Abstract

The effect of task-related extracerebral circulatory changes on diffuse optical tomography (DOT) of brain activation was evaluated using experimental data from 14 healthy human subjects and computer simulations. Total hemoglobin responses to weekday-recitation, verbal-fluency, and hand-motor tasks were measured with a high-density optode grid placed on the forehead. The tasks caused varying levels of mental and physical stress, eliciting extracerebral circulatory changes that the reconstruction algorithm was unable to fully distinguish from cerebral hemodynamic changes, resulting in artifacts in the brain activation images. Crosstalk between intra- and extracranial layers was confirmed by the simulations. The extracerebral effects were attenuated by superficial signal regression and depended to some extent on the heart rate, thus allowing identification of hemodynamic changes related to brain activation during the verbal-fluency task. During the hand-motor task, the extracerebral component was stronger, making the separation less clear. DOT provides a tool for distinguishing extracerebral components from signals of cerebral origin. Especially in the case of strong task-related extracerebral circulatory changes, however, sophisticated reconstruction methods are needed to eliminate crosstalk artifacts.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61(1), 70–81 (2012).
    [Crossref] [PubMed]
  2. P. D. Drummond, “Adrenergic receptors in the forehead microcirculation,” Clin. Auton. Res. 6(1), 23–27 (1996).
    [Crossref] [PubMed]
  3. P. D. Drummond, “The effect of adrenergic blockade on blushing and facial flushing,” Psychophysiology 34(2), 163–168 (1997).
    [Crossref] [PubMed]
  4. L. Minati, I. U. Kress, E. Visani, N. Medford, and H. D. Critchley, “Intra- and extra-cranial effects of transient blood pressure changes on brain near-infrared spectroscopy (NIRS) measurements,” J. Neurosci. Methods 197(2), 283–288 (2011).
    [Crossref] [PubMed]
  5. I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol. 645, 307–314 (2009).
    [Crossref] [PubMed]
  6. T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage 57(3), 991–1002 (2011).
    [Crossref] [PubMed]
  7. M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
    [Crossref] [PubMed]
  8. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
    [Crossref]
  9. A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos. Transact. A Math. Phys. Eng. Sci. 367(1900), 3055–3072 (2009).
    [Crossref] [PubMed]
  10. B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
    [Crossref] [PubMed]
  11. N. M. Gregg, B. R. White, B. W. Zeff, A. J. Berger, and J. P. Culver, “Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography,” Front Neuroenergetics 2, 14 (2010).
    [PubMed]
  12. S. P. Koch, C. Habermehl, J. Mehnert, C. H. Schmitz, S. Holtze, A. Villringer, J. Steinbrink, and H. Obrig, “High-resolution optical functional mapping of the human somatosensory cortex,” Front Neuroenergetics 2, 12 (2010).
    [PubMed]
  13. C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
    [Crossref] [PubMed]
  14. I. Nissilä, T. Noponen, K. Kotilahti, T. Katila, L. Lipiäinen, T. Tarvainen, M. Schweiger, and S. Arridge, “Instrumentation and calibration methods for the multichannel measurement of phase and amplitude in optical tomography,” Rev. Sci. Instrum. 76(4), 044302 (2005).
    [Crossref]
  15. H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48(10), D137–D143 (2009).
    [Crossref] [PubMed]
  16. J. Heiskala, M. Pollari, M. Metsäranta, P. E. Grant, and I. Nissilä, “Probabilistic atlas can improve reconstruction from optical imaging of the neonatal brain,” Opt. Express 17(17), 14977–14992 (2009).
    [Crossref] [PubMed]
  17. M. Cope, “The application of near infrared spectroscopy to non invasive monitoring of cerebral oxygenation in the newborn infant,” Ph.D. Thesis (University College London, Department of Medical Physics and Bioengineering, 1991).
  18. Y. Yamashita, A. Maki, and H. Koizumi, “Wavelength dependence of the precision of noninvasive optical measurement of oxy-, deoxy-, and total-hemoglobin concentration,” Med. Phys. 28(6), 1108–1114 (2001).
    [Crossref] [PubMed]
  19. C. R. Genovese, N. A. Lazar, and T. Nichols, “Thresholding of statistical maps in functional neuroimaging using the false discovery rate,” Neuroimage 15(4), 870–878 (2002).
    [Crossref] [PubMed]
  20. J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. M. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, and F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8(1), 87–92 (2003).
    [Crossref] [PubMed]
  21. D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski, R. A. Poldrack, B. R. Rosen, and J. B. Mandeville, “Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?” Phys. Med. Biol. 48(15), 2405–2418 (2003).
    [Crossref] [PubMed]
  22. J. P. Kuhtz-Buschbeck, R. Gilster, S. Wolff, S. Ulmer, H. Siebner, and O. Jansen, “Brain activity is similar during precision and power gripping with light force: an fMRI study,” Neuroimage 40(4), 1469–1481 (2008).
    [Crossref] [PubMed]
  23. S. G. Costafreda, C. H. Y. Fu, L. Lee, B. Everitt, M. J. Brammer, and A. S. David, “A systematic review and quantitative appraisal of fMRI studies of verbal fluency: role of the left inferior frontal gyrus,” Hum. Brain Mapp. 27(10), 799–810 (2006).
    [Crossref] [PubMed]
  24. S. Heim, S. B. Eickhoff, and K. Amunts, “Specialisation in Broca’s region for semantic, phonological, and syntactic fluency?” Neuroimage 40(3), 1362–1368 (2008).
    [Crossref] [PubMed]
  25. P. Hiltunen, S. Särkkä, I. Nissilä, A. Lajunen, and J. Lampinen, “State space regularization in the nonstationary inverse problem for diffuse optical tomography,” Inverse Probl. 27(2), 025009 (2011).
    [Crossref]
  26. J. Heiskala, P. Hiltunen, and I. Nissilä, “Significance of background optical properties, time-resolved information and optode arrangement in diffuse optical imaging of term neonates,” Phys. Med. Biol. 54(3), 535–554 (2009).
    [Crossref] [PubMed]
  27. M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40(4), 548–560 (2003).
    [Crossref] [PubMed]

2012 (2)

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61(1), 70–81 (2012).
[Crossref] [PubMed]

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

2011 (3)

L. Minati, I. U. Kress, E. Visani, N. Medford, and H. D. Critchley, “Intra- and extra-cranial effects of transient blood pressure changes on brain near-infrared spectroscopy (NIRS) measurements,” J. Neurosci. Methods 197(2), 283–288 (2011).
[Crossref] [PubMed]

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage 57(3), 991–1002 (2011).
[Crossref] [PubMed]

P. Hiltunen, S. Särkkä, I. Nissilä, A. Lajunen, and J. Lampinen, “State space regularization in the nonstationary inverse problem for diffuse optical tomography,” Inverse Probl. 27(2), 025009 (2011).
[Crossref]

2010 (2)

N. M. Gregg, B. R. White, B. W. Zeff, A. J. Berger, and J. P. Culver, “Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography,” Front Neuroenergetics 2, 14 (2010).
[PubMed]

S. P. Koch, C. Habermehl, J. Mehnert, C. H. Schmitz, S. Holtze, A. Villringer, J. Steinbrink, and H. Obrig, “High-resolution optical functional mapping of the human somatosensory cortex,” Front Neuroenergetics 2, 12 (2010).
[PubMed]

2009 (5)

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48(10), D137–D143 (2009).
[Crossref] [PubMed]

J. Heiskala, M. Pollari, M. Metsäranta, P. E. Grant, and I. Nissilä, “Probabilistic atlas can improve reconstruction from optical imaging of the neonatal brain,” Opt. Express 17(17), 14977–14992 (2009).
[Crossref] [PubMed]

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos. Transact. A Math. Phys. Eng. Sci. 367(1900), 3055–3072 (2009).
[Crossref] [PubMed]

I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol. 645, 307–314 (2009).
[Crossref] [PubMed]

J. Heiskala, P. Hiltunen, and I. Nissilä, “Significance of background optical properties, time-resolved information and optode arrangement in diffuse optical imaging of term neonates,” Phys. Med. Biol. 54(3), 535–554 (2009).
[Crossref] [PubMed]

2008 (2)

S. Heim, S. B. Eickhoff, and K. Amunts, “Specialisation in Broca’s region for semantic, phonological, and syntactic fluency?” Neuroimage 40(3), 1362–1368 (2008).
[Crossref] [PubMed]

J. P. Kuhtz-Buschbeck, R. Gilster, S. Wolff, S. Ulmer, H. Siebner, and O. Jansen, “Brain activity is similar during precision and power gripping with light force: an fMRI study,” Neuroimage 40(4), 1469–1481 (2008).
[Crossref] [PubMed]

2007 (1)

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[Crossref] [PubMed]

2006 (2)

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[Crossref] [PubMed]

S. G. Costafreda, C. H. Y. Fu, L. Lee, B. Everitt, M. J. Brammer, and A. S. David, “A systematic review and quantitative appraisal of fMRI studies of verbal fluency: role of the left inferior frontal gyrus,” Hum. Brain Mapp. 27(10), 799–810 (2006).
[Crossref] [PubMed]

2005 (1)

I. Nissilä, T. Noponen, K. Kotilahti, T. Katila, L. Lipiäinen, T. Tarvainen, M. Schweiger, and S. Arridge, “Instrumentation and calibration methods for the multichannel measurement of phase and amplitude in optical tomography,” Rev. Sci. Instrum. 76(4), 044302 (2005).
[Crossref]

2003 (3)

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. M. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, and F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8(1), 87–92 (2003).
[Crossref] [PubMed]

D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski, R. A. Poldrack, B. R. Rosen, and J. B. Mandeville, “Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?” Phys. Med. Biol. 48(15), 2405–2418 (2003).
[Crossref] [PubMed]

M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40(4), 548–560 (2003).
[Crossref] [PubMed]

2002 (1)

C. R. Genovese, N. A. Lazar, and T. Nichols, “Thresholding of statistical maps in functional neuroimaging using the false discovery rate,” Neuroimage 15(4), 870–878 (2002).
[Crossref] [PubMed]

2001 (1)

Y. Yamashita, A. Maki, and H. Koizumi, “Wavelength dependence of the precision of noninvasive optical measurement of oxy-, deoxy-, and total-hemoglobin concentration,” Med. Phys. 28(6), 1108–1114 (2001).
[Crossref] [PubMed]

1999 (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[Crossref]

1997 (1)

P. D. Drummond, “The effect of adrenergic blockade on blushing and facial flushing,” Psychophysiology 34(2), 163–168 (1997).
[Crossref] [PubMed]

1996 (1)

P. D. Drummond, “Adrenergic receptors in the forehead microcirculation,” Clin. Auton. Res. 6(1), 23–27 (1996).
[Crossref] [PubMed]

Amunts, K.

S. Heim, S. B. Eickhoff, and K. Amunts, “Specialisation in Broca’s region for semantic, phonological, and syntactic fluency?” Neuroimage 40(3), 1362–1368 (2008).
[Crossref] [PubMed]

Arridge, S.

I. Nissilä, T. Noponen, K. Kotilahti, T. Katila, L. Lipiäinen, T. Tarvainen, M. Schweiger, and S. Arridge, “Instrumentation and calibration methods for the multichannel measurement of phase and amplitude in optical tomography,” Rev. Sci. Instrum. 76(4), 044302 (2005).
[Crossref]

Arridge, S. R.

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[Crossref]

Berger, A. J.

N. M. Gregg, B. R. White, B. W. Zeff, A. J. Berger, and J. P. Culver, “Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography,” Front Neuroenergetics 2, 14 (2010).
[PubMed]

Boas, D. A.

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[Crossref] [PubMed]

D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski, R. A. Poldrack, B. R. Rosen, and J. B. Mandeville, “Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?” Phys. Med. Biol. 48(15), 2405–2418 (2003).
[Crossref] [PubMed]

M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40(4), 548–560 (2003).
[Crossref] [PubMed]

Brammer, M. J.

S. G. Costafreda, C. H. Y. Fu, L. Lee, B. Everitt, M. J. Brammer, and A. S. David, “A systematic review and quantitative appraisal of fMRI studies of verbal fluency: role of the left inferior frontal gyrus,” Hum. Brain Mapp. 27(10), 799–810 (2006).
[Crossref] [PubMed]

Brühl, R.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61(1), 70–81 (2012).
[Crossref] [PubMed]

Chopra, A.

I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol. 645, 307–314 (2009).
[Crossref] [PubMed]

Costafreda, S. G.

S. G. Costafreda, C. H. Y. Fu, L. Lee, B. Everitt, M. J. Brammer, and A. S. David, “A systematic review and quantitative appraisal of fMRI studies of verbal fluency: role of the left inferior frontal gyrus,” Hum. Brain Mapp. 27(10), 799–810 (2006).
[Crossref] [PubMed]

Critchley, H. D.

L. Minati, I. U. Kress, E. Visani, N. Medford, and H. D. Critchley, “Intra- and extra-cranial effects of transient blood pressure changes on brain near-infrared spectroscopy (NIRS) measurements,” J. Neurosci. Methods 197(2), 283–288 (2011).
[Crossref] [PubMed]

Culver, J. P.

N. M. Gregg, B. R. White, B. W. Zeff, A. J. Berger, and J. P. Culver, “Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography,” Front Neuroenergetics 2, 14 (2010).
[PubMed]

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48(10), D137–D143 (2009).
[Crossref] [PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[Crossref] [PubMed]

M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40(4), 548–560 (2003).
[Crossref] [PubMed]

D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski, R. A. Poldrack, B. R. Rosen, and J. B. Mandeville, “Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?” Phys. Med. Biol. 48(15), 2405–2418 (2003).
[Crossref] [PubMed]

David, A. S.

S. G. Costafreda, C. H. Y. Fu, L. Lee, B. Everitt, M. J. Brammer, and A. S. David, “A systematic review and quantitative appraisal of fMRI studies of verbal fluency: role of the left inferior frontal gyrus,” Hum. Brain Mapp. 27(10), 799–810 (2006).
[Crossref] [PubMed]

Dehghani, H.

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48(10), D137–D143 (2009).
[Crossref] [PubMed]

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos. Transact. A Math. Phys. Eng. Sci. 367(1900), 3055–3072 (2009).
[Crossref] [PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[Crossref] [PubMed]

Delpy, D. T.

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. M. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, and F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8(1), 87–92 (2003).
[Crossref] [PubMed]

Diamond, S. G.

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[Crossref] [PubMed]

Drummond, P. D.

P. D. Drummond, “The effect of adrenergic blockade on blushing and facial flushing,” Psychophysiology 34(2), 163–168 (1997).
[Crossref] [PubMed]

P. D. Drummond, “Adrenergic receptors in the forehead microcirculation,” Clin. Auton. Res. 6(1), 23–27 (1996).
[Crossref] [PubMed]

Eickhoff, S. B.

S. Heim, S. B. Eickhoff, and K. Amunts, “Specialisation in Broca’s region for semantic, phonological, and syntactic fluency?” Neuroimage 40(3), 1362–1368 (2008).
[Crossref] [PubMed]

Elwell, C. E.

I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol. 645, 307–314 (2009).
[Crossref] [PubMed]

Everdell, N.

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. M. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, and F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8(1), 87–92 (2003).
[Crossref] [PubMed]

Everitt, B.

S. G. Costafreda, C. H. Y. Fu, L. Lee, B. Everitt, M. J. Brammer, and A. S. David, “A systematic review and quantitative appraisal of fMRI studies of verbal fluency: role of the left inferior frontal gyrus,” Hum. Brain Mapp. 27(10), 799–810 (2006).
[Crossref] [PubMed]

Fantini, S.

M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40(4), 548–560 (2003).
[Crossref] [PubMed]

Franceschini, M. A.

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[Crossref] [PubMed]

M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40(4), 548–560 (2003).
[Crossref] [PubMed]

Fu, C. H. Y.

S. G. Costafreda, C. H. Y. Fu, L. Lee, B. Everitt, M. J. Brammer, and A. S. David, “A systematic review and quantitative appraisal of fMRI studies of verbal fluency: role of the left inferior frontal gyrus,” Hum. Brain Mapp. 27(10), 799–810 (2006).
[Crossref] [PubMed]

Genovese, C. R.

C. R. Genovese, N. A. Lazar, and T. Nichols, “Thresholding of statistical maps in functional neuroimaging using the false discovery rate,” Neuroimage 15(4), 870–878 (2002).
[Crossref] [PubMed]

Gibson, A.

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos. Transact. A Math. Phys. Eng. Sci. 367(1900), 3055–3072 (2009).
[Crossref] [PubMed]

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. M. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, and F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8(1), 87–92 (2003).
[Crossref] [PubMed]

Gilster, R.

J. P. Kuhtz-Buschbeck, R. Gilster, S. Wolff, S. Ulmer, H. Siebner, and O. Jansen, “Brain activity is similar during precision and power gripping with light force: an fMRI study,” Neuroimage 40(4), 1469–1481 (2008).
[Crossref] [PubMed]

Gonzalez, F. M.

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. M. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, and F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8(1), 87–92 (2003).
[Crossref] [PubMed]

Grant, P. E.

Gregg, N. M.

N. M. Gregg, B. R. White, B. W. Zeff, A. J. Berger, and J. P. Culver, “Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography,” Front Neuroenergetics 2, 14 (2010).
[PubMed]

Habermehl, C.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

S. P. Koch, C. Habermehl, J. Mehnert, C. H. Schmitz, S. Holtze, A. Villringer, J. Steinbrink, and H. Obrig, “High-resolution optical functional mapping of the human somatosensory cortex,” Front Neuroenergetics 2, 12 (2010).
[PubMed]

Hebden, J. C.

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. M. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, and F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8(1), 87–92 (2003).
[Crossref] [PubMed]

Heim, S.

S. Heim, S. B. Eickhoff, and K. Amunts, “Specialisation in Broca’s region for semantic, phonological, and syntactic fluency?” Neuroimage 40(3), 1362–1368 (2008).
[Crossref] [PubMed]

Heine, A.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61(1), 70–81 (2012).
[Crossref] [PubMed]

Heiskala, J.

J. Heiskala, P. Hiltunen, and I. Nissilä, “Significance of background optical properties, time-resolved information and optode arrangement in diffuse optical imaging of term neonates,” Phys. Med. Biol. 54(3), 535–554 (2009).
[Crossref] [PubMed]

J. Heiskala, M. Pollari, M. Metsäranta, P. E. Grant, and I. Nissilä, “Probabilistic atlas can improve reconstruction from optical imaging of the neonatal brain,” Opt. Express 17(17), 14977–14992 (2009).
[Crossref] [PubMed]

Hillman, E. M. C.

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. M. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, and F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8(1), 87–92 (2003).
[Crossref] [PubMed]

Hiltunen, P.

P. Hiltunen, S. Särkkä, I. Nissilä, A. Lajunen, and J. Lampinen, “State space regularization in the nonstationary inverse problem for diffuse optical tomography,” Inverse Probl. 27(2), 025009 (2011).
[Crossref]

J. Heiskala, P. Hiltunen, and I. Nissilä, “Significance of background optical properties, time-resolved information and optode arrangement in diffuse optical imaging of term neonates,” Phys. Med. Biol. 54(3), 535–554 (2009).
[Crossref] [PubMed]

Hoge, R. D.

D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski, R. A. Poldrack, B. R. Rosen, and J. B. Mandeville, “Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?” Phys. Med. Biol. 48(15), 2405–2418 (2003).
[Crossref] [PubMed]

Holtze, S.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

S. P. Koch, C. Habermehl, J. Mehnert, C. H. Schmitz, S. Holtze, A. Villringer, J. Steinbrink, and H. Obrig, “High-resolution optical functional mapping of the human somatosensory cortex,” Front Neuroenergetics 2, 12 (2010).
[PubMed]

Huppert, T. J.

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[Crossref] [PubMed]

Ittermann, B.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61(1), 70–81 (2012).
[Crossref] [PubMed]

Iwano, T.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage 57(3), 991–1002 (2011).
[Crossref] [PubMed]

Jacobs, A. M.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61(1), 70–81 (2012).
[Crossref] [PubMed]

Jansen, O.

J. P. Kuhtz-Buschbeck, R. Gilster, S. Wolff, S. Ulmer, H. Siebner, and O. Jansen, “Brain activity is similar during precision and power gripping with light force: an fMRI study,” Neuroimage 40(4), 1469–1481 (2008).
[Crossref] [PubMed]

Jasdzewski, G.

D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski, R. A. Poldrack, B. R. Rosen, and J. B. Mandeville, “Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?” Phys. Med. Biol. 48(15), 2405–2418 (2003).
[Crossref] [PubMed]

Jelzow, A.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61(1), 70–81 (2012).
[Crossref] [PubMed]

Joseph, D. K.

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[Crossref] [PubMed]

Katila, T.

I. Nissilä, T. Noponen, K. Kotilahti, T. Katila, L. Lipiäinen, T. Tarvainen, M. Schweiger, and S. Arridge, “Instrumentation and calibration methods for the multichannel measurement of phase and amplitude in optical tomography,” Rev. Sci. Instrum. 76(4), 044302 (2005).
[Crossref]

Kawagoe, R.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage 57(3), 991–1002 (2011).
[Crossref] [PubMed]

Kirilina, E.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61(1), 70–81 (2012).
[Crossref] [PubMed]

Kitazawa, S.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage 57(3), 991–1002 (2011).
[Crossref] [PubMed]

Koch, S. P.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

S. P. Koch, C. Habermehl, J. Mehnert, C. H. Schmitz, S. Holtze, A. Villringer, J. Steinbrink, and H. Obrig, “High-resolution optical functional mapping of the human somatosensory cortex,” Front Neuroenergetics 2, 12 (2010).
[PubMed]

Koh, P. H.

I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol. 645, 307–314 (2009).
[Crossref] [PubMed]

Koizumi, H.

Y. Yamashita, A. Maki, and H. Koizumi, “Wavelength dependence of the precision of noninvasive optical measurement of oxy-, deoxy-, and total-hemoglobin concentration,” Med. Phys. 28(6), 1108–1114 (2001).
[Crossref] [PubMed]

Kotilahti, K.

I. Nissilä, T. Noponen, K. Kotilahti, T. Katila, L. Lipiäinen, T. Tarvainen, M. Schweiger, and S. Arridge, “Instrumentation and calibration methods for the multichannel measurement of phase and amplitude in optical tomography,” Rev. Sci. Instrum. 76(4), 044302 (2005).
[Crossref]

Kress, I. U.

L. Minati, I. U. Kress, E. Visani, N. Medford, and H. D. Critchley, “Intra- and extra-cranial effects of transient blood pressure changes on brain near-infrared spectroscopy (NIRS) measurements,” J. Neurosci. Methods 197(2), 283–288 (2011).
[Crossref] [PubMed]

Kuhtz-Buschbeck, J. P.

J. P. Kuhtz-Buschbeck, R. Gilster, S. Wolff, S. Ulmer, H. Siebner, and O. Jansen, “Brain activity is similar during precision and power gripping with light force: an fMRI study,” Neuroimage 40(4), 1469–1481 (2008).
[Crossref] [PubMed]

Lajunen, A.

P. Hiltunen, S. Särkkä, I. Nissilä, A. Lajunen, and J. Lampinen, “State space regularization in the nonstationary inverse problem for diffuse optical tomography,” Inverse Probl. 27(2), 025009 (2011).
[Crossref]

Lampinen, J.

P. Hiltunen, S. Särkkä, I. Nissilä, A. Lajunen, and J. Lampinen, “State space regularization in the nonstationary inverse problem for diffuse optical tomography,” Inverse Probl. 27(2), 025009 (2011).
[Crossref]

Lazar, N. A.

C. R. Genovese, N. A. Lazar, and T. Nichols, “Thresholding of statistical maps in functional neuroimaging using the false discovery rate,” Neuroimage 15(4), 870–878 (2002).
[Crossref] [PubMed]

Lee, L.

S. G. Costafreda, C. H. Y. Fu, L. Lee, B. Everitt, M. J. Brammer, and A. S. David, “A systematic review and quantitative appraisal of fMRI studies of verbal fluency: role of the left inferior frontal gyrus,” Hum. Brain Mapp. 27(10), 799–810 (2006).
[Crossref] [PubMed]

Leung, T. S.

I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol. 645, 307–314 (2009).
[Crossref] [PubMed]

Lipiäinen, L.

I. Nissilä, T. Noponen, K. Kotilahti, T. Katila, L. Lipiäinen, T. Tarvainen, M. Schweiger, and S. Arridge, “Instrumentation and calibration methods for the multichannel measurement of phase and amplitude in optical tomography,” Rev. Sci. Instrum. 76(4), 044302 (2005).
[Crossref]

Maki, A.

Y. Yamashita, A. Maki, and H. Koizumi, “Wavelength dependence of the precision of noninvasive optical measurement of oxy-, deoxy-, and total-hemoglobin concentration,” Med. Phys. 28(6), 1108–1114 (2001).
[Crossref] [PubMed]

Mandeville, J. B.

D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski, R. A. Poldrack, B. R. Rosen, and J. B. Mandeville, “Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?” Phys. Med. Biol. 48(15), 2405–2418 (2003).
[Crossref] [PubMed]

Martelli, F.

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. M. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, and F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8(1), 87–92 (2003).
[Crossref] [PubMed]

Medford, N.

L. Minati, I. U. Kress, E. Visani, N. Medford, and H. D. Critchley, “Intra- and extra-cranial effects of transient blood pressure changes on brain near-infrared spectroscopy (NIRS) measurements,” J. Neurosci. Methods 197(2), 283–288 (2011).
[Crossref] [PubMed]

Mehnert, J.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

S. P. Koch, C. Habermehl, J. Mehnert, C. H. Schmitz, S. Holtze, A. Villringer, J. Steinbrink, and H. Obrig, “High-resolution optical functional mapping of the human somatosensory cortex,” Front Neuroenergetics 2, 12 (2010).
[PubMed]

Metsäranta, M.

Minati, L.

L. Minati, I. U. Kress, E. Visani, N. Medford, and H. D. Critchley, “Intra- and extra-cranial effects of transient blood pressure changes on brain near-infrared spectroscopy (NIRS) measurements,” J. Neurosci. Methods 197(2), 283–288 (2011).
[Crossref] [PubMed]

Nichols, T.

C. R. Genovese, N. A. Lazar, and T. Nichols, “Thresholding of statistical maps in functional neuroimaging using the false discovery rate,” Neuroimage 15(4), 870–878 (2002).
[Crossref] [PubMed]

Niessing, M.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61(1), 70–81 (2012).
[Crossref] [PubMed]

Nissilä, I.

P. Hiltunen, S. Särkkä, I. Nissilä, A. Lajunen, and J. Lampinen, “State space regularization in the nonstationary inverse problem for diffuse optical tomography,” Inverse Probl. 27(2), 025009 (2011).
[Crossref]

J. Heiskala, P. Hiltunen, and I. Nissilä, “Significance of background optical properties, time-resolved information and optode arrangement in diffuse optical imaging of term neonates,” Phys. Med. Biol. 54(3), 535–554 (2009).
[Crossref] [PubMed]

J. Heiskala, M. Pollari, M. Metsäranta, P. E. Grant, and I. Nissilä, “Probabilistic atlas can improve reconstruction from optical imaging of the neonatal brain,” Opt. Express 17(17), 14977–14992 (2009).
[Crossref] [PubMed]

I. Nissilä, T. Noponen, K. Kotilahti, T. Katila, L. Lipiäinen, T. Tarvainen, M. Schweiger, and S. Arridge, “Instrumentation and calibration methods for the multichannel measurement of phase and amplitude in optical tomography,” Rev. Sci. Instrum. 76(4), 044302 (2005).
[Crossref]

Noponen, T.

I. Nissilä, T. Noponen, K. Kotilahti, T. Katila, L. Lipiäinen, T. Tarvainen, M. Schweiger, and S. Arridge, “Instrumentation and calibration methods for the multichannel measurement of phase and amplitude in optical tomography,” Rev. Sci. Instrum. 76(4), 044302 (2005).
[Crossref]

Obrig, H.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

S. P. Koch, C. Habermehl, J. Mehnert, C. H. Schmitz, S. Holtze, A. Villringer, J. Steinbrink, and H. Obrig, “High-resolution optical functional mapping of the human somatosensory cortex,” Front Neuroenergetics 2, 12 (2010).
[PubMed]

Poldrack, R. A.

D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski, R. A. Poldrack, B. R. Rosen, and J. B. Mandeville, “Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?” Phys. Med. Biol. 48(15), 2405–2418 (2003).
[Crossref] [PubMed]

Pollari, M.

Reid, C. B.

I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol. 645, 307–314 (2009).
[Crossref] [PubMed]

Rosen, B. R.

D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski, R. A. Poldrack, B. R. Rosen, and J. B. Mandeville, “Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?” Phys. Med. Biol. 48(15), 2405–2418 (2003).
[Crossref] [PubMed]

Särkkä, S.

P. Hiltunen, S. Särkkä, I. Nissilä, A. Lajunen, and J. Lampinen, “State space regularization in the nonstationary inverse problem for diffuse optical tomography,” Inverse Probl. 27(2), 025009 (2011).
[Crossref]

Schlaggar, B. L.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[Crossref] [PubMed]

Schmitz, C. H.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

S. P. Koch, C. Habermehl, J. Mehnert, C. H. Schmitz, S. Holtze, A. Villringer, J. Steinbrink, and H. Obrig, “High-resolution optical functional mapping of the human somatosensory cortex,” Front Neuroenergetics 2, 12 (2010).
[PubMed]

Schweiger, M.

I. Nissilä, T. Noponen, K. Kotilahti, T. Katila, L. Lipiäinen, T. Tarvainen, M. Schweiger, and S. Arridge, “Instrumentation and calibration methods for the multichannel measurement of phase and amplitude in optical tomography,” Rev. Sci. Instrum. 76(4), 044302 (2005).
[Crossref]

Shibuya, S.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage 57(3), 991–1002 (2011).
[Crossref] [PubMed]

Siebner, H.

J. P. Kuhtz-Buschbeck, R. Gilster, S. Wolff, S. Ulmer, H. Siebner, and O. Jansen, “Brain activity is similar during precision and power gripping with light force: an fMRI study,” Neuroimage 40(4), 1469–1481 (2008).
[Crossref] [PubMed]

Steinbrink, J.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

S. P. Koch, C. Habermehl, J. Mehnert, C. H. Schmitz, S. Holtze, A. Villringer, J. Steinbrink, and H. Obrig, “High-resolution optical functional mapping of the human somatosensory cortex,” Front Neuroenergetics 2, 12 (2010).
[PubMed]

Strangman, G.

D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski, R. A. Poldrack, B. R. Rosen, and J. B. Mandeville, “Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?” Phys. Med. Biol. 48(15), 2405–2418 (2003).
[Crossref] [PubMed]

Tachtsidis, I.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61(1), 70–81 (2012).
[Crossref] [PubMed]

I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol. 645, 307–314 (2009).
[Crossref] [PubMed]

Takahashi, T.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage 57(3), 991–1002 (2011).
[Crossref] [PubMed]

Takikawa, Y.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage 57(3), 991–1002 (2011).
[Crossref] [PubMed]

Tarvainen, T.

I. Nissilä, T. Noponen, K. Kotilahti, T. Katila, L. Lipiäinen, T. Tarvainen, M. Schweiger, and S. Arridge, “Instrumentation and calibration methods for the multichannel measurement of phase and amplitude in optical tomography,” Rev. Sci. Instrum. 76(4), 044302 (2005).
[Crossref]

Thompson, J. H.

M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40(4), 548–560 (2003).
[Crossref] [PubMed]

Tizzard, A.

Ulmer, S.

J. P. Kuhtz-Buschbeck, R. Gilster, S. Wolff, S. Ulmer, H. Siebner, and O. Jansen, “Brain activity is similar during precision and power gripping with light force: an fMRI study,” Neuroimage 40(4), 1469–1481 (2008).
[Crossref] [PubMed]

Villringer, A.

S. P. Koch, C. Habermehl, J. Mehnert, C. H. Schmitz, S. Holtze, A. Villringer, J. Steinbrink, and H. Obrig, “High-resolution optical functional mapping of the human somatosensory cortex,” Front Neuroenergetics 2, 12 (2010).
[PubMed]

Visani, E.

L. Minati, I. U. Kress, E. Visani, N. Medford, and H. D. Critchley, “Intra- and extra-cranial effects of transient blood pressure changes on brain near-infrared spectroscopy (NIRS) measurements,” J. Neurosci. Methods 197(2), 283–288 (2011).
[Crossref] [PubMed]

Wabnitz, H.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61(1), 70–81 (2012).
[Crossref] [PubMed]

White, B. R.

N. M. Gregg, B. R. White, B. W. Zeff, A. J. Berger, and J. P. Culver, “Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography,” Front Neuroenergetics 2, 14 (2010).
[PubMed]

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48(10), D137–D143 (2009).
[Crossref] [PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[Crossref] [PubMed]

Wolff, S.

J. P. Kuhtz-Buschbeck, R. Gilster, S. Wolff, S. Ulmer, H. Siebner, and O. Jansen, “Brain activity is similar during precision and power gripping with light force: an fMRI study,” Neuroimage 40(4), 1469–1481 (2008).
[Crossref] [PubMed]

Yamashita, Y.

Y. Yamashita, A. Maki, and H. Koizumi, “Wavelength dependence of the precision of noninvasive optical measurement of oxy-, deoxy-, and total-hemoglobin concentration,” Med. Phys. 28(6), 1108–1114 (2001).
[Crossref] [PubMed]

Yusof, R. M.

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. M. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, and F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8(1), 87–92 (2003).
[Crossref] [PubMed]

Zaccanti, G.

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. M. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, and F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8(1), 87–92 (2003).
[Crossref] [PubMed]

Zeff, B. W.

N. M. Gregg, B. R. White, B. W. Zeff, A. J. Berger, and J. P. Culver, “Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography,” Front Neuroenergetics 2, 14 (2010).
[PubMed]

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48(10), D137–D143 (2009).
[Crossref] [PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[Crossref] [PubMed]

Adv. Exp. Med. Biol. (1)

I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol. 645, 307–314 (2009).
[Crossref] [PubMed]

Appl. Opt. (1)

Clin. Auton. Res. (1)

P. D. Drummond, “Adrenergic receptors in the forehead microcirculation,” Clin. Auton. Res. 6(1), 23–27 (1996).
[Crossref] [PubMed]

Front Neuroenergetics (2)

N. M. Gregg, B. R. White, B. W. Zeff, A. J. Berger, and J. P. Culver, “Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography,” Front Neuroenergetics 2, 14 (2010).
[PubMed]

S. P. Koch, C. Habermehl, J. Mehnert, C. H. Schmitz, S. Holtze, A. Villringer, J. Steinbrink, and H. Obrig, “High-resolution optical functional mapping of the human somatosensory cortex,” Front Neuroenergetics 2, 12 (2010).
[PubMed]

Hum. Brain Mapp. (1)

S. G. Costafreda, C. H. Y. Fu, L. Lee, B. Everitt, M. J. Brammer, and A. S. David, “A systematic review and quantitative appraisal of fMRI studies of verbal fluency: role of the left inferior frontal gyrus,” Hum. Brain Mapp. 27(10), 799–810 (2006).
[Crossref] [PubMed]

Inverse Probl. (2)

P. Hiltunen, S. Särkkä, I. Nissilä, A. Lajunen, and J. Lampinen, “State space regularization in the nonstationary inverse problem for diffuse optical tomography,” Inverse Probl. 27(2), 025009 (2011).
[Crossref]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[Crossref]

J. Biomed. Opt. (2)

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. M. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, and F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8(1), 87–92 (2003).
[Crossref] [PubMed]

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[Crossref] [PubMed]

J. Neurosci. Methods (1)

L. Minati, I. U. Kress, E. Visani, N. Medford, and H. D. Critchley, “Intra- and extra-cranial effects of transient blood pressure changes on brain near-infrared spectroscopy (NIRS) measurements,” J. Neurosci. Methods 197(2), 283–288 (2011).
[Crossref] [PubMed]

Med. Phys. (1)

Y. Yamashita, A. Maki, and H. Koizumi, “Wavelength dependence of the precision of noninvasive optical measurement of oxy-, deoxy-, and total-hemoglobin concentration,” Med. Phys. 28(6), 1108–1114 (2001).
[Crossref] [PubMed]

Neuroimage (6)

C. R. Genovese, N. A. Lazar, and T. Nichols, “Thresholding of statistical maps in functional neuroimaging using the false discovery rate,” Neuroimage 15(4), 870–878 (2002).
[Crossref] [PubMed]

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61(1), 70–81 (2012).
[Crossref] [PubMed]

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage 57(3), 991–1002 (2011).
[Crossref] [PubMed]

J. P. Kuhtz-Buschbeck, R. Gilster, S. Wolff, S. Ulmer, H. Siebner, and O. Jansen, “Brain activity is similar during precision and power gripping with light force: an fMRI study,” Neuroimage 40(4), 1469–1481 (2008).
[Crossref] [PubMed]

S. Heim, S. B. Eickhoff, and K. Amunts, “Specialisation in Broca’s region for semantic, phonological, and syntactic fluency?” Neuroimage 40(3), 1362–1368 (2008).
[Crossref] [PubMed]

Opt. Express (1)

Philos. Transact. A Math. Phys. Eng. Sci. (1)

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos. Transact. A Math. Phys. Eng. Sci. 367(1900), 3055–3072 (2009).
[Crossref] [PubMed]

Phys. Med. Biol. (2)

J. Heiskala, P. Hiltunen, and I. Nissilä, “Significance of background optical properties, time-resolved information and optode arrangement in diffuse optical imaging of term neonates,” Phys. Med. Biol. 54(3), 535–554 (2009).
[Crossref] [PubMed]

D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski, R. A. Poldrack, B. R. Rosen, and J. B. Mandeville, “Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?” Phys. Med. Biol. 48(15), 2405–2418 (2003).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[Crossref] [PubMed]

Psychophysiology (2)

P. D. Drummond, “The effect of adrenergic blockade on blushing and facial flushing,” Psychophysiology 34(2), 163–168 (1997).
[Crossref] [PubMed]

M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40(4), 548–560 (2003).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

I. Nissilä, T. Noponen, K. Kotilahti, T. Katila, L. Lipiäinen, T. Tarvainen, M. Schweiger, and S. Arridge, “Instrumentation and calibration methods for the multichannel measurement of phase and amplitude in optical tomography,” Rev. Sci. Instrum. 76(4), 044302 (2005).
[Crossref]

Other (1)

M. Cope, “The application of near infrared spectroscopy to non invasive monitoring of cerebral oxygenation in the newborn infant,” Ph.D. Thesis (University College London, Department of Medical Physics and Bioengineering, 1991).

Supplementary Material (1)

» Media 1: AVI (2336 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Task protocol of one measurement session, (b) task description, and (c) positioning of the DOT probe (digitized optode locations of one subject overlaid over the surface rendering of the subject’s MRI). Sources are marked with blue crosses and detectors with red circles. The midline and the 10% perimeter according to the International 10–20 system are depicted with dashed lines. The area presented in the results is shaded.

Fig. 2
Fig. 2

(a) Simulated cerebral change (intracranial projection; corresponds to the shaded area in Fig. 1(c) on the brain surface) and (b) SD of the experimental resting data as a function of the source-to-detector separation (circle: 824 nm, cross: 785 nm) and the fitted exponential function which was utilized for calculating the SD of the simulated noise.

Fig. 3
Fig. 3

Averaged heart-rate time series in separate tasks and heart-rate groups. Vertical dashed lines indicate start of the pre-task, start and end of the task, and end of the post-task period. Shading depicts the 95% confidence interval of the mean.

Fig. 4
Fig. 4

Two-way ANOVA and post-hoc tests for the heart-rate change. Interaction between factors X and Y is marked with X × Y. For all Tukey–Kramer results, p < 10−4. The heart-rate change differed significantly between the heart-rate groups (HR) and tasks, except in the group “small”, where verbal-fluency and hand-motor task did not differ significantly.

Fig. 5
Fig. 5

(a, c) Extra- and (b, d) intracranial projections of reconstructed Δ[HbT] with the regularization parameter αlow (a, b) averaged over task repetitions during the task and post-task periods (whole time course shown in Media 1), or (c, d) averaged over repetitions in specific heart-rate groups during the task period. The projections represent the shaded area in Fig. 1(c) on the scalp (extracranial) or brain surface (intracranial). In (a, b), also statistical t-maps are presented, indicating statistically significant Δ[HbT] during task period with respect to baseline (positive: red; negative: blue). In (c, d) F-maps for the dependence on heart rate are presented. Average heart-rate changes ± SD in the heart-rate groups are indicated also in (c). The average location of pars triangularis is marked with a dotted circle (radius: SD over subjects). In the extracranial projections, the hand-motor task produced the strongest and the weekday-recitation task the weakest Δ[HbT], which depended on the heart rate in the hand-motor and verbal-fluency tasks. Both the verbal-fluency and hand-motor tasks showed also an increase in [HbT] in the intracranial layer located approximately in the pars triangularis.

Fig. 6
Fig. 6

Cases as in Fig. 5, but after SSR. SSR attenuates strong changes in the extracranial layers and the heart-rate dependency of almost all pixels.

Fig. 7
Fig. 7

Δ[HbT] reconstructed from simulated data with regularization parameters αlow and αlhigh and projected into the extra- and intracranial layers (marked with Extra and Intra). The reconstructions with αlow were also calculated after SSR and in a denser hybrid probe that has coaxial sources and detectors. (a) Local cerebral (set 1), (b) homogeneous extracerebral (set 2), (c) local cerebral and strong positive homogeneous extracerebral (set 3), (d) local cerebral and weak positive homogeneous extracerebral (set 4), and (e) local cerebral and weak negative homogeneous extracerebral perturbations (set 5). The projections represent the shaded area in Fig. 1(c).

Fig. 8
Fig. 8

DOT projections in (a) extra- and (b) intracranial layers during task periods of real and sham TMS sessions. The verbal-fluency task has been performed before TMS. Two-sample t-tests showed no statistically significant differences between projections of the two sessions.

Fig. 9
Fig. 9

Cases as in Fig. 5, but reconstructions calculated with the 5-layered head model.

Fig. 10
Fig. 10

Cases as in Fig. 5, but reconstructions calculated with αhigh.

Fig. 11
Fig. 11

Cases as in Fig. 5, but for ∆[HbO2] and with αhigh.

Fig. 12
Fig. 12

Cases as in Fig. 5, but for ∆[HbR] and with αhigh.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔyJΔx 2 +α LΔx 2

Metrics