Abstract

In vivo three-dimensional (3-D) anterior segment biometry before and after cataract surgery was analyzed by using custom high-resolution high-speed anterior segment spectral domain Optical Coherence Tomography (OCT). The system was provided with custom algorithms for denoising, segmentation, full distortion correction (fan and optical) and merging of the anterior segment volumes (cornea, iris, and crystalline lens or IOL), to provide fully quantitative data of the anterior segment of the eye. The method was tested on an in vitro artificial eye with known surfaces geometry at different orientations and demonstrated on an aging cataract patient in vivo. Biometric parameters CCT, ACD/ILP, CLT/ILT Tilt and decentration are retrieved with a very high degree of accuracy. IOL was placed 400 μm behind the natural crystalline lens, The IOL was aligned with a similar orientation of the natural lens (2.47 deg superiorly), but slightly lower amounts (0.77 deg superiorly). The IOL was decentered superiorly (0.39 mm) and nasally (0.26 mm).

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Barbero and S. Marcos, “Analytical tools for customized design of monofocal intraocular lenses,” Opt. Express15(14), 8576–8591 (2007).
    [CrossRef] [PubMed]
  2. R. Bellucci and S. Morselli, “Optimizing higher-order aberrations with intraocular lens technology,” Curr. Opin. Ophthalmol.18(1), 67–73 (2007).
    [CrossRef] [PubMed]
  3. S. Norrby, “Sources of error in intraocular lens power calculation,” J. Cataract Refract. Surg.34(3), 368–376 (2008).
    [CrossRef] [PubMed]
  4. T. Olsen, K. Thim, and L. Corydon, “Theoretical versus SRK I and SRK II calculation of intraocular lens power,” J. Cataract Refract. Surg.16(2), 217–225 (1990).
    [PubMed]
  5. T. Olsen, “Calculation of intraocular lens power: a review,” Acta Ophthalmol. Scand.85(5), 472–485 (2007).
    [CrossRef] [PubMed]
  6. P. R. Preussner, J. Wahl, H. Lahdo, B. Dick, and O. Findl, “Ray tracing for intraocular lens calculation,” J. Cataract Refract. Surg.28(8), 1412–1419 (2002).
    [CrossRef] [PubMed]
  7. J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci.47(10), 4651–4658 (2006).
    [CrossRef] [PubMed]
  8. P. Rosales and S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express15(5), 2204–2218 (2007).
    [CrossRef] [PubMed]
  9. W. Drexler, O. Findl, R. Menapace, G. Rainer, C. Vass, C. K. Hitzenberger, and A. F. Fercher, “Partial coherence interferometry: a novel approach to biometry in cataract surgery,” Am. J. Ophthalmol.126(4), 524–534 (1998).
    [CrossRef] [PubMed]
  10. W. Haigis, B. Lege, N. Miller, and B. Schneider, “Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis,” Graefes Arch. Clin. Exp. Ophthalmol.238(9), 765–773 (2000).
    [CrossRef] [PubMed]
  11. T. Swartz, L. Marten, and M. Wang, “Measuring the cornea: the latest developments in corneal topography,” Curr. Opin. Ophthalmol.18(4), 325–333 (2007).
    [CrossRef] [PubMed]
  12. M. Tang, Y. Li, and D. Huang, “An intraocular lens power calculation formula based on optical coherence tomography: a pilot study,” J. Refract. Surg.26(6), 430–437 (2010).
    [CrossRef] [PubMed]
  13. C. Canovas and P. Artal, “Customized eye models for determining optimized intraocular lenses power,” Biomed. Opt. Express2(6), 1649–1662 (2011).
    [CrossRef] [PubMed]
  14. T. Olsen, “Prediction of the effective postoperative (intraocular lens) anterior chamber depth,” J. Cataract Refract. Surg.32(3), 419–424 (2006).
    [CrossRef] [PubMed]
  15. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001).
    [CrossRef] [PubMed]
  16. P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg.25(5), 421–428 (2009).
    [CrossRef] [PubMed]
  17. P. Artal, S. Marcos, I. Iglesias, and D. G. Green, “Optical modulation transfer and contrast sensitivity with decentered small pupils in the human eye,” Vision Res.36(22), 3575–3586 (1996).
    [CrossRef] [PubMed]
  18. P. Phillips, J. Pérez-Emmanuelli, H. D. Rosskothen, and C. J. Koester, “Measurement of intraocular lens decentration and tilt in vivo,” J. Cataract Refract. Surg.14(2), 129–135 (1988).
    [PubMed]
  19. P. Rosales and S. Marcos, “Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements,” J. Opt. Soc. Am. A23(3), 509–520 (2006).
    [CrossRef] [PubMed]
  20. J. Tabernero, A. Benito, V. Nourrit, and P. Artal, “Instrument for measuring the misalignments of ocular surfaces,” Opt. Express14(22), 10945–10956 (2006).
    [CrossRef] [PubMed]
  21. A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study,” J. Cataract Refract. Surg.33(3), 418–429 (2007).
    [CrossRef] [PubMed]
  22. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009).
    [CrossRef] [PubMed]
  23. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express3(11), 2733–2751 (2012).
    [CrossRef] [PubMed]
  24. J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009).
    [CrossRef] [PubMed]
  25. Y. Li, M. Tang, X. Zhang, C. H. Salaroli, J. L. Ramos, and D. Huang, “Pachymetric mapping with Fourier-domain optical coherence tomography,” J. Cataract Refract. Surg.36(5), 826–831 (2010).
    [CrossRef] [PubMed]
  26. M. C. M. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt.12(6), 064023 (2007).
    [CrossRef] [PubMed]
  27. R. Yadav, K. Ahmad, and G. Yoon, “Scanning system design for large scan depth anterior segment optical coherence tomography,” Opt. Lett.35(11), 1774–1776 (2010).
    [CrossRef] [PubMed]
  28. M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010).
    [CrossRef] [PubMed]
  29. G. Cleary, D. J. Spalton, and J. Marshall, “Anterior chamber depth measurements in eyes with an accommodating intraocular lens: agreement between partial coherence interferometry and optical coherence tomography,” J. Cataract Refract. Surg.36(5), 790–798 (2010).
    [CrossRef] [PubMed]
  30. D. A. Kumar, A. Agarwal, G. Prakash, S. Jacob, Y. Saravanan, and A. Agarwal, “Evaluation of intraocular lens tilt with anterior segment optical coherence tomography,” Am. J. Ophthalmol.151(3), 406–412.e2 (2011).
    [CrossRef] [PubMed]
  31. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt.48(35), 6708–6715 (2009).
    [CrossRef] [PubMed]
  32. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express18(3), 2782–2796 (2010).
    [CrossRef] [PubMed]
  33. S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express2(12), 3232–3247 (2011).
    [CrossRef] [PubMed]
  34. M. Zhao, A. N. Kuo, and J. A. Izatt, “3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea,” Opt. Express18(9), 8923–8936 (2010).
    [CrossRef] [PubMed]
  35. K. Karnowski, B. J. Kaluzny, M. Szkulmowski, M. Gora, and M. Wojtkowski, “Corneal topography with high-speed swept source OCT in clinical examination,” Biomed. Opt. Express2(9), 2709–2720 (2011).
    [CrossRef] [PubMed]
  36. S. Ortiz, P. Pérez-Merino, N. Alejandre, E. Gambra, I. Jimenez-Alfaro, and S. Marcos, “Quantitative OCT-based corneal topography in keratoconus with intracorneal ring segments,” Biomed. Opt. Express3(5), 814–824 (2012).
    [CrossRef] [PubMed]
  37. S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express3(10), 2471–2488 (2012).
    [CrossRef] [PubMed]
  38. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Three-dimensional ray tracing on Delaunay-based reconstructed surfaces,” Appl. Opt.48(20), 3886–3893 (2009).
    [CrossRef] [PubMed]
  39. S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
    [CrossRef] [PubMed]
  40. P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vision8(1), 18 (2008).
    [CrossRef] [PubMed]
  41. M. Dubbelman, V. A. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res.46(6-7), 993–1001 (2006).
    [CrossRef] [PubMed]
  42. M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci.78(6), 411–416 (2001).
    [CrossRef] [PubMed]
  43. J. C. Merriam, L. Zheng, J. E. Merriam, M. Zaider, and B. Lindström, “The effect of incisions for cataract on corneal curvature,” Ophthalmology110(9), 1807–1813 (2003).
    [CrossRef] [PubMed]
  44. S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses,” J. Cataract Refract. Surg.33(2), 217–226 (2007).
    [CrossRef] [PubMed]
  45. B. Lundberg, M. Jonsson, and A. Behndig, “Postoperative corneal swelling correlates strongly to corneal endothelial cell loss after phacoemulsification cataract surgery,” Am. J. Ophthalmol.139(6), 1035–1041 (2005).
    [CrossRef] [PubMed]
  46. Q. Zhang, W. Jin, and Q. Wang, “Repetability, reproducibility, and agreement of central anterior chamber depth measurements in pseudophakic and phakic eyes: optical coherence tomography versus ultrasound biomicroscopy,” J. Cataract Refract. Surg.36(6), 941–946 (2010).
    [CrossRef]

2012 (3)

2011 (4)

2010 (8)

M. Tang, Y. Li, and D. Huang, “An intraocular lens power calculation formula based on optical coherence tomography: a pilot study,” J. Refract. Surg.26(6), 430–437 (2010).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express18(3), 2782–2796 (2010).
[CrossRef] [PubMed]

M. Zhao, A. N. Kuo, and J. A. Izatt, “3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea,” Opt. Express18(9), 8923–8936 (2010).
[CrossRef] [PubMed]

R. Yadav, K. Ahmad, and G. Yoon, “Scanning system design for large scan depth anterior segment optical coherence tomography,” Opt. Lett.35(11), 1774–1776 (2010).
[CrossRef] [PubMed]

M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010).
[CrossRef] [PubMed]

G. Cleary, D. J. Spalton, and J. Marshall, “Anterior chamber depth measurements in eyes with an accommodating intraocular lens: agreement between partial coherence interferometry and optical coherence tomography,” J. Cataract Refract. Surg.36(5), 790–798 (2010).
[CrossRef] [PubMed]

Y. Li, M. Tang, X. Zhang, C. H. Salaroli, J. L. Ramos, and D. Huang, “Pachymetric mapping with Fourier-domain optical coherence tomography,” J. Cataract Refract. Surg.36(5), 826–831 (2010).
[CrossRef] [PubMed]

Q. Zhang, W. Jin, and Q. Wang, “Repetability, reproducibility, and agreement of central anterior chamber depth measurements in pseudophakic and phakic eyes: optical coherence tomography versus ultrasound biomicroscopy,” J. Cataract Refract. Surg.36(6), 941–946 (2010).
[CrossRef]

2009 (5)

2008 (3)

S. Norrby, “Sources of error in intraocular lens power calculation,” J. Cataract Refract. Surg.34(3), 368–376 (2008).
[CrossRef] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vision8(1), 18 (2008).
[CrossRef] [PubMed]

2007 (8)

S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses,” J. Cataract Refract. Surg.33(2), 217–226 (2007).
[CrossRef] [PubMed]

S. Barbero and S. Marcos, “Analytical tools for customized design of monofocal intraocular lenses,” Opt. Express15(14), 8576–8591 (2007).
[CrossRef] [PubMed]

R. Bellucci and S. Morselli, “Optimizing higher-order aberrations with intraocular lens technology,” Curr. Opin. Ophthalmol.18(1), 67–73 (2007).
[CrossRef] [PubMed]

T. Olsen, “Calculation of intraocular lens power: a review,” Acta Ophthalmol. Scand.85(5), 472–485 (2007).
[CrossRef] [PubMed]

P. Rosales and S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express15(5), 2204–2218 (2007).
[CrossRef] [PubMed]

T. Swartz, L. Marten, and M. Wang, “Measuring the cornea: the latest developments in corneal topography,” Curr. Opin. Ophthalmol.18(4), 325–333 (2007).
[CrossRef] [PubMed]

A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study,” J. Cataract Refract. Surg.33(3), 418–429 (2007).
[CrossRef] [PubMed]

M. C. M. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt.12(6), 064023 (2007).
[CrossRef] [PubMed]

2006 (5)

P. Rosales and S. Marcos, “Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements,” J. Opt. Soc. Am. A23(3), 509–520 (2006).
[CrossRef] [PubMed]

J. Tabernero, A. Benito, V. Nourrit, and P. Artal, “Instrument for measuring the misalignments of ocular surfaces,” Opt. Express14(22), 10945–10956 (2006).
[CrossRef] [PubMed]

J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci.47(10), 4651–4658 (2006).
[CrossRef] [PubMed]

T. Olsen, “Prediction of the effective postoperative (intraocular lens) anterior chamber depth,” J. Cataract Refract. Surg.32(3), 419–424 (2006).
[CrossRef] [PubMed]

M. Dubbelman, V. A. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res.46(6-7), 993–1001 (2006).
[CrossRef] [PubMed]

2005 (1)

B. Lundberg, M. Jonsson, and A. Behndig, “Postoperative corneal swelling correlates strongly to corneal endothelial cell loss after phacoemulsification cataract surgery,” Am. J. Ophthalmol.139(6), 1035–1041 (2005).
[CrossRef] [PubMed]

2003 (1)

J. C. Merriam, L. Zheng, J. E. Merriam, M. Zaider, and B. Lindström, “The effect of incisions for cataract on corneal curvature,” Ophthalmology110(9), 1807–1813 (2003).
[CrossRef] [PubMed]

2002 (1)

P. R. Preussner, J. Wahl, H. Lahdo, B. Dick, and O. Findl, “Ray tracing for intraocular lens calculation,” J. Cataract Refract. Surg.28(8), 1412–1419 (2002).
[CrossRef] [PubMed]

2001 (2)

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci.78(6), 411–416 (2001).
[CrossRef] [PubMed]

2000 (1)

W. Haigis, B. Lege, N. Miller, and B. Schneider, “Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis,” Graefes Arch. Clin. Exp. Ophthalmol.238(9), 765–773 (2000).
[CrossRef] [PubMed]

1998 (1)

W. Drexler, O. Findl, R. Menapace, G. Rainer, C. Vass, C. K. Hitzenberger, and A. F. Fercher, “Partial coherence interferometry: a novel approach to biometry in cataract surgery,” Am. J. Ophthalmol.126(4), 524–534 (1998).
[CrossRef] [PubMed]

1996 (1)

P. Artal, S. Marcos, I. Iglesias, and D. G. Green, “Optical modulation transfer and contrast sensitivity with decentered small pupils in the human eye,” Vision Res.36(22), 3575–3586 (1996).
[CrossRef] [PubMed]

1990 (1)

T. Olsen, K. Thim, and L. Corydon, “Theoretical versus SRK I and SRK II calculation of intraocular lens power,” J. Cataract Refract. Surg.16(2), 217–225 (1990).
[PubMed]

1988 (1)

P. Phillips, J. Pérez-Emmanuelli, H. D. Rosskothen, and C. J. Koester, “Measurement of intraocular lens decentration and tilt in vivo,” J. Cataract Refract. Surg.14(2), 129–135 (1988).
[PubMed]

Agarwal, A.

D. A. Kumar, A. Agarwal, G. Prakash, S. Jacob, Y. Saravanan, and A. Agarwal, “Evaluation of intraocular lens tilt with anterior segment optical coherence tomography,” Am. J. Ophthalmol.151(3), 406–412.e2 (2011).
[CrossRef] [PubMed]

D. A. Kumar, A. Agarwal, G. Prakash, S. Jacob, Y. Saravanan, and A. Agarwal, “Evaluation of intraocular lens tilt with anterior segment optical coherence tomography,” Am. J. Ophthalmol.151(3), 406–412.e2 (2011).
[CrossRef] [PubMed]

Ahmad, K.

Alejandre, N.

Artal, P.

C. Canovas and P. Artal, “Customized eye models for determining optimized intraocular lenses power,” Biomed. Opt. Express2(6), 1649–1662 (2011).
[CrossRef] [PubMed]

J. Tabernero, A. Benito, V. Nourrit, and P. Artal, “Instrument for measuring the misalignments of ocular surfaces,” Opt. Express14(22), 10945–10956 (2006).
[CrossRef] [PubMed]

J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci.47(10), 4651–4658 (2006).
[CrossRef] [PubMed]

P. Artal, S. Marcos, I. Iglesias, and D. G. Green, “Optical modulation transfer and contrast sensitivity with decentered small pupils in the human eye,” Vision Res.36(22), 3575–3586 (1996).
[CrossRef] [PubMed]

Barbero, S.

Baumann, B.

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009).
[CrossRef] [PubMed]

Behndig, A.

B. Lundberg, M. Jonsson, and A. Behndig, “Postoperative corneal swelling correlates strongly to corneal endothelial cell loss after phacoemulsification cataract surgery,” Am. J. Ophthalmol.139(6), 1035–1041 (2005).
[CrossRef] [PubMed]

Bellucci, R.

R. Bellucci and S. Morselli, “Optimizing higher-order aberrations with intraocular lens technology,” Curr. Opin. Ophthalmol.18(1), 67–73 (2007).
[CrossRef] [PubMed]

Benito, A.

J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci.47(10), 4651–4658 (2006).
[CrossRef] [PubMed]

J. Tabernero, A. Benito, V. Nourrit, and P. Artal, “Instrument for measuring the misalignments of ocular surfaces,” Opt. Express14(22), 10945–10956 (2006).
[CrossRef] [PubMed]

Borja, D.

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

Cable, A. E.

Canovas, C.

Chen, F.

M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010).
[CrossRef] [PubMed]

Chia, N.

Cleary, G.

G. Cleary, D. J. Spalton, and J. Marshall, “Anterior chamber depth measurements in eyes with an accommodating intraocular lens: agreement between partial coherence interferometry and optical coherence tomography,” J. Cataract Refract. Surg.36(5), 790–798 (2010).
[CrossRef] [PubMed]

Corydon, L.

T. Olsen, K. Thim, and L. Corydon, “Theoretical versus SRK I and SRK II calculation of intraocular lens power,” J. Cataract Refract. Surg.16(2), 217–225 (1990).
[PubMed]

Davies, L. N.

M. C. M. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt.12(6), 064023 (2007).
[CrossRef] [PubMed]

de Castro, A.

Dick, B.

P. R. Preussner, J. Wahl, H. Lahdo, B. Dick, and O. Findl, “Ray tracing for intraocular lens calculation,” J. Cataract Refract. Surg.28(8), 1412–1419 (2002).
[CrossRef] [PubMed]

Drexler, W.

W. Drexler, O. Findl, R. Menapace, G. Rainer, C. Vass, C. K. Hitzenberger, and A. F. Fercher, “Partial coherence interferometry: a novel approach to biometry in cataract surgery,” Am. J. Ophthalmol.126(4), 524–534 (1998).
[CrossRef] [PubMed]

Dubbelman, M.

M. Dubbelman, V. A. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res.46(6-7), 993–1001 (2006).
[CrossRef] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci.78(6), 411–416 (2001).
[CrossRef] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

Duker, J. S.

Dunne, M. C. M.

M. C. M. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt.12(6), 064023 (2007).
[CrossRef] [PubMed]

Fercher, A. F.

W. Drexler, O. Findl, R. Menapace, G. Rainer, C. Vass, C. K. Hitzenberger, and A. F. Fercher, “Partial coherence interferometry: a novel approach to biometry in cataract surgery,” Am. J. Ophthalmol.126(4), 524–534 (1998).
[CrossRef] [PubMed]

Findl, O.

P. R. Preussner, J. Wahl, H. Lahdo, B. Dick, and O. Findl, “Ray tracing for intraocular lens calculation,” J. Cataract Refract. Surg.28(8), 1412–1419 (2002).
[CrossRef] [PubMed]

W. Drexler, O. Findl, R. Menapace, G. Rainer, C. Vass, C. K. Hitzenberger, and A. F. Fercher, “Partial coherence interferometry: a novel approach to biometry in cataract surgery,” Am. J. Ophthalmol.126(4), 524–534 (1998).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gambra, E.

Glasser, A.

P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vision8(1), 18 (2008).
[CrossRef] [PubMed]

Gora, M.

Gorczynska, I.

Götzinger, E.

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009).
[CrossRef] [PubMed]

Green, D. G.

P. Artal, S. Marcos, I. Iglesias, and D. G. Green, “Optical modulation transfer and contrast sensitivity with decentered small pupils in the human eye,” Vision Res.36(22), 3575–3586 (1996).
[CrossRef] [PubMed]

Grulkowski, I.

Haigis, W.

W. Haigis, B. Lege, N. Miller, and B. Schneider, “Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis,” Graefes Arch. Clin. Exp. Ophthalmol.238(9), 765–773 (2000).
[CrossRef] [PubMed]

Hitzenberger, C. K.

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009).
[CrossRef] [PubMed]

W. Drexler, O. Findl, R. Menapace, G. Rainer, C. Vass, C. K. Hitzenberger, and A. F. Fercher, “Partial coherence interferometry: a novel approach to biometry in cataract surgery,” Am. J. Ophthalmol.126(4), 524–534 (1998).
[CrossRef] [PubMed]

Huang, D.

M. Tang, Y. Li, and D. Huang, “An intraocular lens power calculation formula based on optical coherence tomography: a pilot study,” J. Refract. Surg.26(6), 430–437 (2010).
[CrossRef] [PubMed]

Y. Li, M. Tang, X. Zhang, C. H. Salaroli, J. L. Ramos, and D. Huang, “Pachymetric mapping with Fourier-domain optical coherence tomography,” J. Cataract Refract. Surg.36(5), 826–831 (2010).
[CrossRef] [PubMed]

Iglesias, I.

P. Artal, S. Marcos, I. Iglesias, and D. G. Green, “Optical modulation transfer and contrast sensitivity with decentered small pupils in the human eye,” Vision Res.36(22), 3575–3586 (1996).
[CrossRef] [PubMed]

Izatt, J. A.

Jacob, S.

D. A. Kumar, A. Agarwal, G. Prakash, S. Jacob, Y. Saravanan, and A. Agarwal, “Evaluation of intraocular lens tilt with anterior segment optical coherence tomography,” Am. J. Ophthalmol.151(3), 406–412.e2 (2011).
[CrossRef] [PubMed]

Jayaraman, V.

Jiang, J.

Jimenez-Alfaro, I.

Jiménez-Alfaro, I.

S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses,” J. Cataract Refract. Surg.33(2), 217–226 (2007).
[CrossRef] [PubMed]

Jin, W.

Q. Zhang, W. Jin, and Q. Wang, “Repetability, reproducibility, and agreement of central anterior chamber depth measurements in pseudophakic and phakic eyes: optical coherence tomography versus ultrasound biomicroscopy,” J. Cataract Refract. Surg.36(6), 941–946 (2010).
[CrossRef]

Jonsson, M.

B. Lundberg, M. Jonsson, and A. Behndig, “Postoperative corneal swelling correlates strongly to corneal endothelial cell loss after phacoemulsification cataract surgery,” Am. J. Ophthalmol.139(6), 1035–1041 (2005).
[CrossRef] [PubMed]

Jungwirth, J.

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009).
[CrossRef] [PubMed]

Kaluzny, B. J.

Karnowski, K.

Karp, C. L.

M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010).
[CrossRef] [PubMed]

Koester, C. J.

P. Phillips, J. Pérez-Emmanuelli, H. D. Rosskothen, and C. J. Koester, “Measurement of intraocular lens decentration and tilt in vivo,” J. Cataract Refract. Surg.14(2), 129–135 (1988).
[PubMed]

Kowalczyk, A.

Kumar, D. A.

D. A. Kumar, A. Agarwal, G. Prakash, S. Jacob, Y. Saravanan, and A. Agarwal, “Evaluation of intraocular lens tilt with anterior segment optical coherence tomography,” Am. J. Ophthalmol.151(3), 406–412.e2 (2011).
[CrossRef] [PubMed]

Kuo, A. N.

Lahdo, H.

P. R. Preussner, J. Wahl, H. Lahdo, B. Dick, and O. Findl, “Ray tracing for intraocular lens calculation,” J. Cataract Refract. Surg.28(8), 1412–1419 (2002).
[CrossRef] [PubMed]

Lege, B.

W. Haigis, B. Lege, N. Miller, and B. Schneider, “Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis,” Graefes Arch. Clin. Exp. Ophthalmol.238(9), 765–773 (2000).
[CrossRef] [PubMed]

Li, Y.

M. Tang, Y. Li, and D. Huang, “An intraocular lens power calculation formula based on optical coherence tomography: a pilot study,” J. Refract. Surg.26(6), 430–437 (2010).
[CrossRef] [PubMed]

Y. Li, M. Tang, X. Zhang, C. H. Salaroli, J. L. Ramos, and D. Huang, “Pachymetric mapping with Fourier-domain optical coherence tomography,” J. Cataract Refract. Surg.36(5), 826–831 (2010).
[CrossRef] [PubMed]

Lindström, B.

J. C. Merriam, L. Zheng, J. E. Merriam, M. Zaider, and B. Lindström, “The effect of incisions for cataract on corneal curvature,” Ophthalmology110(9), 1807–1813 (2003).
[CrossRef] [PubMed]

Liu, J. J.

Llorente, L.

S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses,” J. Cataract Refract. Surg.33(2), 217–226 (2007).
[CrossRef] [PubMed]

Lu, C. D.

Lundberg, B.

B. Lundberg, M. Jonsson, and A. Behndig, “Postoperative corneal swelling correlates strongly to corneal endothelial cell loss after phacoemulsification cataract surgery,” Am. J. Ophthalmol.139(6), 1035–1041 (2005).
[CrossRef] [PubMed]

Manns, F.

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

Marcos, S.

S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express3(10), 2471–2488 (2012).
[CrossRef] [PubMed]

S. Ortiz, P. Pérez-Merino, N. Alejandre, E. Gambra, I. Jimenez-Alfaro, and S. Marcos, “Quantitative OCT-based corneal topography in keratoconus with intracorneal ring segments,” Biomed. Opt. Express3(5), 814–824 (2012).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express2(12), 3232–3247 (2011).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express18(3), 2782–2796 (2010).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt.48(35), 6708–6715 (2009).
[CrossRef] [PubMed]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009).
[CrossRef] [PubMed]

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg.25(5), 421–428 (2009).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Three-dimensional ray tracing on Delaunay-based reconstructed surfaces,” Appl. Opt.48(20), 3886–3893 (2009).
[CrossRef] [PubMed]

P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vision8(1), 18 (2008).
[CrossRef] [PubMed]

S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses,” J. Cataract Refract. Surg.33(2), 217–226 (2007).
[CrossRef] [PubMed]

A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study,” J. Cataract Refract. Surg.33(3), 418–429 (2007).
[CrossRef] [PubMed]

P. Rosales and S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express15(5), 2204–2218 (2007).
[CrossRef] [PubMed]

S. Barbero and S. Marcos, “Analytical tools for customized design of monofocal intraocular lenses,” Opt. Express15(14), 8576–8591 (2007).
[CrossRef] [PubMed]

P. Rosales and S. Marcos, “Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements,” J. Opt. Soc. Am. A23(3), 509–520 (2006).
[CrossRef] [PubMed]

P. Artal, S. Marcos, I. Iglesias, and D. G. Green, “Optical modulation transfer and contrast sensitivity with decentered small pupils in the human eye,” Vision Res.36(22), 3575–3586 (1996).
[CrossRef] [PubMed]

Marshall, J.

G. Cleary, D. J. Spalton, and J. Marshall, “Anterior chamber depth measurements in eyes with an accommodating intraocular lens: agreement between partial coherence interferometry and optical coherence tomography,” J. Cataract Refract. Surg.36(5), 790–798 (2010).
[CrossRef] [PubMed]

Marten, L.

T. Swartz, L. Marten, and M. Wang, “Measuring the cornea: the latest developments in corneal topography,” Curr. Opin. Ophthalmol.18(4), 325–333 (2007).
[CrossRef] [PubMed]

Menapace, R.

W. Drexler, O. Findl, R. Menapace, G. Rainer, C. Vass, C. K. Hitzenberger, and A. F. Fercher, “Partial coherence interferometry: a novel approach to biometry in cataract surgery,” Am. J. Ophthalmol.126(4), 524–534 (1998).
[CrossRef] [PubMed]

Merriam, J. C.

J. C. Merriam, L. Zheng, J. E. Merriam, M. Zaider, and B. Lindström, “The effect of incisions for cataract on corneal curvature,” Ophthalmology110(9), 1807–1813 (2003).
[CrossRef] [PubMed]

Merriam, J. E.

J. C. Merriam, L. Zheng, J. E. Merriam, M. Zaider, and B. Lindström, “The effect of incisions for cataract on corneal curvature,” Ophthalmology110(9), 1807–1813 (2003).
[CrossRef] [PubMed]

Miller, N.

W. Haigis, B. Lege, N. Miller, and B. Schneider, “Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis,” Graefes Arch. Clin. Exp. Ophthalmol.238(9), 765–773 (2000).
[CrossRef] [PubMed]

Morselli, S.

R. Bellucci and S. Morselli, “Optimizing higher-order aberrations with intraocular lens technology,” Curr. Opin. Ophthalmol.18(1), 67–73 (2007).
[CrossRef] [PubMed]

Norrby, S.

S. Norrby, “Sources of error in intraocular lens power calculation,” J. Cataract Refract. Surg.34(3), 368–376 (2008).
[CrossRef] [PubMed]

Nourrit, V.

Olsen, T.

T. Olsen, “Calculation of intraocular lens power: a review,” Acta Ophthalmol. Scand.85(5), 472–485 (2007).
[CrossRef] [PubMed]

T. Olsen, “Prediction of the effective postoperative (intraocular lens) anterior chamber depth,” J. Cataract Refract. Surg.32(3), 419–424 (2006).
[CrossRef] [PubMed]

T. Olsen, K. Thim, and L. Corydon, “Theoretical versus SRK I and SRK II calculation of intraocular lens power,” J. Cataract Refract. Surg.16(2), 217–225 (1990).
[PubMed]

Ortiz, S.

Parel, J. M.

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

Pascual, D.

Pérez-Emmanuelli, J.

P. Phillips, J. Pérez-Emmanuelli, H. D. Rosskothen, and C. J. Koester, “Measurement of intraocular lens decentration and tilt in vivo,” J. Cataract Refract. Surg.14(2), 129–135 (1988).
[PubMed]

Pérez-Merino, P.

Phillips, P.

P. Phillips, J. Pérez-Emmanuelli, H. D. Rosskothen, and C. J. Koester, “Measurement of intraocular lens decentration and tilt in vivo,” J. Cataract Refract. Surg.14(2), 129–135 (1988).
[PubMed]

Piers, P.

J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci.47(10), 4651–4658 (2006).
[CrossRef] [PubMed]

Pircher, M.

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009).
[CrossRef] [PubMed]

Potsaid, B.

Prakash, G.

D. A. Kumar, A. Agarwal, G. Prakash, S. Jacob, Y. Saravanan, and A. Agarwal, “Evaluation of intraocular lens tilt with anterior segment optical coherence tomography,” Am. J. Ophthalmol.151(3), 406–412.e2 (2011).
[CrossRef] [PubMed]

Preussner, P. R.

P. R. Preussner, J. Wahl, H. Lahdo, B. Dick, and O. Findl, “Ray tracing for intraocular lens calculation,” J. Cataract Refract. Surg.28(8), 1412–1419 (2002).
[CrossRef] [PubMed]

Rainer, G.

W. Drexler, O. Findl, R. Menapace, G. Rainer, C. Vass, C. K. Hitzenberger, and A. F. Fercher, “Partial coherence interferometry: a novel approach to biometry in cataract surgery,” Am. J. Ophthalmol.126(4), 524–534 (1998).
[CrossRef] [PubMed]

Ramos, J. L.

Y. Li, M. Tang, X. Zhang, C. H. Salaroli, J. L. Ramos, and D. Huang, “Pachymetric mapping with Fourier-domain optical coherence tomography,” J. Cataract Refract. Surg.36(5), 826–831 (2010).
[CrossRef] [PubMed]

Redondo, M.

J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci.47(10), 4651–4658 (2006).
[CrossRef] [PubMed]

Remon, L.

Rosales, P.

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg.25(5), 421–428 (2009).
[CrossRef] [PubMed]

P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vision8(1), 18 (2008).
[CrossRef] [PubMed]

S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses,” J. Cataract Refract. Surg.33(2), 217–226 (2007).
[CrossRef] [PubMed]

A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study,” J. Cataract Refract. Surg.33(3), 418–429 (2007).
[CrossRef] [PubMed]

P. Rosales and S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express15(5), 2204–2218 (2007).
[CrossRef] [PubMed]

P. Rosales and S. Marcos, “Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements,” J. Opt. Soc. Am. A23(3), 509–520 (2006).
[CrossRef] [PubMed]

Rosskothen, H. D.

P. Phillips, J. Pérez-Emmanuelli, H. D. Rosskothen, and C. J. Koester, “Measurement of intraocular lens decentration and tilt in vivo,” J. Cataract Refract. Surg.14(2), 129–135 (1988).
[PubMed]

Salaroli, C. H.

Y. Li, M. Tang, X. Zhang, C. H. Salaroli, J. L. Ramos, and D. Huang, “Pachymetric mapping with Fourier-domain optical coherence tomography,” J. Cataract Refract. Surg.36(5), 826–831 (2010).
[CrossRef] [PubMed]

Saravanan, Y.

D. A. Kumar, A. Agarwal, G. Prakash, S. Jacob, Y. Saravanan, and A. Agarwal, “Evaluation of intraocular lens tilt with anterior segment optical coherence tomography,” Am. J. Ophthalmol.151(3), 406–412.e2 (2011).
[CrossRef] [PubMed]

Schneider, B.

W. Haigis, B. Lege, N. Miller, and B. Schneider, “Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis,” Graefes Arch. Clin. Exp. Ophthalmol.238(9), 765–773 (2000).
[CrossRef] [PubMed]

Shen, M.

M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010).
[CrossRef] [PubMed]

Sicam, V. A.

M. Dubbelman, V. A. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res.46(6-7), 993–1001 (2006).
[CrossRef] [PubMed]

Siedlecki, D.

Spalton, D. J.

G. Cleary, D. J. Spalton, and J. Marshall, “Anterior chamber depth measurements in eyes with an accommodating intraocular lens: agreement between partial coherence interferometry and optical coherence tomography,” J. Cataract Refract. Surg.36(5), 790–798 (2010).
[CrossRef] [PubMed]

Swartz, T.

T. Swartz, L. Marten, and M. Wang, “Measuring the cornea: the latest developments in corneal topography,” Curr. Opin. Ophthalmol.18(4), 325–333 (2007).
[CrossRef] [PubMed]

Szkulmowski, M.

Szlag, D.

Tabernero, J.

J. Tabernero, A. Benito, V. Nourrit, and P. Artal, “Instrument for measuring the misalignments of ocular surfaces,” Opt. Express14(22), 10945–10956 (2006).
[CrossRef] [PubMed]

J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci.47(10), 4651–4658 (2006).
[CrossRef] [PubMed]

Tang, M.

M. Tang, Y. Li, and D. Huang, “An intraocular lens power calculation formula based on optical coherence tomography: a pilot study,” J. Refract. Surg.26(6), 430–437 (2010).
[CrossRef] [PubMed]

Y. Li, M. Tang, X. Zhang, C. H. Salaroli, J. L. Ramos, and D. Huang, “Pachymetric mapping with Fourier-domain optical coherence tomography,” J. Cataract Refract. Surg.36(5), 826–831 (2010).
[CrossRef] [PubMed]

Thim, K.

T. Olsen, K. Thim, and L. Corydon, “Theoretical versus SRK I and SRK II calculation of intraocular lens power,” J. Cataract Refract. Surg.16(2), 217–225 (1990).
[PubMed]

Uhlhorn, S. R.

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

Van der Heijde, G. L.

M. Dubbelman, V. A. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res.46(6-7), 993–1001 (2006).
[CrossRef] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci.78(6), 411–416 (2001).
[CrossRef] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

Vass, C.

W. Drexler, O. Findl, R. Menapace, G. Rainer, C. Vass, C. K. Hitzenberger, and A. F. Fercher, “Partial coherence interferometry: a novel approach to biometry in cataract surgery,” Am. J. Ophthalmol.126(4), 524–534 (1998).
[CrossRef] [PubMed]

Wahl, J.

P. R. Preussner, J. Wahl, H. Lahdo, B. Dick, and O. Findl, “Ray tracing for intraocular lens calculation,” J. Cataract Refract. Surg.28(8), 1412–1419 (2002).
[CrossRef] [PubMed]

Wang, J.

M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010).
[CrossRef] [PubMed]

Wang, M.

T. Swartz, L. Marten, and M. Wang, “Measuring the cornea: the latest developments in corneal topography,” Curr. Opin. Ophthalmol.18(4), 325–333 (2007).
[CrossRef] [PubMed]

Wang, M. R.

M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010).
[CrossRef] [PubMed]

Wang, Q.

Q. Zhang, W. Jin, and Q. Wang, “Repetability, reproducibility, and agreement of central anterior chamber depth measurements in pseudophakic and phakic eyes: optical coherence tomography versus ultrasound biomicroscopy,” J. Cataract Refract. Surg.36(6), 941–946 (2010).
[CrossRef]

Weeber, H. A.

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci.78(6), 411–416 (2001).
[CrossRef] [PubMed]

Wendt, M.

P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vision8(1), 18 (2008).
[CrossRef] [PubMed]

Wojtkowski, M.

Wolffsohn, J. S.

M. C. M. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt.12(6), 064023 (2007).
[CrossRef] [PubMed]

Yadav, R.

Yoo, S. H.

M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010).
[CrossRef] [PubMed]

Yoon, G.

Yuan, Y.

M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010).
[CrossRef] [PubMed]

Zaider, M.

J. C. Merriam, L. Zheng, J. E. Merriam, M. Zaider, and B. Lindström, “The effect of incisions for cataract on corneal curvature,” Ophthalmology110(9), 1807–1813 (2003).
[CrossRef] [PubMed]

Zhang, Q.

Q. Zhang, W. Jin, and Q. Wang, “Repetability, reproducibility, and agreement of central anterior chamber depth measurements in pseudophakic and phakic eyes: optical coherence tomography versus ultrasound biomicroscopy,” J. Cataract Refract. Surg.36(6), 941–946 (2010).
[CrossRef]

Zhang, X.

Y. Li, M. Tang, X. Zhang, C. H. Salaroli, J. L. Ramos, and D. Huang, “Pachymetric mapping with Fourier-domain optical coherence tomography,” J. Cataract Refract. Surg.36(5), 826–831 (2010).
[CrossRef] [PubMed]

Zhao, M.

Zheng, L.

J. C. Merriam, L. Zheng, J. E. Merriam, M. Zaider, and B. Lindström, “The effect of incisions for cataract on corneal curvature,” Ophthalmology110(9), 1807–1813 (2003).
[CrossRef] [PubMed]

Acta Ophthalmol. Scand. (1)

T. Olsen, “Calculation of intraocular lens power: a review,” Acta Ophthalmol. Scand.85(5), 472–485 (2007).
[CrossRef] [PubMed]

Am. J. Ophthalmol. (3)

W. Drexler, O. Findl, R. Menapace, G. Rainer, C. Vass, C. K. Hitzenberger, and A. F. Fercher, “Partial coherence interferometry: a novel approach to biometry in cataract surgery,” Am. J. Ophthalmol.126(4), 524–534 (1998).
[CrossRef] [PubMed]

D. A. Kumar, A. Agarwal, G. Prakash, S. Jacob, Y. Saravanan, and A. Agarwal, “Evaluation of intraocular lens tilt with anterior segment optical coherence tomography,” Am. J. Ophthalmol.151(3), 406–412.e2 (2011).
[CrossRef] [PubMed]

B. Lundberg, M. Jonsson, and A. Behndig, “Postoperative corneal swelling correlates strongly to corneal endothelial cell loss after phacoemulsification cataract surgery,” Am. J. Ophthalmol.139(6), 1035–1041 (2005).
[CrossRef] [PubMed]

Appl. Opt. (2)

Biomed. Opt. Express (6)

Curr. Opin. Ophthalmol. (2)

T. Swartz, L. Marten, and M. Wang, “Measuring the cornea: the latest developments in corneal topography,” Curr. Opin. Ophthalmol.18(4), 325–333 (2007).
[CrossRef] [PubMed]

R. Bellucci and S. Morselli, “Optimizing higher-order aberrations with intraocular lens technology,” Curr. Opin. Ophthalmol.18(1), 67–73 (2007).
[CrossRef] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

W. Haigis, B. Lege, N. Miller, and B. Schneider, “Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis,” Graefes Arch. Clin. Exp. Ophthalmol.238(9), 765–773 (2000).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci.47(10), 4651–4658 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009).
[CrossRef] [PubMed]

M. C. M. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt.12(6), 064023 (2007).
[CrossRef] [PubMed]

J. Cataract Refract. Surg. (10)

Y. Li, M. Tang, X. Zhang, C. H. Salaroli, J. L. Ramos, and D. Huang, “Pachymetric mapping with Fourier-domain optical coherence tomography,” J. Cataract Refract. Surg.36(5), 826–831 (2010).
[CrossRef] [PubMed]

A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study,” J. Cataract Refract. Surg.33(3), 418–429 (2007).
[CrossRef] [PubMed]

S. Norrby, “Sources of error in intraocular lens power calculation,” J. Cataract Refract. Surg.34(3), 368–376 (2008).
[CrossRef] [PubMed]

T. Olsen, K. Thim, and L. Corydon, “Theoretical versus SRK I and SRK II calculation of intraocular lens power,” J. Cataract Refract. Surg.16(2), 217–225 (1990).
[PubMed]

P. R. Preussner, J. Wahl, H. Lahdo, B. Dick, and O. Findl, “Ray tracing for intraocular lens calculation,” J. Cataract Refract. Surg.28(8), 1412–1419 (2002).
[CrossRef] [PubMed]

T. Olsen, “Prediction of the effective postoperative (intraocular lens) anterior chamber depth,” J. Cataract Refract. Surg.32(3), 419–424 (2006).
[CrossRef] [PubMed]

P. Phillips, J. Pérez-Emmanuelli, H. D. Rosskothen, and C. J. Koester, “Measurement of intraocular lens decentration and tilt in vivo,” J. Cataract Refract. Surg.14(2), 129–135 (1988).
[PubMed]

Q. Zhang, W. Jin, and Q. Wang, “Repetability, reproducibility, and agreement of central anterior chamber depth measurements in pseudophakic and phakic eyes: optical coherence tomography versus ultrasound biomicroscopy,” J. Cataract Refract. Surg.36(6), 941–946 (2010).
[CrossRef]

S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses,” J. Cataract Refract. Surg.33(2), 217–226 (2007).
[CrossRef] [PubMed]

G. Cleary, D. J. Spalton, and J. Marshall, “Anterior chamber depth measurements in eyes with an accommodating intraocular lens: agreement between partial coherence interferometry and optical coherence tomography,” J. Cataract Refract. Surg.36(5), 790–798 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Refract. Surg. (2)

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg.25(5), 421–428 (2009).
[CrossRef] [PubMed]

M. Tang, Y. Li, and D. Huang, “An intraocular lens power calculation formula based on optical coherence tomography: a pilot study,” J. Refract. Surg.26(6), 430–437 (2010).
[CrossRef] [PubMed]

J. Vision (1)

P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vision8(1), 18 (2008).
[CrossRef] [PubMed]

Ophthalmic Surg. Lasers Imaging (1)

M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010).
[CrossRef] [PubMed]

Ophthalmology (1)

J. C. Merriam, L. Zheng, J. E. Merriam, M. Zaider, and B. Lindström, “The effect of incisions for cataract on corneal curvature,” Ophthalmology110(9), 1807–1813 (2003).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Optom. Vis. Sci. (1)

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci.78(6), 411–416 (2001).
[CrossRef] [PubMed]

Vision Res. (4)

M. Dubbelman, V. A. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res.46(6-7), 993–1001 (2006).
[CrossRef] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

P. Artal, S. Marcos, I. Iglesias, and D. G. Green, “Optical modulation transfer and contrast sensitivity with decentered small pupils in the human eye,” Vision Res.36(22), 3575–3586 (1996).
[CrossRef] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Illustration of the biometry evaluation from 3-D anterior segment sOCT. (a) Pre-cataract surgery: CCT: Central Corneal Thickness (in white), ACD: Anterior Chamber Depth (in red) and CLT: Central Lens Thickness (in yellow). (b) Post-cataract surgery with IOL implantation: CCT: Central Corneal Thickness (in white), ILP: Intraocular Lens Position (in light green) and ILT: Intraocular Lens Thickness (in orange).

Fig. 2
Fig. 2

Illustration of the lens tilt evaluation: Pre-cataract surgery (a), and post-cataract surgery with IOL implantation (b). Vector P (in blue) is the pupillary axis, and L (in purple) is the Lens/IOL axis.

Fig. 3
Fig. 3

Comparison of the nominal tilt introduced to the lens of the physical model eye, and the tilt estimated from the OCT images.

Tables (2)

Tables Icon

Table 1 Radii of curvature of the corneal and crystalline lens/IOL surfaces from sphere fitting

Tables Icon

Table 2 Anterior segment biometry and alignment of the corneal and crystalline lens/IOL

Metrics