Abstract

We present the delivery of high energy microsecond pulses through a hollow-core negative-curvature fiber at 2.94 µm. The energy densities delivered far exceed those required for biological tissue manipulation and are of the order of 2300 J/cm2. Tissue ablation was demonstrated on hard and soft tissue in dry and aqueous conditions with no detrimental effects to the fiber or catastrophic damage to the end facets. The energy is guided in a well confined single mode allowing for a small and controllable focused spot delivered flexibly to the point of operation. Hence, a mechanically and chemically robust alternative to the existing Er:YAG delivery systems is proposed which paves the way for new routes for minimally invasive surgical laser procedures.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. Robertson and D. Williams, “Lambert absorption coefficients of water in the infrared,” J. Opt. Soc. Am.61(10), 1316–1320 (1971).
    [CrossRef]
  2. S. Stübinger, B. von Rechenberg, H. F. Zeilhofer, R. Sader, and C. Landes, “Er:YAG laser osteotomy for removal of impacted teeth: clinical comparison of two techniques,” Lasers Surg. Med.39(7), 583–588 (2007).
    [CrossRef] [PubMed]
  3. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim.5(12), 873–883 (2002).
    [CrossRef]
  4. N. J. Scott, R. A. Barton, A. L. Casperson, A. Tchapyjnikov, K. Levin, D. Tran, and N. M. Fried, “Mid-IR germanium oxide fibers for contact erbium laser tissue ablation in endoscopic surgery,” IEEE J. Sel. Top. Quantum Electron.13(6), 1709–1714 (2007).
    [CrossRef]
  5. N. M. Fried, Y. B. Yang, C. A. Chaney, and D. Fried, “Transmission of Q-switched erbium:YSGG (λ=2.79 µm) and erbium:YAG (λ=2.94 µm) laser radiation through germanium oxide and sapphire optical fibres at high pulse energies,” Lasers Med. Sci.19(3), 155–160 (2004).
    [CrossRef] [PubMed]
  6. A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, and T. Shimomura, “Fabrication of dielectric-coated silver hollow glass waveguides for the infrared by liquid-flow coating method,” Proc. SPIE2677, 55–63 (1996).
    [CrossRef]
  7. J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integrated Opt.19(3), 211–227 (2000).
    [CrossRef]
  8. B. F. Bowden and J. A. Harrington, “Fabrication and characterization of chalcogenide glass for hollow Bragg fibers,” Appl. Opt.48(16), 3050–3054 (2009).
    [CrossRef] [PubMed]
  9. O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
    [CrossRef]
  10. J. D. Shephard, W. N. Macpherson, R. R. J. Maier, J. D. C. Jones, D. P. Hand, M. Mohebbi, A. K. George, P. J. Roberts, and J. C. Knight, “Single-mode mid-IR guidance in a hollow-core photonic crystal fiber,” Opt. Express13(18), 7139–7144 (2005).
    [CrossRef] [PubMed]
  11. J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. S. Russell, and B. J. Mangan, “High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers,” Opt. Express12(4), 717–723 (2004).
    [CrossRef] [PubMed]
  12. J. D. Shephard, P. J. Roberts, J. D. C. Jones, J. C. Knight, and D. P. Hand, “Measuring beam quality of hollow core photonic crystal fibers,” J. Lightwave Technol.24(10), 3761–3769 (2006).
    [CrossRef]
  13. J. D. Shephard, F. Couny, P. S. Russell, J. D. C. Jones, J. C. Knight, and D. P. Hand, “Improved hollow-core photonic crystal fiber design for delivery of nanosecond pulses in laser micromachining applications,” Appl. Opt.44(21), 4582–4588 (2005).
    [CrossRef] [PubMed]
  14. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express20(10), 11153–11158 (2012).
    [CrossRef] [PubMed]
  15. A. Urich, T. Delmonte, R. R. J. Maier, D. P. Hand, and J. D. Shephard, “Towards implementation of hollow core fibres for surgical applications,” Proc. SPIE7894, 78940W (2011).
    [CrossRef]
  16. M. C. Pierce, M. R. Dickinson, and H. Devlin, “Selective photothermal ablation of tissue with a fibre delivered Er: YAG laser,” Proc. SPIE3601, 362–368 (1999).
    [CrossRef]
  17. U. Hohenleutner, S. Hohenleutner, W. Bäumler, and M. Landthaler, “Fast and effective skin ablation with an Er:YAG laser: determination of ablation rates and thermal damage zones,” Lasers Surg. Med.20(3), 242–247 (1997).
    [CrossRef] [PubMed]
  18. T. Wesendahl, P. Janknecht, B. Ott, and M. Frenz, “Erbium: YAG laser ablation of retinal tissue under perfluorodecaline: determination of laser-tissue interaction in pig eyes,” Invest. Ophthalmol. Vis. Sci.41(2), 505–512 (2000).
    [PubMed]
  19. Y. Nishimoto, M. Otsuki, M. Yamauti, T. Eguchi, Y. Sato, R. M. Foxton, and J. Tagami, “Effect of pulse duration of Er: YAG laser on dentin ablation,” Dent. Mater. J.27(3), 433–439 (2008).
    [CrossRef] [PubMed]
  20. J. P. Parry, T. J. Stephens, J. D. Shephard, J. D. C. Jones, and D. P. Hand, “Analysis of optical damage mechanisms in hollow-core waveguides delivering nanosecond pulses from a Q-switched Nd:YAG laser,” Appl. Opt.45(36), 9160–9167 (2006).
    [CrossRef] [PubMed]
  21. M. Contente, F. de Lima, R. Galo, J. Pécora, L. Bachmann, R. Palma-Dibb, and M. Borsatto, “Temperature rise during Er:YAG cavity preparation of primary enamel,” Lasers Med. Sci. (preprint) http://www.springerlink.com/index/Q24548Q541Q6017U.pdf .
  22. J. T. Walsh and T. F. Deutsch, “Er:YAG laser ablation of tissue: measurement of ablation rates,” Lasers Surg. Med.9(4), 327–337 (1989).
    [CrossRef] [PubMed]
  23. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett.27(18), 1592–1594 (2002).
    [CrossRef] [PubMed]
  24. Z. Huang, F. Fu, Z. Zhong, L. Zhang, R. Xu, and X. Zhao, “Flexible ureteroscopy and laser lithotripsy for bilateral multiple intrarenal stones: is this a valuable choice?” Urology80(4), 800–804 (2012).
    [CrossRef] [PubMed]
  25. J. Raif, M. Vardi, O. Nahlieli, and I. Gannot, “An Er:YAG laser endoscopic fiber delivery system for lithotripsy of salivary stones,” Lasers Surg. Med.38(6), 580–587 (2006).
    [CrossRef] [PubMed]
  26. D. G. Kotsifaki and A. A. Serafetinides, “Mid-infrared radiation transmission through fluoride glass multimode optical fibers,” Opt. Laser Technol.43(8), 1448–1452 (2011).
    [CrossRef]
  27. D. G. Kotsifaki and A. A. Serafetinides, “Pulsed infrared radiation transmission through hollow silica waveguides,” Opt. Laser Technol.41(4), 365–373 (2009).
    [CrossRef]
  28. J. Albert and G. L. Yip, “Insertion loss reduction between single-mode fibers and diffused channel waveguides,” Appl. Opt.27(23), 4837–4843 (1988).
    [CrossRef] [PubMed]

2012 (2)

Z. Huang, F. Fu, Z. Zhong, L. Zhang, R. Xu, and X. Zhao, “Flexible ureteroscopy and laser lithotripsy for bilateral multiple intrarenal stones: is this a valuable choice?” Urology80(4), 800–804 (2012).
[CrossRef] [PubMed]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express20(10), 11153–11158 (2012).
[CrossRef] [PubMed]

2011 (2)

D. G. Kotsifaki and A. A. Serafetinides, “Mid-infrared radiation transmission through fluoride glass multimode optical fibers,” Opt. Laser Technol.43(8), 1448–1452 (2011).
[CrossRef]

A. Urich, T. Delmonte, R. R. J. Maier, D. P. Hand, and J. D. Shephard, “Towards implementation of hollow core fibres for surgical applications,” Proc. SPIE7894, 78940W (2011).
[CrossRef]

2009 (2)

D. G. Kotsifaki and A. A. Serafetinides, “Pulsed infrared radiation transmission through hollow silica waveguides,” Opt. Laser Technol.41(4), 365–373 (2009).
[CrossRef]

B. F. Bowden and J. A. Harrington, “Fabrication and characterization of chalcogenide glass for hollow Bragg fibers,” Appl. Opt.48(16), 3050–3054 (2009).
[CrossRef] [PubMed]

2008 (1)

Y. Nishimoto, M. Otsuki, M. Yamauti, T. Eguchi, Y. Sato, R. M. Foxton, and J. Tagami, “Effect of pulse duration of Er: YAG laser on dentin ablation,” Dent. Mater. J.27(3), 433–439 (2008).
[CrossRef] [PubMed]

2007 (2)

S. Stübinger, B. von Rechenberg, H. F. Zeilhofer, R. Sader, and C. Landes, “Er:YAG laser osteotomy for removal of impacted teeth: clinical comparison of two techniques,” Lasers Surg. Med.39(7), 583–588 (2007).
[CrossRef] [PubMed]

N. J. Scott, R. A. Barton, A. L. Casperson, A. Tchapyjnikov, K. Levin, D. Tran, and N. M. Fried, “Mid-IR germanium oxide fibers for contact erbium laser tissue ablation in endoscopic surgery,” IEEE J. Sel. Top. Quantum Electron.13(6), 1709–1714 (2007).
[CrossRef]

2006 (3)

2005 (2)

2004 (2)

J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. S. Russell, and B. J. Mangan, “High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers,” Opt. Express12(4), 717–723 (2004).
[CrossRef] [PubMed]

N. M. Fried, Y. B. Yang, C. A. Chaney, and D. Fried, “Transmission of Q-switched erbium:YSGG (λ=2.79 µm) and erbium:YAG (λ=2.94 µm) laser radiation through germanium oxide and sapphire optical fibres at high pulse energies,” Lasers Med. Sci.19(3), 155–160 (2004).
[CrossRef] [PubMed]

2002 (2)

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim.5(12), 873–883 (2002).
[CrossRef]

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett.27(18), 1592–1594 (2002).
[CrossRef] [PubMed]

2000 (2)

T. Wesendahl, P. Janknecht, B. Ott, and M. Frenz, “Erbium: YAG laser ablation of retinal tissue under perfluorodecaline: determination of laser-tissue interaction in pig eyes,” Invest. Ophthalmol. Vis. Sci.41(2), 505–512 (2000).
[PubMed]

J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integrated Opt.19(3), 211–227 (2000).
[CrossRef]

1999 (1)

M. C. Pierce, M. R. Dickinson, and H. Devlin, “Selective photothermal ablation of tissue with a fibre delivered Er: YAG laser,” Proc. SPIE3601, 362–368 (1999).
[CrossRef]

1997 (1)

U. Hohenleutner, S. Hohenleutner, W. Bäumler, and M. Landthaler, “Fast and effective skin ablation with an Er:YAG laser: determination of ablation rates and thermal damage zones,” Lasers Surg. Med.20(3), 242–247 (1997).
[CrossRef] [PubMed]

1996 (2)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, and T. Shimomura, “Fabrication of dielectric-coated silver hollow glass waveguides for the infrared by liquid-flow coating method,” Proc. SPIE2677, 55–63 (1996).
[CrossRef]

1989 (1)

J. T. Walsh and T. F. Deutsch, “Er:YAG laser ablation of tissue: measurement of ablation rates,” Lasers Surg. Med.9(4), 327–337 (1989).
[CrossRef] [PubMed]

1988 (1)

1971 (1)

Abeeluck, A. K.

Aggarwal, I. D.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim.5(12), 873–883 (2002).
[CrossRef]

Albert, J.

Barton, R. A.

N. J. Scott, R. A. Barton, A. L. Casperson, A. Tchapyjnikov, K. Levin, D. Tran, and N. M. Fried, “Mid-IR germanium oxide fibers for contact erbium laser tissue ablation in endoscopic surgery,” IEEE J. Sel. Top. Quantum Electron.13(6), 1709–1714 (2007).
[CrossRef]

Bäumler, W.

U. Hohenleutner, S. Hohenleutner, W. Bäumler, and M. Landthaler, “Fast and effective skin ablation with an Er:YAG laser: determination of ablation rates and thermal damage zones,” Lasers Surg. Med.20(3), 242–247 (1997).
[CrossRef] [PubMed]

Bouwmans, G.

Bowden, B. F.

Casperson, A. L.

N. J. Scott, R. A. Barton, A. L. Casperson, A. Tchapyjnikov, K. Levin, D. Tran, and N. M. Fried, “Mid-IR germanium oxide fibers for contact erbium laser tissue ablation in endoscopic surgery,” IEEE J. Sel. Top. Quantum Electron.13(6), 1709–1714 (2007).
[CrossRef]

Chaney, C. A.

N. M. Fried, Y. B. Yang, C. A. Chaney, and D. Fried, “Transmission of Q-switched erbium:YSGG (λ=2.79 µm) and erbium:YAG (λ=2.94 µm) laser radiation through germanium oxide and sapphire optical fibres at high pulse energies,” Lasers Med. Sci.19(3), 155–160 (2004).
[CrossRef] [PubMed]

Couny, F.

Delmonte, T.

A. Urich, T. Delmonte, R. R. J. Maier, D. P. Hand, and J. D. Shephard, “Towards implementation of hollow core fibres for surgical applications,” Proc. SPIE7894, 78940W (2011).
[CrossRef]

Deutsch, T. F.

J. T. Walsh and T. F. Deutsch, “Er:YAG laser ablation of tissue: measurement of ablation rates,” Lasers Surg. Med.9(4), 327–337 (1989).
[CrossRef] [PubMed]

Devlin, H.

M. C. Pierce, M. R. Dickinson, and H. Devlin, “Selective photothermal ablation of tissue with a fibre delivered Er: YAG laser,” Proc. SPIE3601, 362–368 (1999).
[CrossRef]

Dickinson, M. R.

M. C. Pierce, M. R. Dickinson, and H. Devlin, “Selective photothermal ablation of tissue with a fibre delivered Er: YAG laser,” Proc. SPIE3601, 362–368 (1999).
[CrossRef]

Eggleton, B. J.

Eguchi, T.

Y. Nishimoto, M. Otsuki, M. Yamauti, T. Eguchi, Y. Sato, R. M. Foxton, and J. Tagami, “Effect of pulse duration of Er: YAG laser on dentin ablation,” Dent. Mater. J.27(3), 433–439 (2008).
[CrossRef] [PubMed]

Fabian, H.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

Foxton, R. M.

Y. Nishimoto, M. Otsuki, M. Yamauti, T. Eguchi, Y. Sato, R. M. Foxton, and J. Tagami, “Effect of pulse duration of Er: YAG laser on dentin ablation,” Dent. Mater. J.27(3), 433–439 (2008).
[CrossRef] [PubMed]

Frenz, M.

T. Wesendahl, P. Janknecht, B. Ott, and M. Frenz, “Erbium: YAG laser ablation of retinal tissue under perfluorodecaline: determination of laser-tissue interaction in pig eyes,” Invest. Ophthalmol. Vis. Sci.41(2), 505–512 (2000).
[PubMed]

Fried, D.

N. M. Fried, Y. B. Yang, C. A. Chaney, and D. Fried, “Transmission of Q-switched erbium:YSGG (λ=2.79 µm) and erbium:YAG (λ=2.94 µm) laser radiation through germanium oxide and sapphire optical fibres at high pulse energies,” Lasers Med. Sci.19(3), 155–160 (2004).
[CrossRef] [PubMed]

Fried, N. M.

N. J. Scott, R. A. Barton, A. L. Casperson, A. Tchapyjnikov, K. Levin, D. Tran, and N. M. Fried, “Mid-IR germanium oxide fibers for contact erbium laser tissue ablation in endoscopic surgery,” IEEE J. Sel. Top. Quantum Electron.13(6), 1709–1714 (2007).
[CrossRef]

N. M. Fried, Y. B. Yang, C. A. Chaney, and D. Fried, “Transmission of Q-switched erbium:YSGG (λ=2.79 µm) and erbium:YAG (λ=2.94 µm) laser radiation through germanium oxide and sapphire optical fibres at high pulse energies,” Lasers Med. Sci.19(3), 155–160 (2004).
[CrossRef] [PubMed]

Fu, F.

Z. Huang, F. Fu, Z. Zhong, L. Zhang, R. Xu, and X. Zhao, “Flexible ureteroscopy and laser lithotripsy for bilateral multiple intrarenal stones: is this a valuable choice?” Urology80(4), 800–804 (2012).
[CrossRef] [PubMed]

Gannot, I.

J. Raif, M. Vardi, O. Nahlieli, and I. Gannot, “An Er:YAG laser endoscopic fiber delivery system for lithotripsy of salivary stones,” Lasers Surg. Med.38(6), 580–587 (2006).
[CrossRef] [PubMed]

George, A. K.

Grzesik, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

Haken, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

Hand, D. P.

Harrington, J. A.

Headley, C.

Heitmann, W.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

Hohenleutner, S.

U. Hohenleutner, S. Hohenleutner, W. Bäumler, and M. Landthaler, “Fast and effective skin ablation with an Er:YAG laser: determination of ablation rates and thermal damage zones,” Lasers Surg. Med.20(3), 242–247 (1997).
[CrossRef] [PubMed]

Hohenleutner, U.

U. Hohenleutner, S. Hohenleutner, W. Bäumler, and M. Landthaler, “Fast and effective skin ablation with an Er:YAG laser: determination of ablation rates and thermal damage zones,” Lasers Surg. Med.20(3), 242–247 (1997).
[CrossRef] [PubMed]

Hongo, A.

A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, and T. Shimomura, “Fabrication of dielectric-coated silver hollow glass waveguides for the infrared by liquid-flow coating method,” Proc. SPIE2677, 55–63 (1996).
[CrossRef]

Huang, Z.

Z. Huang, F. Fu, Z. Zhong, L. Zhang, R. Xu, and X. Zhao, “Flexible ureteroscopy and laser lithotripsy for bilateral multiple intrarenal stones: is this a valuable choice?” Urology80(4), 800–804 (2012).
[CrossRef] [PubMed]

Humbach, O.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

Janknecht, P.

T. Wesendahl, P. Janknecht, B. Ott, and M. Frenz, “Erbium: YAG laser ablation of retinal tissue under perfluorodecaline: determination of laser-tissue interaction in pig eyes,” Invest. Ophthalmol. Vis. Sci.41(2), 505–512 (2000).
[PubMed]

Jones, J. D. C.

Kato, Y.

A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, and T. Shimomura, “Fabrication of dielectric-coated silver hollow glass waveguides for the infrared by liquid-flow coating method,” Proc. SPIE2677, 55–63 (1996).
[CrossRef]

Knight, J. C.

Kotsifaki, D. G.

D. G. Kotsifaki and A. A. Serafetinides, “Mid-infrared radiation transmission through fluoride glass multimode optical fibers,” Opt. Laser Technol.43(8), 1448–1452 (2011).
[CrossRef]

D. G. Kotsifaki and A. A. Serafetinides, “Pulsed infrared radiation transmission through hollow silica waveguides,” Opt. Laser Technol.41(4), 365–373 (2009).
[CrossRef]

Kubota, S.

A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, and T. Shimomura, “Fabrication of dielectric-coated silver hollow glass waveguides for the infrared by liquid-flow coating method,” Proc. SPIE2677, 55–63 (1996).
[CrossRef]

Landes, C.

S. Stübinger, B. von Rechenberg, H. F. Zeilhofer, R. Sader, and C. Landes, “Er:YAG laser osteotomy for removal of impacted teeth: clinical comparison of two techniques,” Lasers Surg. Med.39(7), 583–588 (2007).
[CrossRef] [PubMed]

Landthaler, M.

U. Hohenleutner, S. Hohenleutner, W. Bäumler, and M. Landthaler, “Fast and effective skin ablation with an Er:YAG laser: determination of ablation rates and thermal damage zones,” Lasers Surg. Med.20(3), 242–247 (1997).
[CrossRef] [PubMed]

Levin, K.

N. J. Scott, R. A. Barton, A. L. Casperson, A. Tchapyjnikov, K. Levin, D. Tran, and N. M. Fried, “Mid-IR germanium oxide fibers for contact erbium laser tissue ablation in endoscopic surgery,” IEEE J. Sel. Top. Quantum Electron.13(6), 1709–1714 (2007).
[CrossRef]

Litchinitser, N. M.

Macpherson, W. N.

Maier, R. R. J.

Mangan, B. J.

Miyagi, M.

A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, and T. Shimomura, “Fabrication of dielectric-coated silver hollow glass waveguides for the infrared by liquid-flow coating method,” Proc. SPIE2677, 55–63 (1996).
[CrossRef]

Mohebbi, M.

Nahlieli, O.

J. Raif, M. Vardi, O. Nahlieli, and I. Gannot, “An Er:YAG laser endoscopic fiber delivery system for lithotripsy of salivary stones,” Lasers Surg. Med.38(6), 580–587 (2006).
[CrossRef] [PubMed]

Nishimoto, Y.

Y. Nishimoto, M. Otsuki, M. Yamauti, T. Eguchi, Y. Sato, R. M. Foxton, and J. Tagami, “Effect of pulse duration of Er: YAG laser on dentin ablation,” Dent. Mater. J.27(3), 433–439 (2008).
[CrossRef] [PubMed]

Otsuki, M.

Y. Nishimoto, M. Otsuki, M. Yamauti, T. Eguchi, Y. Sato, R. M. Foxton, and J. Tagami, “Effect of pulse duration of Er: YAG laser on dentin ablation,” Dent. Mater. J.27(3), 433–439 (2008).
[CrossRef] [PubMed]

Ott, B.

T. Wesendahl, P. Janknecht, B. Ott, and M. Frenz, “Erbium: YAG laser ablation of retinal tissue under perfluorodecaline: determination of laser-tissue interaction in pig eyes,” Invest. Ophthalmol. Vis. Sci.41(2), 505–512 (2000).
[PubMed]

Parry, J. P.

Pierce, M. C.

M. C. Pierce, M. R. Dickinson, and H. Devlin, “Selective photothermal ablation of tissue with a fibre delivered Er: YAG laser,” Proc. SPIE3601, 362–368 (1999).
[CrossRef]

Raif, J.

J. Raif, M. Vardi, O. Nahlieli, and I. Gannot, “An Er:YAG laser endoscopic fiber delivery system for lithotripsy of salivary stones,” Lasers Surg. Med.38(6), 580–587 (2006).
[CrossRef] [PubMed]

Roberts, P. J.

Robertson, C. W.

Russell, P. S.

Sader, R.

S. Stübinger, B. von Rechenberg, H. F. Zeilhofer, R. Sader, and C. Landes, “Er:YAG laser osteotomy for removal of impacted teeth: clinical comparison of two techniques,” Lasers Surg. Med.39(7), 583–588 (2007).
[CrossRef] [PubMed]

Sanghera, J. S.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim.5(12), 873–883 (2002).
[CrossRef]

Sato, Y.

Y. Nishimoto, M. Otsuki, M. Yamauti, T. Eguchi, Y. Sato, R. M. Foxton, and J. Tagami, “Effect of pulse duration of Er: YAG laser on dentin ablation,” Dent. Mater. J.27(3), 433–439 (2008).
[CrossRef] [PubMed]

Scott, N. J.

N. J. Scott, R. A. Barton, A. L. Casperson, A. Tchapyjnikov, K. Levin, D. Tran, and N. M. Fried, “Mid-IR germanium oxide fibers for contact erbium laser tissue ablation in endoscopic surgery,” IEEE J. Sel. Top. Quantum Electron.13(6), 1709–1714 (2007).
[CrossRef]

Serafetinides, A. A.

D. G. Kotsifaki and A. A. Serafetinides, “Mid-infrared radiation transmission through fluoride glass multimode optical fibers,” Opt. Laser Technol.43(8), 1448–1452 (2011).
[CrossRef]

D. G. Kotsifaki and A. A. Serafetinides, “Pulsed infrared radiation transmission through hollow silica waveguides,” Opt. Laser Technol.41(4), 365–373 (2009).
[CrossRef]

Shaw, L. B.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim.5(12), 873–883 (2002).
[CrossRef]

Shephard, J. D.

Shimomura, T.

A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, and T. Shimomura, “Fabrication of dielectric-coated silver hollow glass waveguides for the infrared by liquid-flow coating method,” Proc. SPIE2677, 55–63 (1996).
[CrossRef]

Stephens, T. J.

Stübinger, S.

S. Stübinger, B. von Rechenberg, H. F. Zeilhofer, R. Sader, and C. Landes, “Er:YAG laser osteotomy for removal of impacted teeth: clinical comparison of two techniques,” Lasers Surg. Med.39(7), 583–588 (2007).
[CrossRef] [PubMed]

Suzumura, M.

A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, and T. Shimomura, “Fabrication of dielectric-coated silver hollow glass waveguides for the infrared by liquid-flow coating method,” Proc. SPIE2677, 55–63 (1996).
[CrossRef]

Tagami, J.

Y. Nishimoto, M. Otsuki, M. Yamauti, T. Eguchi, Y. Sato, R. M. Foxton, and J. Tagami, “Effect of pulse duration of Er: YAG laser on dentin ablation,” Dent. Mater. J.27(3), 433–439 (2008).
[CrossRef] [PubMed]

Tchapyjnikov, A.

N. J. Scott, R. A. Barton, A. L. Casperson, A. Tchapyjnikov, K. Levin, D. Tran, and N. M. Fried, “Mid-IR germanium oxide fibers for contact erbium laser tissue ablation in endoscopic surgery,” IEEE J. Sel. Top. Quantum Electron.13(6), 1709–1714 (2007).
[CrossRef]

Tran, D.

N. J. Scott, R. A. Barton, A. L. Casperson, A. Tchapyjnikov, K. Levin, D. Tran, and N. M. Fried, “Mid-IR germanium oxide fibers for contact erbium laser tissue ablation in endoscopic surgery,” IEEE J. Sel. Top. Quantum Electron.13(6), 1709–1714 (2007).
[CrossRef]

Urich, A.

A. Urich, T. Delmonte, R. R. J. Maier, D. P. Hand, and J. D. Shephard, “Towards implementation of hollow core fibres for surgical applications,” Proc. SPIE7894, 78940W (2011).
[CrossRef]

Vardi, M.

J. Raif, M. Vardi, O. Nahlieli, and I. Gannot, “An Er:YAG laser endoscopic fiber delivery system for lithotripsy of salivary stones,” Lasers Surg. Med.38(6), 580–587 (2006).
[CrossRef] [PubMed]

von Rechenberg, B.

S. Stübinger, B. von Rechenberg, H. F. Zeilhofer, R. Sader, and C. Landes, “Er:YAG laser osteotomy for removal of impacted teeth: clinical comparison of two techniques,” Lasers Surg. Med.39(7), 583–588 (2007).
[CrossRef] [PubMed]

Wadsworth, W. J.

Walsh, J. T.

J. T. Walsh and T. F. Deutsch, “Er:YAG laser ablation of tissue: measurement of ablation rates,” Lasers Surg. Med.9(4), 327–337 (1989).
[CrossRef] [PubMed]

Wang, Y.

A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, and T. Shimomura, “Fabrication of dielectric-coated silver hollow glass waveguides for the infrared by liquid-flow coating method,” Proc. SPIE2677, 55–63 (1996).
[CrossRef]

Wesendahl, T.

T. Wesendahl, P. Janknecht, B. Ott, and M. Frenz, “Erbium: YAG laser ablation of retinal tissue under perfluorodecaline: determination of laser-tissue interaction in pig eyes,” Invest. Ophthalmol. Vis. Sci.41(2), 505–512 (2000).
[PubMed]

Williams, D.

Xu, R.

Z. Huang, F. Fu, Z. Zhong, L. Zhang, R. Xu, and X. Zhao, “Flexible ureteroscopy and laser lithotripsy for bilateral multiple intrarenal stones: is this a valuable choice?” Urology80(4), 800–804 (2012).
[CrossRef] [PubMed]

Yamauti, M.

Y. Nishimoto, M. Otsuki, M. Yamauti, T. Eguchi, Y. Sato, R. M. Foxton, and J. Tagami, “Effect of pulse duration of Er: YAG laser on dentin ablation,” Dent. Mater. J.27(3), 433–439 (2008).
[CrossRef] [PubMed]

Yang, Y. B.

N. M. Fried, Y. B. Yang, C. A. Chaney, and D. Fried, “Transmission of Q-switched erbium:YSGG (λ=2.79 µm) and erbium:YAG (λ=2.94 µm) laser radiation through germanium oxide and sapphire optical fibres at high pulse energies,” Lasers Med. Sci.19(3), 155–160 (2004).
[CrossRef] [PubMed]

Yip, G. L.

Yu, F.

Zeilhofer, H. F.

S. Stübinger, B. von Rechenberg, H. F. Zeilhofer, R. Sader, and C. Landes, “Er:YAG laser osteotomy for removal of impacted teeth: clinical comparison of two techniques,” Lasers Surg. Med.39(7), 583–588 (2007).
[CrossRef] [PubMed]

Zhang, L.

Z. Huang, F. Fu, Z. Zhong, L. Zhang, R. Xu, and X. Zhao, “Flexible ureteroscopy and laser lithotripsy for bilateral multiple intrarenal stones: is this a valuable choice?” Urology80(4), 800–804 (2012).
[CrossRef] [PubMed]

Zhao, X.

Z. Huang, F. Fu, Z. Zhong, L. Zhang, R. Xu, and X. Zhao, “Flexible ureteroscopy and laser lithotripsy for bilateral multiple intrarenal stones: is this a valuable choice?” Urology80(4), 800–804 (2012).
[CrossRef] [PubMed]

Zhong, Z.

Z. Huang, F. Fu, Z. Zhong, L. Zhang, R. Xu, and X. Zhao, “Flexible ureteroscopy and laser lithotripsy for bilateral multiple intrarenal stones: is this a valuable choice?” Urology80(4), 800–804 (2012).
[CrossRef] [PubMed]

Appl. Opt. (4)

C. R. Chim. (1)

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim.5(12), 873–883 (2002).
[CrossRef]

Dent. Mater. J. (1)

Y. Nishimoto, M. Otsuki, M. Yamauti, T. Eguchi, Y. Sato, R. M. Foxton, and J. Tagami, “Effect of pulse duration of Er: YAG laser on dentin ablation,” Dent. Mater. J.27(3), 433–439 (2008).
[CrossRef] [PubMed]

Fiber Integrated Opt. (1)

J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integrated Opt.19(3), 211–227 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

N. J. Scott, R. A. Barton, A. L. Casperson, A. Tchapyjnikov, K. Levin, D. Tran, and N. M. Fried, “Mid-IR germanium oxide fibers for contact erbium laser tissue ablation in endoscopic surgery,” IEEE J. Sel. Top. Quantum Electron.13(6), 1709–1714 (2007).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (1)

T. Wesendahl, P. Janknecht, B. Ott, and M. Frenz, “Erbium: YAG laser ablation of retinal tissue under perfluorodecaline: determination of laser-tissue interaction in pig eyes,” Invest. Ophthalmol. Vis. Sci.41(2), 505–512 (2000).
[PubMed]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (1)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

J. Opt. Soc. Am. (1)

Lasers Surg. Med. (1)

U. Hohenleutner, S. Hohenleutner, W. Bäumler, and M. Landthaler, “Fast and effective skin ablation with an Er:YAG laser: determination of ablation rates and thermal damage zones,” Lasers Surg. Med.20(3), 242–247 (1997).
[CrossRef] [PubMed]

Lasers Med. Sci. (1)

N. M. Fried, Y. B. Yang, C. A. Chaney, and D. Fried, “Transmission of Q-switched erbium:YSGG (λ=2.79 µm) and erbium:YAG (λ=2.94 µm) laser radiation through germanium oxide and sapphire optical fibres at high pulse energies,” Lasers Med. Sci.19(3), 155–160 (2004).
[CrossRef] [PubMed]

Lasers Surg. Med. (3)

S. Stübinger, B. von Rechenberg, H. F. Zeilhofer, R. Sader, and C. Landes, “Er:YAG laser osteotomy for removal of impacted teeth: clinical comparison of two techniques,” Lasers Surg. Med.39(7), 583–588 (2007).
[CrossRef] [PubMed]

J. T. Walsh and T. F. Deutsch, “Er:YAG laser ablation of tissue: measurement of ablation rates,” Lasers Surg. Med.9(4), 327–337 (1989).
[CrossRef] [PubMed]

J. Raif, M. Vardi, O. Nahlieli, and I. Gannot, “An Er:YAG laser endoscopic fiber delivery system for lithotripsy of salivary stones,” Lasers Surg. Med.38(6), 580–587 (2006).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Laser Technol. (2)

D. G. Kotsifaki and A. A. Serafetinides, “Mid-infrared radiation transmission through fluoride glass multimode optical fibers,” Opt. Laser Technol.43(8), 1448–1452 (2011).
[CrossRef]

D. G. Kotsifaki and A. A. Serafetinides, “Pulsed infrared radiation transmission through hollow silica waveguides,” Opt. Laser Technol.41(4), 365–373 (2009).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, and T. Shimomura, “Fabrication of dielectric-coated silver hollow glass waveguides for the infrared by liquid-flow coating method,” Proc. SPIE2677, 55–63 (1996).
[CrossRef]

Proc. SPIE (2)

A. Urich, T. Delmonte, R. R. J. Maier, D. P. Hand, and J. D. Shephard, “Towards implementation of hollow core fibres for surgical applications,” Proc. SPIE7894, 78940W (2011).
[CrossRef]

M. C. Pierce, M. R. Dickinson, and H. Devlin, “Selective photothermal ablation of tissue with a fibre delivered Er: YAG laser,” Proc. SPIE3601, 362–368 (1999).
[CrossRef]

Urology (1)

Z. Huang, F. Fu, Z. Zhong, L. Zhang, R. Xu, and X. Zhao, “Flexible ureteroscopy and laser lithotripsy for bilateral multiple intrarenal stones: is this a valuable choice?” Urology80(4), 800–804 (2012).
[CrossRef] [PubMed]

Other (1)

M. Contente, F. de Lima, R. Galo, J. Pécora, L. Bachmann, R. Palma-Dibb, and M. Borsatto, “Temperature rise during Er:YAG cavity preparation of primary enamel,” Lasers Med. Sci. (preprint) http://www.springerlink.com/index/Q24548Q541Q6017U.pdf .

Supplementary Material (2)

» Media 1: MOV (3391 KB)     
» Media 2: MOV (1857 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

SEM picture of the negative curvature fiber used in these experiments.

Fig. 2
Fig. 2

Absorption spectrum of silica (Suprasil F300) in the mid IR [9].

Fig. 3
Fig. 3

(a) Temporal profile of the laser pulse (b) Spatial beam profile of the laser showing a donut shaped beam.

Fig. 4
Fig. 4

Additional losses due to fiber bend in dB for a 1.23 m long fiber piece. The bend diameter is given for one 180° bend.

Fig. 5
Fig. 5

Fiber output beam profile for a bent NCF measured by moving a HC- PCF transversally relative to the NCF. The NCF was bent with a diameter of ~50 cm over a length of 80 cm.

Fig. 6
Fig. 6

Far field beam profile at different distances (a) 10, (b) 20, (c) 50, and (d) 100 mm) from the fiber end. The fiber length is 6.48 m.

Fig. 7
Fig. 7

schematic and dimensions of the sapphire endtip.

Fig. 8
Fig. 8

Endtip mounted onto the fiber using a heat shrinking tube.

Fig. 9
Fig. 9

Beam profile at the endtip’s outer surface.

Fig. 10
Fig. 10

Far-field profile of the fiber with endtip. Distance from the endtip to the reflective surface: (a) 10, (b) 20, (c) 50, and (d) 100 mm.

Fig. 11
Fig. 11

Tissue ablation results: (a) porcine bone; (b) cross-section through hole in porcine bone showing ablation depth with single shot, ablation depth is 265 µm; (c) porcine muscle; (d) tissue ablation of porcine muscle with a number of shots being distributed over the surface.

Fig. 12
Fig. 12

Endtip immersed in water.

Fig. 13
Fig. 13

Screenshots from Media 1 and Media 2. (a) Ablation of ovine bone in air. Square dimensions are 2x2 mm (Media 1) (b) Ablation of ovine bone under water (Media 2).

Tables (1)

Tables Icon

Table 1 Ablation thresholds for different biological tissues

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I =   ( φ f i b e r φ l a s e r d x d y ) 2 ( φ f i b e r 2 d x d y ) ( φ l a s e r 2 d x d y )

Metrics