. Jiang, Y. Xu, and N. Iftimia, “Experimental three-dimensional optical image reconstruction of heterogeneous turbid media from continuous-wave data,” Opt. Express7(5), 204–209 (2000).
[CrossRef] [PubMed]

Yang, L.

L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res.15(14), 4722–4732 (2009).
[CrossRef] [PubMed]

Yao, L.

Yin, L.

Yodh, A. G.

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008).
[CrossRef] [PubMed]

Yuan, Z.

Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray-guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” J. Biomed. Opt.13(4), 044006 (2008).
[CrossRef] [PubMed]

Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol.53(7), 1921–1931 (2008).
[CrossRef] [PubMed]

Z. Yuan, Q. Zhang, E. Sobel, and H. Jiang, “Three-dimensional diffuse optical tomography of osteoarthritis: initial results in the finger joints,” J. Biomed. Opt.12(3), 034001 (2007).
[CrossRef] [PubMed]

Zhang, Q.

Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray-guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” J. Biomed. Opt.13(4), 044006 (2008).
[CrossRef] [PubMed]

Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol.53(7), 1921–1931 (2008).
[CrossRef] [PubMed]

Z. Yuan, Q. Zhang, E. Sobel, and H. Jiang, “Three-dimensional diffuse optical tomography of osteoarthritis: initial results in the finger joints,” J. Biomed. Opt.12(3), 034001 (2007).
[CrossRef] [PubMed]

L. Yin, Q. Wang, Q. Zhang, and H. Jiang, “Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements,” Opt. Lett.32(17), 2556–2558 (2007).
[CrossRef] [PubMed]

Zhang, X.

L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res.15(14), 4722–4732 (2009).
[CrossRef] [PubMed]

Zhao, H.

C. Li, H. Zhao, B. Anderson, and H. Jiang, “Multispectral breast imaging using a ten-wavelength, 64 x 64 source/detector channels silicon photodiode-based diffuse optical tomography system,” Med. Phys.33(3), 627–636 (2006).
[CrossRef] [PubMed]

Zhou, G.

Zhou, Q.

Zhu, Q.

C. Xu, P. D. Kumavor, A. Aguirre, and Q. Zhu, “Investigation of a diffuse optical tomography-assisted quantitative photoacoustic tomography in reflection geometry,” Proc. SPIE7899, 78990U (2011).
[CrossRef]

Zhu, Y.

Acad. Radiol. (1)

H. Jiang, N. V. Iftimia, Y. Xu, J. A. Eggert, L. L. Fajardo, and K. L. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol.9(2), 186–194 (2002).
[CrossRef] [PubMed]

Biomed. Opt. Express (2)

Clin. Cancer Res. (1)

L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res.15(14), 4722–4732 (2009).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Piyawattanametha and T. D. Wang, “MEMS-based dual axes confocal microendoscopy,” IEEE J. Sel. Top. Quantum Electron.16(4), 804–814 (2010).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt.16(9), 096016 (2011).
[CrossRef] [PubMed]

Z. Yuan, Q. Zhang, E. Sobel, and H. Jiang, “Three-dimensional diffuse optical tomography of osteoarthritis: initial results in the finger joints,” J. Biomed. Opt.12(3), 034001 (2007).
[CrossRef] [PubMed]

Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray-guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” J. Biomed. Opt.13(4), 044006 (2008).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

C. Li and H. Jiang, “A calibration method in diffuse optical tomography,” J. Opt. A, Pure Appl. Opt.6(9), 844–852 (2004).
[CrossRef]

Med. Phys. (3)

C. Li, H. Zhao, B. Anderson, and H. Jiang, “Multispectral breast imaging using a ten-wavelength, 64 x 64 source/detector channels silicon photodiode-based diffuse optical tomography system,” Med. Phys.33(3), 627–636 (2006).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multitarget tissuelike phantoms,” Med. Phys.25(2), 183–193 (1998).
[CrossRef] [PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics3(9), 503–509 (2009).
[CrossRef] [PubMed]

Neuroimage (1)

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage23(1Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

C. Wu, X. Liang, and H. Jiang, “Metal nanoshells as a contrast agent in near-infrared diffuse optical tomography,” Opt. Commun.253(1-3), 214–221 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Med. Biol. (2)

Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol.53(7), 1921–1931 (2008).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol.43(3), 675–693 (1998).
[CrossRef] [PubMed]

Proc. SPIE (1)

C. Xu, P. D. Kumavor, A. Aguirre, and Q. Zhu, “Investigation of a diffuse optical tomography-assisted quantitative photoacoustic tomography in reflection geometry,” Proc. SPIE7899, 78990U (2011).
[CrossRef]

Psychophysiology (1)

J. C. Hebden, “Advances in optical imaging of the newborn infant brain,” Psychophysiology40(4), 501–510 (2003).
[CrossRef] [PubMed]

Other (1)

H. Jiang, Diffuse Optical Tomography: Principles and Applications (CRC Press, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the PAI/DOT imaging system. Photograph of the MEMS mirror (b) and the integrated optic fibers and ultrasound transducer probe (c).

Fig. 2
Fig. 2

(a) Reconstructed μ a and μ s images from DOT when the target was located at a depth of 4, 5, 6 and 7mm, respectively, in which d is the target depth and the small black box indicates the exact target location. (b) Recovered PAI images when the target was located at a depth of 1.5 and 2.5mm, respectively. The contrast in both the absorption and scattering coefficients was 5:1 for all the cases. Recovered μ a (c) and μ s (d) values along a transect crossing the center of each target (z = 6, 5, 4 and 3mm, respectively) for the images shown in Fig. 2(a).

Fig. 3
Fig. 3

Reconstructed μ a and μ s images from DOT (a) and PAI (b) images for a target having 4, 2, 1 and 0.5mm in diameter, respectively, in which w is the diameter of the target and the black box indicates the exact target location. The contrast in both the absorption and scattering coefficients was 7:1. (c) Normalized photoacoustic signal amplitude along a transect crossing the center of each target for the images shown in (b).

Fig. 4
Fig. 4

Reconstructed μ a and μ s images from DOT (a) and PAI (b) images for a target having 7, 5 and 3 times contrast, respectively. The target had a 4mm diameter and 2mm thickness. The back box in (a) indicates the exact target location. (c) Recovered μ a (left) and μ s (right) values along a transect crossing the center of each target for the images shown in (a). (c) Normalized photoacoustic signal amplitude along a transect crossing the center of each target for the images shown in (b).

Fig. 5
Fig. 5

(a) Photograph of the tumor-bearing mouse without (a) and with contrast agent (100pmole NIR-830-ATF-IONP) (d). A sagittal slice of PAI (b and e) and DOT ( μ a ) (c and f).

Metrics