## Abstract

We correct minor errors in four equations in our recent paper [Biomed. Opt. Express **4**(9), 1610–1617 (2013)]. They are equations (11), (14), (15), and (17) therein, where a factorial ratio
$\frac{(n-m)!}{(n+m)!}$ was mistakenly omitted. All the other equations and analysis in the paper were correct.

© 2013 Optical Society of America

Full Article |

PDF Article
### Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.

### Equations (4)

Equations on this page are rendered with MathJax. Learn more.

(1)
$${\sigma}_{\text{ext}}=\frac{\pi}{{k}^{2}}\sum _{n=\left|m\right|}^{\infty}(2n+1)\frac{(n-m)!}{(n+m)!}{\left[{P}_{n}^{m}(\text{cos}\beta )\right]}^{2}\text{Re}\left[2(1-{s}_{n})\right],$$
(2)
$${Q}_{\text{sca}}\equiv {\sigma}_{\text{sca}}/(\pi {a}^{2})=\frac{1}{{\left(ka\right)}^{2}}\sum _{n=\left|m\right|}^{\infty}(2n+1)\frac{(n-m)!}{(n+m)!}{\left[{P}_{n}^{m}(\text{cos}\beta )\right]}^{2}\left({\left|{s}_{n}-1\right|}^{2}\right),$$
(3)
$${Q}_{\text{abs}}\equiv {\sigma}_{\text{abs}}/(\pi {a}^{2})=\frac{1}{{\left(ka\right)}^{2}}\sum _{n=\left|m\right|}^{\infty}(2n+1)\frac{(n-m)!}{(n+m)!}{\left[{P}_{n}^{m}(\text{cos}\beta )\right]}^{2}\left(1-{\left|{s}_{n}\right|}^{2}\right).$$
(4)
$${Q}_{\text{ext},\text{sca}}={\sigma}_{\text{ext},\text{sca}}/(\pi {a}^{2})=\frac{4}{{\left(ka\right)}^{2}}\sum _{n=\left|m\right|}^{\infty}(2n+1)\frac{(n-m)!}{(n+m)!}{\left[{P}_{n}^{m}(\text{cos}\beta )\right]}^{2}{\text{sin}}^{2}({\delta}_{n}).$$