Abstract

Sound transduction within the auditory portion of the inner ear, the cochlea, is a complex nonlinear process. The study of cochlear mechanics in large rodents has provided important insights into cochlear function. However, technological and experimental limitations have restricted studies in mice due to their smaller cochlea. These challenges are important to overcome because of the wide variety of transgenic mouse strains with hearing loss mutations that are available for study. To accomplish this goal, we used spectral domain optical coherence tomography to visualize and measure sound-induced vibrations of intracochlear tissues. We present, to our knowledge, the first vibration measurements from the apex of an unopened mouse cochlea.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Robles and M. A. Ruggero, “Mechanics of the mammalian cochlea,” Physiol. Rev.81(3), 1305–1352 (2001).
    [PubMed]
  2. P. Dallos, “Cochlear amplification, outer hair cells and prestin,” Curr. Opin. Neurobiol.18(4), 370–376 (2008).
    [CrossRef] [PubMed]
  3. E. H. Overstreet, A. N. Temchin, and M. A. Ruggero, “Basilar membrane vibrations near the round window of the gerbil cochlea,” J. Assoc. Res. Otolaryngol.3(3), 351–361 (2002).
    [CrossRef] [PubMed]
  4. A. L. Nuttall and D. F. Dolan, “Steady-state sinusoidal velocity responses of the basilar membrane in guinea pig,” J. Acoust. Soc. Am.99(3), 1556–1565 (1996).
    [CrossRef] [PubMed]
  5. N. P. Cooper, “Harmonic distortion on the basilar membrane in the basal turn of the guinea-pig cochlea,” J. Physiol.509(1), 277–288 (1998).
    [CrossRef] [PubMed]
  6. I. J. Russell and K. E. Nilsen, “The location of the cochlear amplifier: spatial representation of a single tone on the guinea pig basilar membrane,” Proc. Natl. Acad. Sci. U.S.A.94(6), 2660–2664 (1997).
    [CrossRef] [PubMed]
  7. M. A. Ruggero, N. C. Rich, A. Recio, S. S. Narayan, and L. Robles, “Basilar-membrane responses to tones at the base of the chinchilla cochlea,” J. Acoust. Soc. Am.101(4), 2151–2163 (1997).
    [CrossRef] [PubMed]
  8. S. M. Khanna, J. F. Willemin, and M. Ulfendahl, “Measurement of optical reflectivity in cells of the inner ear,” Acta Otolaryngol. Suppl.108(s467), 69–75 (1989).
    [CrossRef] [PubMed]
  9. D. Duman and M. Tekin, “Autosomal recessive nonsyndromic deafness genes: a review,” Front. Biosci.17(7), 2213–2236 (2012).
    [CrossRef] [PubMed]
  10. A. L. Nuttall and A. Fridberger, “Instrumentation for studies of cochlear mechanics: from von Békésy forward,” Hear. Res.293(1-2), 3–11 (2012).
    [CrossRef] [PubMed]
  11. M. M. Mellado Lagarde, M. Drexl, A. N. Lukashkin, J. Zuo, and I. J. Russell, “Prestin’s role in cochlear frequency tuning and transmission of mechanical responses to neural excitation,” Curr. Biol.18(3), 200–202 (2008).
    [CrossRef] [PubMed]
  12. A. N. Lukashkin, M. E. Bashtanov, and I. J. Russell, “A self-mixing laser-diode interferometer for measuring basilar membrane vibrations without opening the cochlea,” J. Neurosci. Methods148(2), 122–129 (2005).
    [CrossRef] [PubMed]
  13. S. S. Gao, A. Xia, T. Yuan, P. D. Raphael, R. L. Shelton, B. E. Applegate, and J. S. Oghalai, “Quantitative imaging of cochlear soft tissues in wild-type and hearing-impaired transgenic mice by spectral domain optical coherence tomography,” Opt. Express19(16), 15415–15428 (2011).
    [CrossRef] [PubMed]
  14. H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt.15(3), 036024 (2010).
    [CrossRef] [PubMed]
  15. S. S. Hong and D. M. Freeman, “Doppler optical coherence microscopy for studies of cochlear mechanics,” J. Biomed. Opt.11(5), 054014 (2006).
    [CrossRef] [PubMed]
  16. A. Sepehr, H. R. Djalilian, J. E. Chang, Z. Chen, and B. J. Wong, “Optical coherence tomography of the cochlea in the porcine model,” Laryngoscope118(8), 1449–1451 (2008).
    [CrossRef] [PubMed]
  17. F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci.14(6), 770–774 (2011).
    [CrossRef] [PubMed]
  18. D. Zha, F. Chen, S. Ramamoorthy, A. Fridberger, N. Choudhury, S. L. Jacques, R. K. Wang, and A. L. Nuttall, “In vivo outer hair cell length changes expose the active process in the cochlea,” PLoS ONE7(4), e32757 (2012).
    [CrossRef] [PubMed]
  19. B. E. Applegate, R. L. Shelton, S. S. Gao, and J. S. Oghalai, “Imaging high-frequency periodic motion in the mouse ear with coherently interleaved optical coherence tomography,” Opt. Lett.36(23), 4716–4718 (2011).
    [CrossRef] [PubMed]
  20. A. Xia, S. S. Gao, T. Yuan, A. Osborn, A. Bress, M. Pfister, S. M. Maricich, F. A. Pereira, and J. S. Oghalai, “Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation,” Dis. Model. Mech.3(3-4), 209–223 (2010).
    [CrossRef] [PubMed]
  21. A. Xia, A. M. Visosky, J. H. Cho, M. J. Tsai, F. A. Pereira, and J. S. Oghalai, “Altered traveling wave propagation and reduced endocochlear potential associated with cochlear dysplasia in the BETA2/NeuroD1 null mouse,” J. Assoc. Res. Otolaryngol.8(4), 447–463 (2007).
    [CrossRef] [PubMed]
  22. C. C. Liu, S. S. Gao, T. Yuan, C. Steele, S. Puria, and J. S. Oghalai, “Biophysical mechanisms underlying outer hair cell loss associated with a shortened tectorial membrane,” J. Assoc. Res. Otolaryngol.12(5), 577–594 (2011).
    [CrossRef] [PubMed]
  23. M. Müller, K. von Hünerbein, S. Hoidis, and J. W. T. Smolders, “A physiological place-frequency map of the cochlea in the CBA/J mouse,” Hear. Res.202(1-2), 63–73 (2005).
    [CrossRef] [PubMed]

2012

D. Duman and M. Tekin, “Autosomal recessive nonsyndromic deafness genes: a review,” Front. Biosci.17(7), 2213–2236 (2012).
[CrossRef] [PubMed]

A. L. Nuttall and A. Fridberger, “Instrumentation for studies of cochlear mechanics: from von Békésy forward,” Hear. Res.293(1-2), 3–11 (2012).
[CrossRef] [PubMed]

D. Zha, F. Chen, S. Ramamoorthy, A. Fridberger, N. Choudhury, S. L. Jacques, R. K. Wang, and A. L. Nuttall, “In vivo outer hair cell length changes expose the active process in the cochlea,” PLoS ONE7(4), e32757 (2012).
[CrossRef] [PubMed]

2011

C. C. Liu, S. S. Gao, T. Yuan, C. Steele, S. Puria, and J. S. Oghalai, “Biophysical mechanisms underlying outer hair cell loss associated with a shortened tectorial membrane,” J. Assoc. Res. Otolaryngol.12(5), 577–594 (2011).
[CrossRef] [PubMed]

S. S. Gao, A. Xia, T. Yuan, P. D. Raphael, R. L. Shelton, B. E. Applegate, and J. S. Oghalai, “Quantitative imaging of cochlear soft tissues in wild-type and hearing-impaired transgenic mice by spectral domain optical coherence tomography,” Opt. Express19(16), 15415–15428 (2011).
[CrossRef] [PubMed]

B. E. Applegate, R. L. Shelton, S. S. Gao, and J. S. Oghalai, “Imaging high-frequency periodic motion in the mouse ear with coherently interleaved optical coherence tomography,” Opt. Lett.36(23), 4716–4718 (2011).
[CrossRef] [PubMed]

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci.14(6), 770–774 (2011).
[CrossRef] [PubMed]

2010

A. Xia, S. S. Gao, T. Yuan, A. Osborn, A. Bress, M. Pfister, S. M. Maricich, F. A. Pereira, and J. S. Oghalai, “Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation,” Dis. Model. Mech.3(3-4), 209–223 (2010).
[CrossRef] [PubMed]

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt.15(3), 036024 (2010).
[CrossRef] [PubMed]

2008

P. Dallos, “Cochlear amplification, outer hair cells and prestin,” Curr. Opin. Neurobiol.18(4), 370–376 (2008).
[CrossRef] [PubMed]

A. Sepehr, H. R. Djalilian, J. E. Chang, Z. Chen, and B. J. Wong, “Optical coherence tomography of the cochlea in the porcine model,” Laryngoscope118(8), 1449–1451 (2008).
[CrossRef] [PubMed]

M. M. Mellado Lagarde, M. Drexl, A. N. Lukashkin, J. Zuo, and I. J. Russell, “Prestin’s role in cochlear frequency tuning and transmission of mechanical responses to neural excitation,” Curr. Biol.18(3), 200–202 (2008).
[CrossRef] [PubMed]

2007

A. Xia, A. M. Visosky, J. H. Cho, M. J. Tsai, F. A. Pereira, and J. S. Oghalai, “Altered traveling wave propagation and reduced endocochlear potential associated with cochlear dysplasia in the BETA2/NeuroD1 null mouse,” J. Assoc. Res. Otolaryngol.8(4), 447–463 (2007).
[CrossRef] [PubMed]

2006

S. S. Hong and D. M. Freeman, “Doppler optical coherence microscopy for studies of cochlear mechanics,” J. Biomed. Opt.11(5), 054014 (2006).
[CrossRef] [PubMed]

2005

A. N. Lukashkin, M. E. Bashtanov, and I. J. Russell, “A self-mixing laser-diode interferometer for measuring basilar membrane vibrations without opening the cochlea,” J. Neurosci. Methods148(2), 122–129 (2005).
[CrossRef] [PubMed]

M. Müller, K. von Hünerbein, S. Hoidis, and J. W. T. Smolders, “A physiological place-frequency map of the cochlea in the CBA/J mouse,” Hear. Res.202(1-2), 63–73 (2005).
[CrossRef] [PubMed]

2002

E. H. Overstreet, A. N. Temchin, and M. A. Ruggero, “Basilar membrane vibrations near the round window of the gerbil cochlea,” J. Assoc. Res. Otolaryngol.3(3), 351–361 (2002).
[CrossRef] [PubMed]

2001

L. Robles and M. A. Ruggero, “Mechanics of the mammalian cochlea,” Physiol. Rev.81(3), 1305–1352 (2001).
[PubMed]

1998

N. P. Cooper, “Harmonic distortion on the basilar membrane in the basal turn of the guinea-pig cochlea,” J. Physiol.509(1), 277–288 (1998).
[CrossRef] [PubMed]

1997

I. J. Russell and K. E. Nilsen, “The location of the cochlear amplifier: spatial representation of a single tone on the guinea pig basilar membrane,” Proc. Natl. Acad. Sci. U.S.A.94(6), 2660–2664 (1997).
[CrossRef] [PubMed]

M. A. Ruggero, N. C. Rich, A. Recio, S. S. Narayan, and L. Robles, “Basilar-membrane responses to tones at the base of the chinchilla cochlea,” J. Acoust. Soc. Am.101(4), 2151–2163 (1997).
[CrossRef] [PubMed]

1996

A. L. Nuttall and D. F. Dolan, “Steady-state sinusoidal velocity responses of the basilar membrane in guinea pig,” J. Acoust. Soc. Am.99(3), 1556–1565 (1996).
[CrossRef] [PubMed]

1989

S. M. Khanna, J. F. Willemin, and M. Ulfendahl, “Measurement of optical reflectivity in cells of the inner ear,” Acta Otolaryngol. Suppl.108(s467), 69–75 (1989).
[CrossRef] [PubMed]

Applegate, B. E.

Bashtanov, M. E.

A. N. Lukashkin, M. E. Bashtanov, and I. J. Russell, “A self-mixing laser-diode interferometer for measuring basilar membrane vibrations without opening the cochlea,” J. Neurosci. Methods148(2), 122–129 (2005).
[CrossRef] [PubMed]

Bress, A.

A. Xia, S. S. Gao, T. Yuan, A. Osborn, A. Bress, M. Pfister, S. M. Maricich, F. A. Pereira, and J. S. Oghalai, “Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation,” Dis. Model. Mech.3(3-4), 209–223 (2010).
[CrossRef] [PubMed]

Chang, J. E.

A. Sepehr, H. R. Djalilian, J. E. Chang, Z. Chen, and B. J. Wong, “Optical coherence tomography of the cochlea in the porcine model,” Laryngoscope118(8), 1449–1451 (2008).
[CrossRef] [PubMed]

Chen, F.

D. Zha, F. Chen, S. Ramamoorthy, A. Fridberger, N. Choudhury, S. L. Jacques, R. K. Wang, and A. L. Nuttall, “In vivo outer hair cell length changes expose the active process in the cochlea,” PLoS ONE7(4), e32757 (2012).
[CrossRef] [PubMed]

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci.14(6), 770–774 (2011).
[CrossRef] [PubMed]

Chen, Z.

A. Sepehr, H. R. Djalilian, J. E. Chang, Z. Chen, and B. J. Wong, “Optical coherence tomography of the cochlea in the porcine model,” Laryngoscope118(8), 1449–1451 (2008).
[CrossRef] [PubMed]

Cho, J. H.

A. Xia, A. M. Visosky, J. H. Cho, M. J. Tsai, F. A. Pereira, and J. S. Oghalai, “Altered traveling wave propagation and reduced endocochlear potential associated with cochlear dysplasia in the BETA2/NeuroD1 null mouse,” J. Assoc. Res. Otolaryngol.8(4), 447–463 (2007).
[CrossRef] [PubMed]

Choudhury, N.

D. Zha, F. Chen, S. Ramamoorthy, A. Fridberger, N. Choudhury, S. L. Jacques, R. K. Wang, and A. L. Nuttall, “In vivo outer hair cell length changes expose the active process in the cochlea,” PLoS ONE7(4), e32757 (2012).
[CrossRef] [PubMed]

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci.14(6), 770–774 (2011).
[CrossRef] [PubMed]

Cooper, N. P.

N. P. Cooper, “Harmonic distortion on the basilar membrane in the basal turn of the guinea-pig cochlea,” J. Physiol.509(1), 277–288 (1998).
[CrossRef] [PubMed]

Dallos, P.

P. Dallos, “Cochlear amplification, outer hair cells and prestin,” Curr. Opin. Neurobiol.18(4), 370–376 (2008).
[CrossRef] [PubMed]

Davila, V.

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt.15(3), 036024 (2010).
[CrossRef] [PubMed]

Djalilian, H. R.

A. Sepehr, H. R. Djalilian, J. E. Chang, Z. Chen, and B. J. Wong, “Optical coherence tomography of the cochlea in the porcine model,” Laryngoscope118(8), 1449–1451 (2008).
[CrossRef] [PubMed]

Dolan, D. F.

A. L. Nuttall and D. F. Dolan, “Steady-state sinusoidal velocity responses of the basilar membrane in guinea pig,” J. Acoust. Soc. Am.99(3), 1556–1565 (1996).
[CrossRef] [PubMed]

Drexl, M.

M. M. Mellado Lagarde, M. Drexl, A. N. Lukashkin, J. Zuo, and I. J. Russell, “Prestin’s role in cochlear frequency tuning and transmission of mechanical responses to neural excitation,” Curr. Biol.18(3), 200–202 (2008).
[CrossRef] [PubMed]

Duman, D.

D. Duman and M. Tekin, “Autosomal recessive nonsyndromic deafness genes: a review,” Front. Biosci.17(7), 2213–2236 (2012).
[CrossRef] [PubMed]

Freeman, D. M.

S. S. Hong and D. M. Freeman, “Doppler optical coherence microscopy for studies of cochlear mechanics,” J. Biomed. Opt.11(5), 054014 (2006).
[CrossRef] [PubMed]

Fridberger, A.

A. L. Nuttall and A. Fridberger, “Instrumentation for studies of cochlear mechanics: from von Békésy forward,” Hear. Res.293(1-2), 3–11 (2012).
[CrossRef] [PubMed]

D. Zha, F. Chen, S. Ramamoorthy, A. Fridberger, N. Choudhury, S. L. Jacques, R. K. Wang, and A. L. Nuttall, “In vivo outer hair cell length changes expose the active process in the cochlea,” PLoS ONE7(4), e32757 (2012).
[CrossRef] [PubMed]

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci.14(6), 770–774 (2011).
[CrossRef] [PubMed]

Gao, S. S.

B. E. Applegate, R. L. Shelton, S. S. Gao, and J. S. Oghalai, “Imaging high-frequency periodic motion in the mouse ear with coherently interleaved optical coherence tomography,” Opt. Lett.36(23), 4716–4718 (2011).
[CrossRef] [PubMed]

C. C. Liu, S. S. Gao, T. Yuan, C. Steele, S. Puria, and J. S. Oghalai, “Biophysical mechanisms underlying outer hair cell loss associated with a shortened tectorial membrane,” J. Assoc. Res. Otolaryngol.12(5), 577–594 (2011).
[CrossRef] [PubMed]

S. S. Gao, A. Xia, T. Yuan, P. D. Raphael, R. L. Shelton, B. E. Applegate, and J. S. Oghalai, “Quantitative imaging of cochlear soft tissues in wild-type and hearing-impaired transgenic mice by spectral domain optical coherence tomography,” Opt. Express19(16), 15415–15428 (2011).
[CrossRef] [PubMed]

A. Xia, S. S. Gao, T. Yuan, A. Osborn, A. Bress, M. Pfister, S. M. Maricich, F. A. Pereira, and J. S. Oghalai, “Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation,” Dis. Model. Mech.3(3-4), 209–223 (2010).
[CrossRef] [PubMed]

Hoidis, S.

M. Müller, K. von Hünerbein, S. Hoidis, and J. W. T. Smolders, “A physiological place-frequency map of the cochlea in the CBA/J mouse,” Hear. Res.202(1-2), 63–73 (2005).
[CrossRef] [PubMed]

Hong, S. S.

S. S. Hong and D. M. Freeman, “Doppler optical coherence microscopy for studies of cochlear mechanics,” J. Biomed. Opt.11(5), 054014 (2006).
[CrossRef] [PubMed]

Jacques, S. L.

D. Zha, F. Chen, S. Ramamoorthy, A. Fridberger, N. Choudhury, S. L. Jacques, R. K. Wang, and A. L. Nuttall, “In vivo outer hair cell length changes expose the active process in the cochlea,” PLoS ONE7(4), e32757 (2012).
[CrossRef] [PubMed]

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci.14(6), 770–774 (2011).
[CrossRef] [PubMed]

Khanna, S. M.

S. M. Khanna, J. F. Willemin, and M. Ulfendahl, “Measurement of optical reflectivity in cells of the inner ear,” Acta Otolaryngol. Suppl.108(s467), 69–75 (1989).
[CrossRef] [PubMed]

Liu, C. C.

C. C. Liu, S. S. Gao, T. Yuan, C. Steele, S. Puria, and J. S. Oghalai, “Biophysical mechanisms underlying outer hair cell loss associated with a shortened tectorial membrane,” J. Assoc. Res. Otolaryngol.12(5), 577–594 (2011).
[CrossRef] [PubMed]

Lukashkin, A. N.

M. M. Mellado Lagarde, M. Drexl, A. N. Lukashkin, J. Zuo, and I. J. Russell, “Prestin’s role in cochlear frequency tuning and transmission of mechanical responses to neural excitation,” Curr. Biol.18(3), 200–202 (2008).
[CrossRef] [PubMed]

A. N. Lukashkin, M. E. Bashtanov, and I. J. Russell, “A self-mixing laser-diode interferometer for measuring basilar membrane vibrations without opening the cochlea,” J. Neurosci. Methods148(2), 122–129 (2005).
[CrossRef] [PubMed]

Maricich, S. M.

A. Xia, S. S. Gao, T. Yuan, A. Osborn, A. Bress, M. Pfister, S. M. Maricich, F. A. Pereira, and J. S. Oghalai, “Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation,” Dis. Model. Mech.3(3-4), 209–223 (2010).
[CrossRef] [PubMed]

Mellado Lagarde, M. M.

M. M. Mellado Lagarde, M. Drexl, A. N. Lukashkin, J. Zuo, and I. J. Russell, “Prestin’s role in cochlear frequency tuning and transmission of mechanical responses to neural excitation,” Curr. Biol.18(3), 200–202 (2008).
[CrossRef] [PubMed]

Müller, M.

M. Müller, K. von Hünerbein, S. Hoidis, and J. W. T. Smolders, “A physiological place-frequency map of the cochlea in the CBA/J mouse,” Hear. Res.202(1-2), 63–73 (2005).
[CrossRef] [PubMed]

Narayan, S. S.

M. A. Ruggero, N. C. Rich, A. Recio, S. S. Narayan, and L. Robles, “Basilar-membrane responses to tones at the base of the chinchilla cochlea,” J. Acoust. Soc. Am.101(4), 2151–2163 (1997).
[CrossRef] [PubMed]

Nguyen-Huynh, A. T.

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt.15(3), 036024 (2010).
[CrossRef] [PubMed]

Nilsen, K. E.

I. J. Russell and K. E. Nilsen, “The location of the cochlear amplifier: spatial representation of a single tone on the guinea pig basilar membrane,” Proc. Natl. Acad. Sci. U.S.A.94(6), 2660–2664 (1997).
[CrossRef] [PubMed]

Nuttall, A. L.

A. L. Nuttall and A. Fridberger, “Instrumentation for studies of cochlear mechanics: from von Békésy forward,” Hear. Res.293(1-2), 3–11 (2012).
[CrossRef] [PubMed]

D. Zha, F. Chen, S. Ramamoorthy, A. Fridberger, N. Choudhury, S. L. Jacques, R. K. Wang, and A. L. Nuttall, “In vivo outer hair cell length changes expose the active process in the cochlea,” PLoS ONE7(4), e32757 (2012).
[CrossRef] [PubMed]

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci.14(6), 770–774 (2011).
[CrossRef] [PubMed]

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt.15(3), 036024 (2010).
[CrossRef] [PubMed]

A. L. Nuttall and D. F. Dolan, “Steady-state sinusoidal velocity responses of the basilar membrane in guinea pig,” J. Acoust. Soc. Am.99(3), 1556–1565 (1996).
[CrossRef] [PubMed]

Oghalai, J. S.

B. E. Applegate, R. L. Shelton, S. S. Gao, and J. S. Oghalai, “Imaging high-frequency periodic motion in the mouse ear with coherently interleaved optical coherence tomography,” Opt. Lett.36(23), 4716–4718 (2011).
[CrossRef] [PubMed]

C. C. Liu, S. S. Gao, T. Yuan, C. Steele, S. Puria, and J. S. Oghalai, “Biophysical mechanisms underlying outer hair cell loss associated with a shortened tectorial membrane,” J. Assoc. Res. Otolaryngol.12(5), 577–594 (2011).
[CrossRef] [PubMed]

S. S. Gao, A. Xia, T. Yuan, P. D. Raphael, R. L. Shelton, B. E. Applegate, and J. S. Oghalai, “Quantitative imaging of cochlear soft tissues in wild-type and hearing-impaired transgenic mice by spectral domain optical coherence tomography,” Opt. Express19(16), 15415–15428 (2011).
[CrossRef] [PubMed]

A. Xia, S. S. Gao, T. Yuan, A. Osborn, A. Bress, M. Pfister, S. M. Maricich, F. A. Pereira, and J. S. Oghalai, “Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation,” Dis. Model. Mech.3(3-4), 209–223 (2010).
[CrossRef] [PubMed]

A. Xia, A. M. Visosky, J. H. Cho, M. J. Tsai, F. A. Pereira, and J. S. Oghalai, “Altered traveling wave propagation and reduced endocochlear potential associated with cochlear dysplasia in the BETA2/NeuroD1 null mouse,” J. Assoc. Res. Otolaryngol.8(4), 447–463 (2007).
[CrossRef] [PubMed]

Osborn, A.

A. Xia, S. S. Gao, T. Yuan, A. Osborn, A. Bress, M. Pfister, S. M. Maricich, F. A. Pereira, and J. S. Oghalai, “Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation,” Dis. Model. Mech.3(3-4), 209–223 (2010).
[CrossRef] [PubMed]

Overstreet, E. H.

E. H. Overstreet, A. N. Temchin, and M. A. Ruggero, “Basilar membrane vibrations near the round window of the gerbil cochlea,” J. Assoc. Res. Otolaryngol.3(3), 351–361 (2002).
[CrossRef] [PubMed]

Pereira, F. A.

A. Xia, S. S. Gao, T. Yuan, A. Osborn, A. Bress, M. Pfister, S. M. Maricich, F. A. Pereira, and J. S. Oghalai, “Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation,” Dis. Model. Mech.3(3-4), 209–223 (2010).
[CrossRef] [PubMed]

A. Xia, A. M. Visosky, J. H. Cho, M. J. Tsai, F. A. Pereira, and J. S. Oghalai, “Altered traveling wave propagation and reduced endocochlear potential associated with cochlear dysplasia in the BETA2/NeuroD1 null mouse,” J. Assoc. Res. Otolaryngol.8(4), 447–463 (2007).
[CrossRef] [PubMed]

Pfister, M.

A. Xia, S. S. Gao, T. Yuan, A. Osborn, A. Bress, M. Pfister, S. M. Maricich, F. A. Pereira, and J. S. Oghalai, “Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation,” Dis. Model. Mech.3(3-4), 209–223 (2010).
[CrossRef] [PubMed]

Puria, S.

C. C. Liu, S. S. Gao, T. Yuan, C. Steele, S. Puria, and J. S. Oghalai, “Biophysical mechanisms underlying outer hair cell loss associated with a shortened tectorial membrane,” J. Assoc. Res. Otolaryngol.12(5), 577–594 (2011).
[CrossRef] [PubMed]

Ramamoorthy, S.

D. Zha, F. Chen, S. Ramamoorthy, A. Fridberger, N. Choudhury, S. L. Jacques, R. K. Wang, and A. L. Nuttall, “In vivo outer hair cell length changes expose the active process in the cochlea,” PLoS ONE7(4), e32757 (2012).
[CrossRef] [PubMed]

Raphael, P. D.

Recio, A.

M. A. Ruggero, N. C. Rich, A. Recio, S. S. Narayan, and L. Robles, “Basilar-membrane responses to tones at the base of the chinchilla cochlea,” J. Acoust. Soc. Am.101(4), 2151–2163 (1997).
[CrossRef] [PubMed]

Rich, N. C.

M. A. Ruggero, N. C. Rich, A. Recio, S. S. Narayan, and L. Robles, “Basilar-membrane responses to tones at the base of the chinchilla cochlea,” J. Acoust. Soc. Am.101(4), 2151–2163 (1997).
[CrossRef] [PubMed]

Robles, L.

L. Robles and M. A. Ruggero, “Mechanics of the mammalian cochlea,” Physiol. Rev.81(3), 1305–1352 (2001).
[PubMed]

M. A. Ruggero, N. C. Rich, A. Recio, S. S. Narayan, and L. Robles, “Basilar-membrane responses to tones at the base of the chinchilla cochlea,” J. Acoust. Soc. Am.101(4), 2151–2163 (1997).
[CrossRef] [PubMed]

Ruggero, M. A.

E. H. Overstreet, A. N. Temchin, and M. A. Ruggero, “Basilar membrane vibrations near the round window of the gerbil cochlea,” J. Assoc. Res. Otolaryngol.3(3), 351–361 (2002).
[CrossRef] [PubMed]

L. Robles and M. A. Ruggero, “Mechanics of the mammalian cochlea,” Physiol. Rev.81(3), 1305–1352 (2001).
[PubMed]

M. A. Ruggero, N. C. Rich, A. Recio, S. S. Narayan, and L. Robles, “Basilar-membrane responses to tones at the base of the chinchilla cochlea,” J. Acoust. Soc. Am.101(4), 2151–2163 (1997).
[CrossRef] [PubMed]

Russell, I. J.

M. M. Mellado Lagarde, M. Drexl, A. N. Lukashkin, J. Zuo, and I. J. Russell, “Prestin’s role in cochlear frequency tuning and transmission of mechanical responses to neural excitation,” Curr. Biol.18(3), 200–202 (2008).
[CrossRef] [PubMed]

A. N. Lukashkin, M. E. Bashtanov, and I. J. Russell, “A self-mixing laser-diode interferometer for measuring basilar membrane vibrations without opening the cochlea,” J. Neurosci. Methods148(2), 122–129 (2005).
[CrossRef] [PubMed]

I. J. Russell and K. E. Nilsen, “The location of the cochlear amplifier: spatial representation of a single tone on the guinea pig basilar membrane,” Proc. Natl. Acad. Sci. U.S.A.94(6), 2660–2664 (1997).
[CrossRef] [PubMed]

Sepehr, A.

A. Sepehr, H. R. Djalilian, J. E. Chang, Z. Chen, and B. J. Wong, “Optical coherence tomography of the cochlea in the porcine model,” Laryngoscope118(8), 1449–1451 (2008).
[CrossRef] [PubMed]

Shelton, R. L.

Shi, X.

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci.14(6), 770–774 (2011).
[CrossRef] [PubMed]

Smolders, J. W. T.

M. Müller, K. von Hünerbein, S. Hoidis, and J. W. T. Smolders, “A physiological place-frequency map of the cochlea in the CBA/J mouse,” Hear. Res.202(1-2), 63–73 (2005).
[CrossRef] [PubMed]

Steele, C.

C. C. Liu, S. S. Gao, T. Yuan, C. Steele, S. Puria, and J. S. Oghalai, “Biophysical mechanisms underlying outer hair cell loss associated with a shortened tectorial membrane,” J. Assoc. Res. Otolaryngol.12(5), 577–594 (2011).
[CrossRef] [PubMed]

Subhash, H. M.

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt.15(3), 036024 (2010).
[CrossRef] [PubMed]

Sun, H.

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt.15(3), 036024 (2010).
[CrossRef] [PubMed]

Tekin, M.

D. Duman and M. Tekin, “Autosomal recessive nonsyndromic deafness genes: a review,” Front. Biosci.17(7), 2213–2236 (2012).
[CrossRef] [PubMed]

Temchin, A. N.

E. H. Overstreet, A. N. Temchin, and M. A. Ruggero, “Basilar membrane vibrations near the round window of the gerbil cochlea,” J. Assoc. Res. Otolaryngol.3(3), 351–361 (2002).
[CrossRef] [PubMed]

Tsai, M. J.

A. Xia, A. M. Visosky, J. H. Cho, M. J. Tsai, F. A. Pereira, and J. S. Oghalai, “Altered traveling wave propagation and reduced endocochlear potential associated with cochlear dysplasia in the BETA2/NeuroD1 null mouse,” J. Assoc. Res. Otolaryngol.8(4), 447–463 (2007).
[CrossRef] [PubMed]

Ulfendahl, M.

S. M. Khanna, J. F. Willemin, and M. Ulfendahl, “Measurement of optical reflectivity in cells of the inner ear,” Acta Otolaryngol. Suppl.108(s467), 69–75 (1989).
[CrossRef] [PubMed]

Visosky, A. M.

A. Xia, A. M. Visosky, J. H. Cho, M. J. Tsai, F. A. Pereira, and J. S. Oghalai, “Altered traveling wave propagation and reduced endocochlear potential associated with cochlear dysplasia in the BETA2/NeuroD1 null mouse,” J. Assoc. Res. Otolaryngol.8(4), 447–463 (2007).
[CrossRef] [PubMed]

von Hünerbein, K.

M. Müller, K. von Hünerbein, S. Hoidis, and J. W. T. Smolders, “A physiological place-frequency map of the cochlea in the CBA/J mouse,” Hear. Res.202(1-2), 63–73 (2005).
[CrossRef] [PubMed]

Wang, R. K.

D. Zha, F. Chen, S. Ramamoorthy, A. Fridberger, N. Choudhury, S. L. Jacques, R. K. Wang, and A. L. Nuttall, “In vivo outer hair cell length changes expose the active process in the cochlea,” PLoS ONE7(4), e32757 (2012).
[CrossRef] [PubMed]

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci.14(6), 770–774 (2011).
[CrossRef] [PubMed]

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt.15(3), 036024 (2010).
[CrossRef] [PubMed]

Willemin, J. F.

S. M. Khanna, J. F. Willemin, and M. Ulfendahl, “Measurement of optical reflectivity in cells of the inner ear,” Acta Otolaryngol. Suppl.108(s467), 69–75 (1989).
[CrossRef] [PubMed]

Wong, B. J.

A. Sepehr, H. R. Djalilian, J. E. Chang, Z. Chen, and B. J. Wong, “Optical coherence tomography of the cochlea in the porcine model,” Laryngoscope118(8), 1449–1451 (2008).
[CrossRef] [PubMed]

Xia, A.

S. S. Gao, A. Xia, T. Yuan, P. D. Raphael, R. L. Shelton, B. E. Applegate, and J. S. Oghalai, “Quantitative imaging of cochlear soft tissues in wild-type and hearing-impaired transgenic mice by spectral domain optical coherence tomography,” Opt. Express19(16), 15415–15428 (2011).
[CrossRef] [PubMed]

A. Xia, S. S. Gao, T. Yuan, A. Osborn, A. Bress, M. Pfister, S. M. Maricich, F. A. Pereira, and J. S. Oghalai, “Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation,” Dis. Model. Mech.3(3-4), 209–223 (2010).
[CrossRef] [PubMed]

A. Xia, A. M. Visosky, J. H. Cho, M. J. Tsai, F. A. Pereira, and J. S. Oghalai, “Altered traveling wave propagation and reduced endocochlear potential associated with cochlear dysplasia in the BETA2/NeuroD1 null mouse,” J. Assoc. Res. Otolaryngol.8(4), 447–463 (2007).
[CrossRef] [PubMed]

Yuan, T.

C. C. Liu, S. S. Gao, T. Yuan, C. Steele, S. Puria, and J. S. Oghalai, “Biophysical mechanisms underlying outer hair cell loss associated with a shortened tectorial membrane,” J. Assoc. Res. Otolaryngol.12(5), 577–594 (2011).
[CrossRef] [PubMed]

S. S. Gao, A. Xia, T. Yuan, P. D. Raphael, R. L. Shelton, B. E. Applegate, and J. S. Oghalai, “Quantitative imaging of cochlear soft tissues in wild-type and hearing-impaired transgenic mice by spectral domain optical coherence tomography,” Opt. Express19(16), 15415–15428 (2011).
[CrossRef] [PubMed]

A. Xia, S. S. Gao, T. Yuan, A. Osborn, A. Bress, M. Pfister, S. M. Maricich, F. A. Pereira, and J. S. Oghalai, “Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation,” Dis. Model. Mech.3(3-4), 209–223 (2010).
[CrossRef] [PubMed]

Zha, D.

D. Zha, F. Chen, S. Ramamoorthy, A. Fridberger, N. Choudhury, S. L. Jacques, R. K. Wang, and A. L. Nuttall, “In vivo outer hair cell length changes expose the active process in the cochlea,” PLoS ONE7(4), e32757 (2012).
[CrossRef] [PubMed]

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci.14(6), 770–774 (2011).
[CrossRef] [PubMed]

Zheng, J.

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci.14(6), 770–774 (2011).
[CrossRef] [PubMed]

Zuo, J.

M. M. Mellado Lagarde, M. Drexl, A. N. Lukashkin, J. Zuo, and I. J. Russell, “Prestin’s role in cochlear frequency tuning and transmission of mechanical responses to neural excitation,” Curr. Biol.18(3), 200–202 (2008).
[CrossRef] [PubMed]

Acta Otolaryngol. Suppl.

S. M. Khanna, J. F. Willemin, and M. Ulfendahl, “Measurement of optical reflectivity in cells of the inner ear,” Acta Otolaryngol. Suppl.108(s467), 69–75 (1989).
[CrossRef] [PubMed]

Curr. Biol.

M. M. Mellado Lagarde, M. Drexl, A. N. Lukashkin, J. Zuo, and I. J. Russell, “Prestin’s role in cochlear frequency tuning and transmission of mechanical responses to neural excitation,” Curr. Biol.18(3), 200–202 (2008).
[CrossRef] [PubMed]

Curr. Opin. Neurobiol.

P. Dallos, “Cochlear amplification, outer hair cells and prestin,” Curr. Opin. Neurobiol.18(4), 370–376 (2008).
[CrossRef] [PubMed]

Dis. Model. Mech.

A. Xia, S. S. Gao, T. Yuan, A. Osborn, A. Bress, M. Pfister, S. M. Maricich, F. A. Pereira, and J. S. Oghalai, “Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation,” Dis. Model. Mech.3(3-4), 209–223 (2010).
[CrossRef] [PubMed]

Front. Biosci.

D. Duman and M. Tekin, “Autosomal recessive nonsyndromic deafness genes: a review,” Front. Biosci.17(7), 2213–2236 (2012).
[CrossRef] [PubMed]

Hear. Res.

A. L. Nuttall and A. Fridberger, “Instrumentation for studies of cochlear mechanics: from von Békésy forward,” Hear. Res.293(1-2), 3–11 (2012).
[CrossRef] [PubMed]

M. Müller, K. von Hünerbein, S. Hoidis, and J. W. T. Smolders, “A physiological place-frequency map of the cochlea in the CBA/J mouse,” Hear. Res.202(1-2), 63–73 (2005).
[CrossRef] [PubMed]

J. Acoust. Soc. Am.

M. A. Ruggero, N. C. Rich, A. Recio, S. S. Narayan, and L. Robles, “Basilar-membrane responses to tones at the base of the chinchilla cochlea,” J. Acoust. Soc. Am.101(4), 2151–2163 (1997).
[CrossRef] [PubMed]

A. L. Nuttall and D. F. Dolan, “Steady-state sinusoidal velocity responses of the basilar membrane in guinea pig,” J. Acoust. Soc. Am.99(3), 1556–1565 (1996).
[CrossRef] [PubMed]

J. Assoc. Res. Otolaryngol.

E. H. Overstreet, A. N. Temchin, and M. A. Ruggero, “Basilar membrane vibrations near the round window of the gerbil cochlea,” J. Assoc. Res. Otolaryngol.3(3), 351–361 (2002).
[CrossRef] [PubMed]

A. Xia, A. M. Visosky, J. H. Cho, M. J. Tsai, F. A. Pereira, and J. S. Oghalai, “Altered traveling wave propagation and reduced endocochlear potential associated with cochlear dysplasia in the BETA2/NeuroD1 null mouse,” J. Assoc. Res. Otolaryngol.8(4), 447–463 (2007).
[CrossRef] [PubMed]

C. C. Liu, S. S. Gao, T. Yuan, C. Steele, S. Puria, and J. S. Oghalai, “Biophysical mechanisms underlying outer hair cell loss associated with a shortened tectorial membrane,” J. Assoc. Res. Otolaryngol.12(5), 577–594 (2011).
[CrossRef] [PubMed]

J. Biomed. Opt.

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt.15(3), 036024 (2010).
[CrossRef] [PubMed]

S. S. Hong and D. M. Freeman, “Doppler optical coherence microscopy for studies of cochlear mechanics,” J. Biomed. Opt.11(5), 054014 (2006).
[CrossRef] [PubMed]

J. Neurosci. Methods

A. N. Lukashkin, M. E. Bashtanov, and I. J. Russell, “A self-mixing laser-diode interferometer for measuring basilar membrane vibrations without opening the cochlea,” J. Neurosci. Methods148(2), 122–129 (2005).
[CrossRef] [PubMed]

J. Physiol.

N. P. Cooper, “Harmonic distortion on the basilar membrane in the basal turn of the guinea-pig cochlea,” J. Physiol.509(1), 277–288 (1998).
[CrossRef] [PubMed]

Laryngoscope

A. Sepehr, H. R. Djalilian, J. E. Chang, Z. Chen, and B. J. Wong, “Optical coherence tomography of the cochlea in the porcine model,” Laryngoscope118(8), 1449–1451 (2008).
[CrossRef] [PubMed]

Nat. Neurosci.

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci.14(6), 770–774 (2011).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Physiol. Rev.

L. Robles and M. A. Ruggero, “Mechanics of the mammalian cochlea,” Physiol. Rev.81(3), 1305–1352 (2001).
[PubMed]

PLoS ONE

D. Zha, F. Chen, S. Ramamoorthy, A. Fridberger, N. Choudhury, S. L. Jacques, R. K. Wang, and A. L. Nuttall, “In vivo outer hair cell length changes expose the active process in the cochlea,” PLoS ONE7(4), e32757 (2012).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

I. J. Russell and K. E. Nilsen, “The location of the cochlear amplifier: spatial representation of a single tone on the guinea pig basilar membrane,” Proc. Natl. Acad. Sci. U.S.A.94(6), 2660–2664 (1997).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the spectral domain OCT system. A flipper mirror was used to direct either the light from the laser Doppler vibrometer or the superluminescent diode into the sample path.

Fig. 2
Fig. 2

(A) Plot of the piezo-electric membrane vibration magnitude, as measured by OCT and LDV, to stimulus frequencies between 3 and 11 kHz at a stimulus amplitude of 200 mV. (B) Plot of the piezo-electric membrane vibration phase to the same parameters as in (A). (C) The ratio of the magnitudes, OCT divided by LDV. The equation of the linear fit and the R2 value are shown. (D) The phase difference, LDV – OCT. The equation of the linear fit and the R2 value are shown. (E) Growth curves as measured by OCT and LDV to 4 kHz stimulus. The equation of the linear fit and the R2 value are shown. (F) Growth curves as measured by OCT and LDV to 10 kHz stimulus. The equation of the linear fit and the R2 value are shown.

Fig. 3
Fig. 3

(A) A B-scan image of the 2 piezo-electric membrane setup. Piezo 1 labels the transparent plastic that was attached to one piezo-electric membrane. Piezo 2 labels the tape atop the second piezo-electric membrane. The A-line that was recorded from is highlighted by the yellow line. The depths that were compared are indicated by white arrows and labeled P1a, P1b, P2a, and P2b. The scale bar is 200 µm. (B) The measured phase difference at two different depths plotted against the input phase difference to the two piezo-electric membranes at 4 or 10 kHz. 4 kHz; P1a vs P2a refers to a comparison between the labeled depths. The equation of the linear fit was y = 1.0015(x) – 0.0002 and the R2 value was 0.99. 10 kHz; P1a vs P2a refers to a comparison between the labeled depths. The equation of the linear fit was y = 0.996(x) – 0.0243 and the R2 value was 0.99. 4 kHz; P1a vs P1b refers to a comparison between the labeled depths. The equation of the linear fit was y = 0.0048(x) – 0.0425 and the R2 value was 0.18. 4 kHz; P2a vs P2b refers to a comparison between the labeled depths. The equation of the linear fit was y = −0.0005(x) + 0.0084 and the R2 value was 0.0013.

Fig. 4
Fig. 4

(A) Camera image of the view of the cochlea from the left ear of a mouse. The bony ear canal and opened bulla atop the cochlea are labeled. The approximate scan path is shown in yellow. (B) The view with the bony ear canal removed. The apical cochlear turn is highlighted in white. The approximate scan path is in yellow. (C) Histologic image of a cochlear cross-section. Bone is in dark blue. The structures of interest are boxed. The scale bar is 200 µm. (D) OCT cross-sectional B-scan of a fixed and decalcified cochlea in vitro. The structures of interest are boxed. The scale bar is 200 µm. (E) A cross-sectional diagram of the intracochlear structures. Ressiner’s membrane (RN), the organ of Corti (OC), basilar membrane (BM), and the auditory nerve fiber (AN) are labeled. (F) B-scan image of the organ of Corti in the living mouse that was averaged 10 times. The A-line where vibration measurements were made is shown in yellow. Each red arrow points to a depth for the representative vibration data shown in Figs. 5A and 5B. The white brace shows the depth range of the organ of Corti that was analyzed for Figs. 5C and 5D. The scale bar is 100 µm.

Fig. 5
Fig. 5

(A) Representative vibration magnitude in response to a 4 kHz stimulus at 60 dB SPL. (B) Representative vibration magnitude in response to a 9 kHz stimulus at 60 dB SPL. (C) Vibration magnitude in response to 4 kHz stimuli ranging from 60 to 100 dB SPL for all depths within the organ of Corti. There were no measureable responses above the noise threshold with a 50 dB SPL stimulus. (D) Vibration magnitude in response to 9 kHz stimuli ranging from 50 to 100 dB SPL for all depths within the organ of Corti. (E) Averaged data from (C) with standard errors. The equation of the linear fit and the R2 value of the fit are shown. (F) Averaged data from (D) with standard errors. The equation of the linear fit and the R2 value of the fit are shown.

Fig. 6
Fig. 6

In vivo vibration magnitude (A) and phase (B) data from the organ of Corti at the apex of the unopened mouse cochlea.

Metrics