Abstract

Monolithic Vernier tuned super-structure grating distributed Bragg reflector (SSG-DBR) lasers are expected to become one of the most promising sources for swept source optical coherence tomography (SS-OCT) with a long coherence length, reduced sensitivity roll-off, and potential capability for a very fast A-scan rate. However, previous implementations of the lasers suffer from four main problems: 1) frequencies deviate from the targeted values when scanned, 2) large amounts of noise appear associated with abrupt changes in injection currents, 3) optically aliased noise appears due to a long coherence length, and 4) the narrow wavelength coverage of a single chip limits resolution. We have developed a method of dynamical frequency tuning, a method of selective data sampling to eliminate current switching noise, an interferometer to reduce aliased noise, and an excess-noise-free connection of two serially scanned lasers to enhance resolution to solve these problems. An optical frequency comb SS-OCT system was achieved with a sensitivity of 124 dB and a dynamic range of 55-72 dB that depended on the depth at an A-scan rate of 3.1 kHz with a resolution of 15 μm by discretely scanning two SSG-DBR lasers, i.e., L-band (1.560-1.599 μm) and UL-band (1.598-1.640 μm). A few OCT images with excellent image penetration depth were obtained.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. W. Drexler and J. G. Fujimoto eds., Optical Coherence Tomography: Technology and Applications (Springer-Verlag, Berlin, 2008).
  3. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
    [CrossRef] [PubMed]
  4. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  5. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003).
    [CrossRef] [PubMed]
  6. B. E. Bouma, G. J. Tearney, B. J. Vakoc, and S. H. Yun, “Optical frequency domain imaging,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer-Verlag, Berlin, 2008), pp. 209–237.
  7. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett.28(20), 1981–1983 (2003).
    [CrossRef] [PubMed]
  8. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett.30(23), 3159–3161 (2005).
    [CrossRef] [PubMed]
  9. M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt.10(4), 044009 (2005).
    [CrossRef] [PubMed]
  10. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express13(9), 3513–3528 (2005).
    [CrossRef] [PubMed]
  11. B. D. Goldberg, S. M. R. Motaghian Nezam, P. Jillella, B. E. Bouma, and G. J. Tearney, “Miniature swept source for point of care optical frequency domain imaging,” Opt. Express17(5), 3619–3629 (2009).
    [CrossRef] [PubMed]
  12. W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
    [CrossRef] [PubMed]
  13. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006).
    [CrossRef] [PubMed]
  14. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
    [CrossRef] [PubMed]
  15. M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications,” Proc. SPIE7554(75541F), 75541F (2010).
    [CrossRef]
  16. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
    [CrossRef] [PubMed]
  17. A.-H. Dhalla, D. Nankivil, and J. A. Izatt, “Complex conjugate resolved heterodyne swept source optical coherence tomography using coherence revival,” Biomed. Opt. Express3(3), 633–649 (2012).
    [CrossRef] [PubMed]
  18. B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz-1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213(82130M), 82130M (2012).
    [CrossRef]
  19. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express3(11), 2733–2751 (2012).
    [CrossRef] [PubMed]
  20. D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, S. O’Connor, M. N. Sysak, and L. Johanssen, “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proc. SPIE6847(68472P), 68472P(2008).
    [CrossRef]
  21. S. O’Connor, M. A. Bernacil, A. DeKelaita, B. Maher, and D. Derickson, “100 kHz axial scan rate swept-wavelength OCT using sampled grating distributed Bragg reflector lasers,” Proc. SPIE7168(716825), 716825(2009).
    [CrossRef]
  22. B. George and D. Derickson, “High-speed concatenation of frequency ramps using sampled grating distributed Bragg reflector laser diode source for OCT resolution enhancement,” Proc. SPIE7554(75542O), 75542O (2010).
    [CrossRef]
  23. J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. Minneman, C. Chiccone, and D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” Proc. SPIE8213(82130T), 82130T(2012).
    [CrossRef]
  24. V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron.29(6), 1824–1834 (1993).
    [CrossRef]
  25. Y. Tohmori, Y. Yoshikuni, T. Tamamura, H. Ishii, Y. Kondo, and M. Yamamoto, “Broad-range wavelength tuning in DBR lasers with super structure grating (SSG),” IEEE Photon. Technol. Lett.5(2), 126–129 (1993).
    [CrossRef]
  26. H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Broad-range wavelength coverage (62.4 nm) with superstructure-grating DBR laser,” Electron. Lett.32(5), 454–455 (1996).
    [CrossRef]
  27. H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super- structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron.32(3), 433–441 (1996).
    [CrossRef]
  28. M. Öberg, S. Nilsson, K. Streubel, J. Wallin, L. Bäckbom, and T. Klinga, “74 nm wavelength tuning range of an InGaAsP-InP vertical grating assisted codirectional coupler laser with rear sampled grating reflector,” IEEE Photon. Technol. Lett.5(7), 735–737 (1993).
    [CrossRef]
  29. A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005).
    [CrossRef]
  30. R. Laroy, G. Morthier, T. Mullane, M. Todd, and R. Baets, “Stabilisation and control of widely tunable MG-Y lasers with integrated photodetectors,” IET Optoelectron.1(1), 35–38 (2007).
    [CrossRef]
  31. T. Amano, H. Hiro-Oka, D. H. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser,” Appl. Opt.44(5), 808–816 (2005).
    [CrossRef] [PubMed]
  32. O. Ishida, Y. Tada, N. Shibata, and H. Ishii, “Fast and stable frequency switching employing a delayed self-duplex (DSD) light source,” IEEE Photon. Technol. Lett.6(1), 13–16 (1994).
    [CrossRef]
  33. J. E. Simsarian, M. C. Larson, H. E. Garrett, H. Xu, and T. A. Strand, “Less than 5-ns wavelength switching with an SG-DBR laser,” IEEE Photon. Technol. Lett.18(4), 565–567 (2006).
    [CrossRef]
  34. N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm quasi-continuous fast sweep using SSG-DBR lasers,” IEEE Photon. Technol. Lett.20(12), 1015–1017 (2008).
    [CrossRef]
  35. N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of Thermal Wavelength Drift in Super-Structure Grating Distributed Bragg Reflector (SSG-DBR) Laser with Thermal Drift Compensator,” IEEE J. Sel. Top. Quantum Electron.13(5), 1164–1169 (2007).
    [CrossRef]
  36. T. H. Tsai, C. Zhou, D. C. Adler, and J. G. Fujimoto, “Frequency comb swept lasers,” Opt. Express17(23), 21257–21270 (2009).
    [CrossRef] [PubMed]
  37. T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Obayashi, “OFDR with an SSG-DBR laser,” Proc. SPIE5531, 375–382 (2004).
    [CrossRef]
  38. D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Tissue imaging by OFDR-OCT using an SSG-DBR laser,” Proc. SPIE5690, 101–113 (2005).
    [CrossRef]
  39. D. Choi, H. Hiro-oka, T. Amano, H. Furukawa, N. Fujiwara, H. Ishii, and K. Ohbayashi, “A method of improving scanning speed and resolution of OFDR-OCT using multiple SSG-DBR lasers simultaneously,” Proc. SPIE6429(64292E), 64292E (2007).
    [CrossRef]
  40. K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency domain imaging toward high-resolution, high-speed, high-sensitivity, and long-depth-range,” Proc. SPIE6429(64291G), 64291G (2007).
    [CrossRef]
  41. H. Kakuma, K. Ohbayashi, and Y. Arakawa, “Optical imaging of hard and soft dental tissues using discretely swept optical frequency domain reflectometry optical coherence tomography at wavelengths from 1560 to 1600 nm,” J. Biomed. Opt.13(1), 014012 (2008).
    [CrossRef] [PubMed]
  42. H. Kakuma, D. Choi, H. Furukawa, H. Hiro-oka, and K. Ohbayashi, “24 mm depth range discretely swept optical frequency domain imaging in dentistry,” Proc. SPIE7162(717208), 717208 (2009).
  43. T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express16(6), 4163–4176 (2008).
    [CrossRef] [PubMed]
  44. D. Choi, R. Yoshimura, H. Hiro-oka, H. Furukawa, A. Goto, N. Satoh, A. Igarashi, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Discretly swept optical coherence tomography system using super-structure grating distributed Bragg reflector lasers at 1561-1639 nm,” Proc. SPIE8213(82132F), 82132F (2012).
    [CrossRef]
  45. G. Sarlet, G. Morthier, and R. Baets, “Control of widely tunable SSG-DBR lasers for dense wavelength division multiplexing,” J. Lightwave Technol.18(8), 1128–1138 (2000).
    [CrossRef]
  46. F. Kano, H. Ishii, Y. Tohmori, M. Yamamoto, and Y. Yoshikuni, “Broad range wavelength switching in superstructure grating distributed Bragg reflector lasers,” Electron. Lett.29(12), 1091–1092 (1993).
    [CrossRef]
  47. L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 988–999 (2000).
    [CrossRef]
  48. S. H. Yun, G. T. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength,” Opt. Express11(26), 3598–3604 (2003).
    [CrossRef] [PubMed]
  49. G. Häusler and M. W. Lindner, “Coherence radar” and “Spectral radar”-New tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998).
    [CrossRef] [PubMed]
  50. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11(22), 2953–2963 (2003).
    [CrossRef] [PubMed]
  51. American National Standards Institute, “American national standard for safe use of lasers,” ANSI Z136.1–200 (ANSI, 2000).
  52. U. Sharma, E. W. Chang, and S. H. Yun, “Long-wavelength optical coherence tomography at 1.7 microm for enhanced imaging depth,” Opt. Express16(24), 19712–19723 (2008).
    [CrossRef] [PubMed]
  53. S. Ishida and N. Nishizawa, “Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800-1700 nm wavelength region,” Biomed. Opt. Express3(2), 282–294 (2012).
    [CrossRef] [PubMed]

2012 (6)

A.-H. Dhalla, D. Nankivil, and J. A. Izatt, “Complex conjugate resolved heterodyne swept source optical coherence tomography using coherence revival,” Biomed. Opt. Express3(3), 633–649 (2012).
[CrossRef] [PubMed]

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz-1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213(82130M), 82130M (2012).
[CrossRef]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express3(11), 2733–2751 (2012).
[CrossRef] [PubMed]

J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. Minneman, C. Chiccone, and D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” Proc. SPIE8213(82130T), 82130T(2012).
[CrossRef]

D. Choi, R. Yoshimura, H. Hiro-oka, H. Furukawa, A. Goto, N. Satoh, A. Igarashi, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Discretly swept optical coherence tomography system using super-structure grating distributed Bragg reflector lasers at 1561-1639 nm,” Proc. SPIE8213(82132F), 82132F (2012).
[CrossRef]

S. Ishida and N. Nishizawa, “Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800-1700 nm wavelength region,” Biomed. Opt. Express3(2), 282–294 (2012).
[CrossRef] [PubMed]

2010 (5)

2009 (4)

B. D. Goldberg, S. M. R. Motaghian Nezam, P. Jillella, B. E. Bouma, and G. J. Tearney, “Miniature swept source for point of care optical frequency domain imaging,” Opt. Express17(5), 3619–3629 (2009).
[CrossRef] [PubMed]

S. O’Connor, M. A. Bernacil, A. DeKelaita, B. Maher, and D. Derickson, “100 kHz axial scan rate swept-wavelength OCT using sampled grating distributed Bragg reflector lasers,” Proc. SPIE7168(716825), 716825(2009).
[CrossRef]

T. H. Tsai, C. Zhou, D. C. Adler, and J. G. Fujimoto, “Frequency comb swept lasers,” Opt. Express17(23), 21257–21270 (2009).
[CrossRef] [PubMed]

H. Kakuma, D. Choi, H. Furukawa, H. Hiro-oka, and K. Ohbayashi, “24 mm depth range discretely swept optical frequency domain imaging in dentistry,” Proc. SPIE7162(717208), 717208 (2009).

2008 (5)

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express16(6), 4163–4176 (2008).
[CrossRef] [PubMed]

H. Kakuma, K. Ohbayashi, and Y. Arakawa, “Optical imaging of hard and soft dental tissues using discretely swept optical frequency domain reflectometry optical coherence tomography at wavelengths from 1560 to 1600 nm,” J. Biomed. Opt.13(1), 014012 (2008).
[CrossRef] [PubMed]

U. Sharma, E. W. Chang, and S. H. Yun, “Long-wavelength optical coherence tomography at 1.7 microm for enhanced imaging depth,” Opt. Express16(24), 19712–19723 (2008).
[CrossRef] [PubMed]

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm quasi-continuous fast sweep using SSG-DBR lasers,” IEEE Photon. Technol. Lett.20(12), 1015–1017 (2008).
[CrossRef]

D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, S. O’Connor, M. N. Sysak, and L. Johanssen, “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proc. SPIE6847(68472P), 68472P(2008).
[CrossRef]

2007 (4)

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of Thermal Wavelength Drift in Super-Structure Grating Distributed Bragg Reflector (SSG-DBR) Laser with Thermal Drift Compensator,” IEEE J. Sel. Top. Quantum Electron.13(5), 1164–1169 (2007).
[CrossRef]

D. Choi, H. Hiro-oka, T. Amano, H. Furukawa, N. Fujiwara, H. Ishii, and K. Ohbayashi, “A method of improving scanning speed and resolution of OFDR-OCT using multiple SSG-DBR lasers simultaneously,” Proc. SPIE6429(64292E), 64292E (2007).
[CrossRef]

K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency domain imaging toward high-resolution, high-speed, high-sensitivity, and long-depth-range,” Proc. SPIE6429(64291G), 64291G (2007).
[CrossRef]

R. Laroy, G. Morthier, T. Mullane, M. Todd, and R. Baets, “Stabilisation and control of widely tunable MG-Y lasers with integrated photodetectors,” IET Optoelectron.1(1), 35–38 (2007).
[CrossRef]

2006 (2)

J. E. Simsarian, M. C. Larson, H. E. Garrett, H. Xu, and T. A. Strand, “Less than 5-ns wavelength switching with an SG-DBR laser,” IEEE Photon. Technol. Lett.18(4), 565–567 (2006).
[CrossRef]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

2005 (6)

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett.30(23), 3159–3161 (2005).
[CrossRef] [PubMed]

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt.10(4), 044009 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express13(9), 3513–3528 (2005).
[CrossRef] [PubMed]

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005).
[CrossRef]

T. Amano, H. Hiro-Oka, D. H. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser,” Appl. Opt.44(5), 808–816 (2005).
[CrossRef] [PubMed]

D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Tissue imaging by OFDR-OCT using an SSG-DBR laser,” Proc. SPIE5690, 101–113 (2005).
[CrossRef]

2004 (1)

T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Obayashi, “OFDR with an SSG-DBR laser,” Proc. SPIE5531, 375–382 (2004).
[CrossRef]

2003 (6)

2000 (2)

1998 (1)

G. Häusler and M. W. Lindner, “Coherence radar” and “Spectral radar”-New tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998).
[CrossRef] [PubMed]

1996 (2)

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Broad-range wavelength coverage (62.4 nm) with superstructure-grating DBR laser,” Electron. Lett.32(5), 454–455 (1996).
[CrossRef]

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super- structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron.32(3), 433–441 (1996).
[CrossRef]

1994 (1)

O. Ishida, Y. Tada, N. Shibata, and H. Ishii, “Fast and stable frequency switching employing a delayed self-duplex (DSD) light source,” IEEE Photon. Technol. Lett.6(1), 13–16 (1994).
[CrossRef]

1993 (4)

M. Öberg, S. Nilsson, K. Streubel, J. Wallin, L. Bäckbom, and T. Klinga, “74 nm wavelength tuning range of an InGaAsP-InP vertical grating assisted codirectional coupler laser with rear sampled grating reflector,” IEEE Photon. Technol. Lett.5(7), 735–737 (1993).
[CrossRef]

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron.29(6), 1824–1834 (1993).
[CrossRef]

Y. Tohmori, Y. Yoshikuni, T. Tamamura, H. Ishii, Y. Kondo, and M. Yamamoto, “Broad-range wavelength tuning in DBR lasers with super structure grating (SSG),” IEEE Photon. Technol. Lett.5(2), 126–129 (1993).
[CrossRef]

F. Kano, H. Ishii, Y. Tohmori, M. Yamamoto, and Y. Yoshikuni, “Broad range wavelength switching in superstructure grating distributed Bragg reflector lasers,” Electron. Lett.29(12), 1091–1092 (1993).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Adler, D. C.

Amano, T.

D. Choi, H. Hiro-oka, T. Amano, H. Furukawa, N. Fujiwara, H. Ishii, and K. Ohbayashi, “A method of improving scanning speed and resolution of OFDR-OCT using multiple SSG-DBR lasers simultaneously,” Proc. SPIE6429(64292E), 64292E (2007).
[CrossRef]

K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency domain imaging toward high-resolution, high-speed, high-sensitivity, and long-depth-range,” Proc. SPIE6429(64291G), 64291G (2007).
[CrossRef]

T. Amano, H. Hiro-Oka, D. H. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser,” Appl. Opt.44(5), 808–816 (2005).
[CrossRef] [PubMed]

D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Tissue imaging by OFDR-OCT using an SSG-DBR laser,” Proc. SPIE5690, 101–113 (2005).
[CrossRef]

T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Obayashi, “OFDR with an SSG-DBR laser,” Proc. SPIE5531, 375–382 (2004).
[CrossRef]

Arakawa, Y.

H. Kakuma, K. Ohbayashi, and Y. Arakawa, “Optical imaging of hard and soft dental tissues using discretely swept optical frequency domain reflectometry optical coherence tomography at wavelengths from 1560 to 1600 nm,” J. Biomed. Opt.13(1), 014012 (2008).
[CrossRef] [PubMed]

Asaka, K.

K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency domain imaging toward high-resolution, high-speed, high-sensitivity, and long-depth-range,” Proc. SPIE6429(64291G), 64291G (2007).
[CrossRef]

Atia, W.

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications,” Proc. SPIE7554(75541F), 75541F (2010).
[CrossRef]

Bäckbom, L.

M. Öberg, S. Nilsson, K. Streubel, J. Wallin, L. Bäckbom, and T. Klinga, “74 nm wavelength tuning range of an InGaAsP-InP vertical grating assisted codirectional coupler laser with rear sampled grating reflector,” IEEE Photon. Technol. Lett.5(7), 735–737 (1993).
[CrossRef]

Baets, R.

R. Laroy, G. Morthier, T. Mullane, M. Todd, and R. Baets, “Stabilisation and control of widely tunable MG-Y lasers with integrated photodetectors,” IET Optoelectron.1(1), 35–38 (2007).
[CrossRef]

G. Sarlet, G. Morthier, and R. Baets, “Control of widely tunable SSG-DBR lasers for dense wavelength division multiplexing,” J. Lightwave Technol.18(8), 1128–1138 (2000).
[CrossRef]

Bajraszewski, T.

Barry, S.

Barton, E.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005).
[CrossRef]

Baumann, B.

Bernacil, M.

D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, S. O’Connor, M. N. Sysak, and L. Johanssen, “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proc. SPIE6847(68472P), 68472P(2008).
[CrossRef]

Bernacil, M. A.

S. O’Connor, M. A. Bernacil, A. DeKelaita, B. Maher, and D. Derickson, “100 kHz axial scan rate swept-wavelength OCT using sampled grating distributed Bragg reflector lasers,” Proc. SPIE7168(716825), 716825(2009).
[CrossRef]

Biedermann, B. R.

Boschert, P.

J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. Minneman, C. Chiccone, and D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” Proc. SPIE8213(82130T), 82130T(2012).
[CrossRef]

Boudoux, C.

Bouma, B. E.

W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
[CrossRef] [PubMed]

B. D. Goldberg, S. M. R. Motaghian Nezam, P. Jillella, B. E. Bouma, and G. J. Tearney, “Miniature swept source for point of care optical frequency domain imaging,” Opt. Express17(5), 3619–3629 (2009).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett.30(23), 3159–3161 (2005).
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett.28(20), 1981–1983 (2003).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11(22), 2953–2963 (2003).
[CrossRef] [PubMed]

S. H. Yun, G. T. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength,” Opt. Express11(26), 3598–3604 (2003).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
[CrossRef] [PubMed]

Busico, G.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005).
[CrossRef]

Cable, A. E.

Carter, A. C.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005).
[CrossRef]

Cense, B.

Chang, E. W.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chiccone, C.

J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. Minneman, C. Chiccone, and D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” Proc. SPIE8213(82130T), 82130T(2012).
[CrossRef]

Choi, D.

D. Choi, R. Yoshimura, H. Hiro-oka, H. Furukawa, A. Goto, N. Satoh, A. Igarashi, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Discretly swept optical coherence tomography system using super-structure grating distributed Bragg reflector lasers at 1561-1639 nm,” Proc. SPIE8213(82132F), 82132F (2012).
[CrossRef]

H. Kakuma, D. Choi, H. Furukawa, H. Hiro-oka, and K. Ohbayashi, “24 mm depth range discretely swept optical frequency domain imaging in dentistry,” Proc. SPIE7162(717208), 717208 (2009).

D. Choi, H. Hiro-oka, T. Amano, H. Furukawa, N. Fujiwara, H. Ishii, and K. Ohbayashi, “A method of improving scanning speed and resolution of OFDR-OCT using multiple SSG-DBR lasers simultaneously,” Proc. SPIE6429(64292E), 64292E (2007).
[CrossRef]

K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency domain imaging toward high-resolution, high-speed, high-sensitivity, and long-depth-range,” Proc. SPIE6429(64291G), 64291G (2007).
[CrossRef]

D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Tissue imaging by OFDR-OCT using an SSG-DBR laser,” Proc. SPIE5690, 101–113 (2005).
[CrossRef]

T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Obayashi, “OFDR with an SSG-DBR laser,” Proc. SPIE5531, 375–382 (2004).
[CrossRef]

Choi, D. H.

Choma, M. A.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt.10(4), 044009 (2005).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003).
[CrossRef] [PubMed]

Chuang, Z.-M.

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron.29(6), 1824–1834 (1993).
[CrossRef]

Coldren, L. A.

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 988–999 (2000).
[CrossRef]

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron.29(6), 1824–1834 (1993).
[CrossRef]

Crawford, M.

J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. Minneman, C. Chiccone, and D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” Proc. SPIE8213(82130T), 82130T(2012).
[CrossRef]

de Boer, J. F.

DeKelaita, A.

S. O’Connor, M. A. Bernacil, A. DeKelaita, B. Maher, and D. Derickson, “100 kHz axial scan rate swept-wavelength OCT using sampled grating distributed Bragg reflector lasers,” Proc. SPIE7168(716825), 716825(2009).
[CrossRef]

D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, S. O’Connor, M. N. Sysak, and L. Johanssen, “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proc. SPIE6847(68472P), 68472P(2008).
[CrossRef]

Derickson, D.

J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. Minneman, C. Chiccone, and D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” Proc. SPIE8213(82130T), 82130T(2012).
[CrossRef]

B. George and D. Derickson, “High-speed concatenation of frequency ramps using sampled grating distributed Bragg reflector laser diode source for OCT resolution enhancement,” Proc. SPIE7554(75542O), 75542O (2010).
[CrossRef]

S. O’Connor, M. A. Bernacil, A. DeKelaita, B. Maher, and D. Derickson, “100 kHz axial scan rate swept-wavelength OCT using sampled grating distributed Bragg reflector lasers,” Proc. SPIE7168(716825), 716825(2009).
[CrossRef]

D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, S. O’Connor, M. N. Sysak, and L. Johanssen, “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proc. SPIE6847(68472P), 68472P(2008).
[CrossRef]

Dhalla, A.-H.

Duck, J. P.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005).
[CrossRef]

Duker, J. S.

Eigenwillig, C. M.

Ensher, J.

J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. Minneman, C. Chiccone, and D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” Proc. SPIE8213(82130T), 82130T(2012).
[CrossRef]

Featherston, K.

J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. Minneman, C. Chiccone, and D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” Proc. SPIE8213(82130T), 82130T(2012).
[CrossRef]

Fercher, A. F.

Flanders, D.

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications,” Proc. SPIE7554(75541F), 75541F (2010).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express3(11), 2733–2751 (2012).
[CrossRef] [PubMed]

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz-1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213(82130M), 82130M (2012).
[CrossRef]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

T. H. Tsai, C. Zhou, D. C. Adler, and J. G. Fujimoto, “Frequency comb swept lasers,” Opt. Express17(23), 21257–21270 (2009).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express13(9), 3513–3528 (2005).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujiwara, N.

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm quasi-continuous fast sweep using SSG-DBR lasers,” IEEE Photon. Technol. Lett.20(12), 1015–1017 (2008).
[CrossRef]

D. Choi, H. Hiro-oka, T. Amano, H. Furukawa, N. Fujiwara, H. Ishii, and K. Ohbayashi, “A method of improving scanning speed and resolution of OFDR-OCT using multiple SSG-DBR lasers simultaneously,” Proc. SPIE6429(64292E), 64292E (2007).
[CrossRef]

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of Thermal Wavelength Drift in Super-Structure Grating Distributed Bragg Reflector (SSG-DBR) Laser with Thermal Drift Compensator,” IEEE J. Sel. Top. Quantum Electron.13(5), 1164–1169 (2007).
[CrossRef]

K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency domain imaging toward high-resolution, high-speed, high-sensitivity, and long-depth-range,” Proc. SPIE6429(64291G), 64291G (2007).
[CrossRef]

Furukawa, H.

D. Choi, R. Yoshimura, H. Hiro-oka, H. Furukawa, A. Goto, N. Satoh, A. Igarashi, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Discretly swept optical coherence tomography system using super-structure grating distributed Bragg reflector lasers at 1561-1639 nm,” Proc. SPIE8213(82132F), 82132F (2012).
[CrossRef]

H. Kakuma, D. Choi, H. Furukawa, H. Hiro-oka, and K. Ohbayashi, “24 mm depth range discretely swept optical frequency domain imaging in dentistry,” Proc. SPIE7162(717208), 717208 (2009).

D. Choi, H. Hiro-oka, T. Amano, H. Furukawa, N. Fujiwara, H. Ishii, and K. Ohbayashi, “A method of improving scanning speed and resolution of OFDR-OCT using multiple SSG-DBR lasers simultaneously,” Proc. SPIE6429(64292E), 64292E (2007).
[CrossRef]

K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency domain imaging toward high-resolution, high-speed, high-sensitivity, and long-depth-range,” Proc. SPIE6429(64291G), 64291G (2007).
[CrossRef]

T. Amano, H. Hiro-Oka, D. H. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser,” Appl. Opt.44(5), 808–816 (2005).
[CrossRef] [PubMed]

D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Tissue imaging by OFDR-OCT using an SSG-DBR laser,” Proc. SPIE5690, 101–113 (2005).
[CrossRef]

T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Obayashi, “OFDR with an SSG-DBR laser,” Proc. SPIE5531, 375–382 (2004).
[CrossRef]

Garrett, H. E.

J. E. Simsarian, M. C. Larson, H. E. Garrett, H. Xu, and T. A. Strand, “Less than 5-ns wavelength switching with an SG-DBR laser,” IEEE Photon. Technol. Lett.18(4), 565–567 (2006).
[CrossRef]

George, B.

B. George and D. Derickson, “High-speed concatenation of frequency ramps using sampled grating distributed Bragg reflector laser diode source for OCT resolution enhancement,” Proc. SPIE7554(75542O), 75542O (2010).
[CrossRef]

Goldberg, B. D.

Goto, A.

D. Choi, R. Yoshimura, H. Hiro-oka, H. Furukawa, A. Goto, N. Satoh, A. Igarashi, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Discretly swept optical coherence tomography system using super-structure grating distributed Bragg reflector lasers at 1561-1639 nm,” Proc. SPIE8213(82132F), 82132F (2012).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Grulkowski, I.

Häusler, G.

G. Häusler and M. W. Lindner, “Coherence radar” and “Spectral radar”-New tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Heim, P. J. S.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz-1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213(82130M), 82130M (2012).
[CrossRef]

Hiro-oka, H.

D. Choi, R. Yoshimura, H. Hiro-oka, H. Furukawa, A. Goto, N. Satoh, A. Igarashi, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Discretly swept optical coherence tomography system using super-structure grating distributed Bragg reflector lasers at 1561-1639 nm,” Proc. SPIE8213(82132F), 82132F (2012).
[CrossRef]

H. Kakuma, D. Choi, H. Furukawa, H. Hiro-oka, and K. Ohbayashi, “24 mm depth range discretely swept optical frequency domain imaging in dentistry,” Proc. SPIE7162(717208), 717208 (2009).

D. Choi, H. Hiro-oka, T. Amano, H. Furukawa, N. Fujiwara, H. Ishii, and K. Ohbayashi, “A method of improving scanning speed and resolution of OFDR-OCT using multiple SSG-DBR lasers simultaneously,” Proc. SPIE6429(64292E), 64292E (2007).
[CrossRef]

K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency domain imaging toward high-resolution, high-speed, high-sensitivity, and long-depth-range,” Proc. SPIE6429(64291G), 64291G (2007).
[CrossRef]

T. Amano, H. Hiro-Oka, D. H. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser,” Appl. Opt.44(5), 808–816 (2005).
[CrossRef] [PubMed]

D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Tissue imaging by OFDR-OCT using an SSG-DBR laser,” Proc. SPIE5690, 101–113 (2005).
[CrossRef]

T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Obayashi, “OFDR with an SSG-DBR laser,” Proc. SPIE5531, 375–382 (2004).
[CrossRef]

Hitzenberger, C. K.

Hsu, K.

Huang, D.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huber, J.

J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. Minneman, C. Chiccone, and D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” Proc. SPIE8213(82130T), 82130T(2012).
[CrossRef]

Huber, R.

Iftimia, N.

Igarashi, A.

D. Choi, R. Yoshimura, H. Hiro-oka, H. Furukawa, A. Goto, N. Satoh, A. Igarashi, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Discretly swept optical coherence tomography system using super-structure grating distributed Bragg reflector lasers at 1561-1639 nm,” Proc. SPIE8213(82132F), 82132F (2012).
[CrossRef]

Ishida, O.

O. Ishida, Y. Tada, N. Shibata, and H. Ishii, “Fast and stable frequency switching employing a delayed self-duplex (DSD) light source,” IEEE Photon. Technol. Lett.6(1), 13–16 (1994).
[CrossRef]

Ishida, S.

Ishii, H.

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm quasi-continuous fast sweep using SSG-DBR lasers,” IEEE Photon. Technol. Lett.20(12), 1015–1017 (2008).
[CrossRef]

D. Choi, H. Hiro-oka, T. Amano, H. Furukawa, N. Fujiwara, H. Ishii, and K. Ohbayashi, “A method of improving scanning speed and resolution of OFDR-OCT using multiple SSG-DBR lasers simultaneously,” Proc. SPIE6429(64292E), 64292E (2007).
[CrossRef]

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of Thermal Wavelength Drift in Super-Structure Grating Distributed Bragg Reflector (SSG-DBR) Laser with Thermal Drift Compensator,” IEEE J. Sel. Top. Quantum Electron.13(5), 1164–1169 (2007).
[CrossRef]

K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency domain imaging toward high-resolution, high-speed, high-sensitivity, and long-depth-range,” Proc. SPIE6429(64291G), 64291G (2007).
[CrossRef]

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Broad-range wavelength coverage (62.4 nm) with superstructure-grating DBR laser,” Electron. Lett.32(5), 454–455 (1996).
[CrossRef]

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super- structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron.32(3), 433–441 (1996).
[CrossRef]

O. Ishida, Y. Tada, N. Shibata, and H. Ishii, “Fast and stable frequency switching employing a delayed self-duplex (DSD) light source,” IEEE Photon. Technol. Lett.6(1), 13–16 (1994).
[CrossRef]

F. Kano, H. Ishii, Y. Tohmori, M. Yamamoto, and Y. Yoshikuni, “Broad range wavelength switching in superstructure grating distributed Bragg reflector lasers,” Electron. Lett.29(12), 1091–1092 (1993).
[CrossRef]

Y. Tohmori, Y. Yoshikuni, T. Tamamura, H. Ishii, Y. Kondo, and M. Yamamoto, “Broad-range wavelength tuning in DBR lasers with super structure grating (SSG),” IEEE Photon. Technol. Lett.5(2), 126–129 (1993).
[CrossRef]

Izatt, J. A.

Jayaraman, V.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz-1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213(82130M), 82130M (2012).
[CrossRef]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express3(11), 2733–2751 (2012).
[CrossRef] [PubMed]

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron.29(6), 1824–1834 (1993).
[CrossRef]

Jayavel, P.

K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency domain imaging toward high-resolution, high-speed, high-sensitivity, and long-depth-range,” Proc. SPIE6429(64291G), 64291G (2007).
[CrossRef]

Jiang, J.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express3(11), 2733–2751 (2012).
[CrossRef] [PubMed]

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz-1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213(82130M), 82130M (2012).
[CrossRef]

Jillella, P.

Johanssen, L.

D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, S. O’Connor, M. N. Sysak, and L. Johanssen, “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proc. SPIE6847(68472P), 68472P(2008).
[CrossRef]

Johnson, B.

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications,” Proc. SPIE7554(75541F), 75541F (2010).
[CrossRef]

Kakuma, H.

H. Kakuma, D. Choi, H. Furukawa, H. Hiro-oka, and K. Ohbayashi, “24 mm depth range discretely swept optical frequency domain imaging in dentistry,” Proc. SPIE7162(717208), 717208 (2009).

H. Kakuma, K. Ohbayashi, and Y. Arakawa, “Optical imaging of hard and soft dental tissues using discretely swept optical frequency domain reflectometry optical coherence tomography at wavelengths from 1560 to 1600 nm,” J. Biomed. Opt.13(1), 014012 (2008).
[CrossRef] [PubMed]

Kano, F.

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm quasi-continuous fast sweep using SSG-DBR lasers,” IEEE Photon. Technol. Lett.20(12), 1015–1017 (2008).
[CrossRef]

T. Amano, H. Hiro-Oka, D. H. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser,” Appl. Opt.44(5), 808–816 (2005).
[CrossRef] [PubMed]

T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Obayashi, “OFDR with an SSG-DBR laser,” Proc. SPIE5531, 375–382 (2004).
[CrossRef]

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Broad-range wavelength coverage (62.4 nm) with superstructure-grating DBR laser,” Electron. Lett.32(5), 454–455 (1996).
[CrossRef]

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super- structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron.32(3), 433–441 (1996).
[CrossRef]

F. Kano, H. Ishii, Y. Tohmori, M. Yamamoto, and Y. Yoshikuni, “Broad range wavelength switching in superstructure grating distributed Bragg reflector lasers,” Electron. Lett.29(12), 1091–1092 (1993).
[CrossRef]

Kato, K.

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm quasi-continuous fast sweep using SSG-DBR lasers,” IEEE Photon. Technol. Lett.20(12), 1015–1017 (2008).
[CrossRef]

Kawaguchi, Y.

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm quasi-continuous fast sweep using SSG-DBR lasers,” IEEE Photon. Technol. Lett.20(12), 1015–1017 (2008).
[CrossRef]

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of Thermal Wavelength Drift in Super-Structure Grating Distributed Bragg Reflector (SSG-DBR) Laser with Thermal Drift Compensator,” IEEE J. Sel. Top. Quantum Electron.13(5), 1164–1169 (2007).
[CrossRef]

Klein, T.

Klinga, T.

M. Öberg, S. Nilsson, K. Streubel, J. Wallin, L. Bäckbom, and T. Klinga, “74 nm wavelength tuning range of an InGaAsP-InP vertical grating assisted codirectional coupler laser with rear sampled grating reflector,” IEEE Photon. Technol. Lett.5(7), 735–737 (1993).
[CrossRef]

Kondo, Y.

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm quasi-continuous fast sweep using SSG-DBR lasers,” IEEE Photon. Technol. Lett.20(12), 1015–1017 (2008).
[CrossRef]

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of Thermal Wavelength Drift in Super-Structure Grating Distributed Bragg Reflector (SSG-DBR) Laser with Thermal Drift Compensator,” IEEE J. Sel. Top. Quantum Electron.13(5), 1164–1169 (2007).
[CrossRef]

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Broad-range wavelength coverage (62.4 nm) with superstructure-grating DBR laser,” Electron. Lett.32(5), 454–455 (1996).
[CrossRef]

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super- structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron.32(3), 433–441 (1996).
[CrossRef]

Y. Tohmori, Y. Yoshikuni, T. Tamamura, H. Ishii, Y. Kondo, and M. Yamamoto, “Broad-range wavelength tuning in DBR lasers with super structure grating (SSG),” IEEE Photon. Technol. Lett.5(2), 126–129 (1993).
[CrossRef]

Kowalczyk, A.

Kuznetsov, M.

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications,” Proc. SPIE7554(75541F), 75541F (2010).
[CrossRef]

Laroy, R.

R. Laroy, G. Morthier, T. Mullane, M. Todd, and R. Baets, “Stabilisation and control of widely tunable MG-Y lasers with integrated photodetectors,” IET Optoelectron.1(1), 35–38 (2007).
[CrossRef]

Larson, M. C.

J. E. Simsarian, M. C. Larson, H. E. Garrett, H. Xu, and T. A. Strand, “Less than 5-ns wavelength switching with an SG-DBR laser,” IEEE Photon. Technol. Lett.18(4), 565–567 (2006).
[CrossRef]

Leitgeb, R.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Lindner, M. W.

G. Häusler and M. W. Lindner, “Coherence radar” and “Spectral radar”-New tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998).
[CrossRef] [PubMed]

Liu, J. J.

Lu, C. D.

Maher, B.

S. O’Connor, M. A. Bernacil, A. DeKelaita, B. Maher, and D. Derickson, “100 kHz axial scan rate swept-wavelength OCT using sampled grating distributed Bragg reflector lasers,” Proc. SPIE7168(716825), 716825(2009).
[CrossRef]

D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, S. O’Connor, M. N. Sysak, and L. Johanssen, “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proc. SPIE6847(68472P), 68472P(2008).
[CrossRef]

Minneman, M.

J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. Minneman, C. Chiccone, and D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” Proc. SPIE8213(82130T), 82130T(2012).
[CrossRef]

Miyazawa, T.

D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Tissue imaging by OFDR-OCT using an SSG-DBR laser,” Proc. SPIE5690, 101–113 (2005).
[CrossRef]

Morthier, G.

R. Laroy, G. Morthier, T. Mullane, M. Todd, and R. Baets, “Stabilisation and control of widely tunable MG-Y lasers with integrated photodetectors,” IET Optoelectron.1(1), 35–38 (2007).
[CrossRef]

G. Sarlet, G. Morthier, and R. Baets, “Control of widely tunable SSG-DBR lasers for dense wavelength division multiplexing,” J. Lightwave Technol.18(8), 1128–1138 (2000).
[CrossRef]

Motaghian Nezam, S. M. R.

Mullane, T.

R. Laroy, G. Morthier, T. Mullane, M. Todd, and R. Baets, “Stabilisation and control of widely tunable MG-Y lasers with integrated photodetectors,” IET Optoelectron.1(1), 35–38 (2007).
[CrossRef]

Nakanishi, M.

D. Choi, R. Yoshimura, H. Hiro-oka, H. Furukawa, A. Goto, N. Satoh, A. Igarashi, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Discretly swept optical coherence tomography system using super-structure grating distributed Bragg reflector lasers at 1561-1639 nm,” Proc. SPIE8213(82132F), 82132F (2012).
[CrossRef]

K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency domain imaging toward high-resolution, high-speed, high-sensitivity, and long-depth-range,” Proc. SPIE6429(64291G), 64291G (2007).
[CrossRef]

T. Amano, H. Hiro-Oka, D. H. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser,” Appl. Opt.44(5), 808–816 (2005).
[CrossRef] [PubMed]

D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Tissue imaging by OFDR-OCT using an SSG-DBR laser,” Proc. SPIE5690, 101–113 (2005).
[CrossRef]

T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Obayashi, “OFDR with an SSG-DBR laser,” Proc. SPIE5531, 375–382 (2004).
[CrossRef]

Nankivil, D.

Nilsson, S.

M. Öberg, S. Nilsson, K. Streubel, J. Wallin, L. Bäckbom, and T. Klinga, “74 nm wavelength tuning range of an InGaAsP-InP vertical grating assisted codirectional coupler laser with rear sampled grating reflector,” IEEE Photon. Technol. Lett.5(7), 735–737 (1993).
[CrossRef]

Nishizawa, N.

O’Connor, S.

S. O’Connor, M. A. Bernacil, A. DeKelaita, B. Maher, and D. Derickson, “100 kHz axial scan rate swept-wavelength OCT using sampled grating distributed Bragg reflector lasers,” Proc. SPIE7168(716825), 716825(2009).
[CrossRef]

D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, S. O’Connor, M. N. Sysak, and L. Johanssen, “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proc. SPIE6847(68472P), 68472P(2008).
[CrossRef]

Obayashi, K.

T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Obayashi, “OFDR with an SSG-DBR laser,” Proc. SPIE5531, 375–382 (2004).
[CrossRef]

Öberg, M.

M. Öberg, S. Nilsson, K. Streubel, J. Wallin, L. Bäckbom, and T. Klinga, “74 nm wavelength tuning range of an InGaAsP-InP vertical grating assisted codirectional coupler laser with rear sampled grating reflector,” IEEE Photon. Technol. Lett.5(7), 735–737 (1993).
[CrossRef]

Oh, W. Y.

Ohbayashi, K.

D. Choi, R. Yoshimura, H. Hiro-oka, H. Furukawa, A. Goto, N. Satoh, A. Igarashi, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Discretly swept optical coherence tomography system using super-structure grating distributed Bragg reflector lasers at 1561-1639 nm,” Proc. SPIE8213(82132F), 82132F (2012).
[CrossRef]

H. Kakuma, D. Choi, H. Furukawa, H. Hiro-oka, and K. Ohbayashi, “24 mm depth range discretely swept optical frequency domain imaging in dentistry,” Proc. SPIE7162(717208), 717208 (2009).

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm quasi-continuous fast sweep using SSG-DBR lasers,” IEEE Photon. Technol. Lett.20(12), 1015–1017 (2008).
[CrossRef]

H. Kakuma, K. Ohbayashi, and Y. Arakawa, “Optical imaging of hard and soft dental tissues using discretely swept optical frequency domain reflectometry optical coherence tomography at wavelengths from 1560 to 1600 nm,” J. Biomed. Opt.13(1), 014012 (2008).
[CrossRef] [PubMed]

K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency domain imaging toward high-resolution, high-speed, high-sensitivity, and long-depth-range,” Proc. SPIE6429(64291G), 64291G (2007).
[CrossRef]

D. Choi, H. Hiro-oka, T. Amano, H. Furukawa, N. Fujiwara, H. Ishii, and K. Ohbayashi, “A method of improving scanning speed and resolution of OFDR-OCT using multiple SSG-DBR lasers simultaneously,” Proc. SPIE6429(64292E), 64292E (2007).
[CrossRef]

D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Tissue imaging by OFDR-OCT using an SSG-DBR laser,” Proc. SPIE5690, 101–113 (2005).
[CrossRef]

T. Amano, H. Hiro-Oka, D. H. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser,” Appl. Opt.44(5), 808–816 (2005).
[CrossRef] [PubMed]

Okamoto, H.

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of Thermal Wavelength Drift in Super-Structure Grating Distributed Bragg Reflector (SSG-DBR) Laser with Thermal Drift Compensator,” IEEE J. Sel. Top. Quantum Electron.13(5), 1164–1169 (2007).
[CrossRef]

Oohashi, H.

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm quasi-continuous fast sweep using SSG-DBR lasers,” IEEE Photon. Technol. Lett.20(12), 1015–1017 (2008).
[CrossRef]

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of Thermal Wavelength Drift in Super-Structure Grating Distributed Bragg Reflector (SSG-DBR) Laser with Thermal Drift Compensator,” IEEE J. Sel. Top. Quantum Electron.13(5), 1164–1169 (2007).
[CrossRef]

Park, B. H.

Pierce, M. C.

Ponnampalam, L.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005).
[CrossRef]

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Reid, D. C. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005).
[CrossRef]

Robbins, D. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005).
[CrossRef]

Sarlet, G.

Sarunic, M. V.

Satoh, N.

D. Choi, R. Yoshimura, H. Hiro-oka, H. Furukawa, A. Goto, N. Satoh, A. Igarashi, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Discretly swept optical coherence tomography system using super-structure grating distributed Bragg reflector lasers at 1561-1639 nm,” Proc. SPIE8213(82132F), 82132F (2012).
[CrossRef]

Schuman, J. S.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sharma, U.

Shibata, N.

O. Ishida, Y. Tada, N. Shibata, and H. Ishii, “Fast and stable frequency switching employing a delayed self-duplex (DSD) light source,” IEEE Photon. Technol. Lett.6(1), 13–16 (1994).
[CrossRef]

Shimizu, K.

D. Choi, R. Yoshimura, H. Hiro-oka, H. Furukawa, A. Goto, N. Satoh, A. Igarashi, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Discretly swept optical coherence tomography system using super-structure grating distributed Bragg reflector lasers at 1561-1639 nm,” Proc. SPIE8213(82132F), 82132F (2012).
[CrossRef]

K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency domain imaging toward high-resolution, high-speed, high-sensitivity, and long-depth-range,” Proc. SPIE6429(64291G), 64291G (2007).
[CrossRef]

T. Amano, H. Hiro-Oka, D. H. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser,” Appl. Opt.44(5), 808–816 (2005).
[CrossRef] [PubMed]

D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Tissue imaging by OFDR-OCT using an SSG-DBR laser,” Proc. SPIE5690, 101–113 (2005).
[CrossRef]

T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Obayashi, “OFDR with an SSG-DBR laser,” Proc. SPIE5531, 375–382 (2004).
[CrossRef]

Shishkov, M.

Simsarian, J. E.

J. E. Simsarian, M. C. Larson, H. E. Garrett, H. Xu, and T. A. Strand, “Less than 5-ns wavelength switching with an SG-DBR laser,” IEEE Photon. Technol. Lett.18(4), 565–567 (2006).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Strand, T. A.

J. E. Simsarian, M. C. Larson, H. E. Garrett, H. Xu, and T. A. Strand, “Less than 5-ns wavelength switching with an SG-DBR laser,” IEEE Photon. Technol. Lett.18(4), 565–567 (2006).
[CrossRef]

Streubel, K.

M. Öberg, S. Nilsson, K. Streubel, J. Wallin, L. Bäckbom, and T. Klinga, “74 nm wavelength tuning range of an InGaAsP-InP vertical grating assisted codirectional coupler laser with rear sampled grating reflector,” IEEE Photon. Technol. Lett.5(7), 735–737 (1993).
[CrossRef]

Suzuki, M.

K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency domain imaging toward high-resolution, high-speed, high-sensitivity, and long-depth-range,” Proc. SPIE6429(64291G), 64291G (2007).
[CrossRef]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sysak, M. N.

D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, S. O’Connor, M. N. Sysak, and L. Johanssen, “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proc. SPIE6847(68472P), 68472P(2008).
[CrossRef]

Szkulmowska, A.

Szkulmowski, M.

Tada, Y.

O. Ishida, Y. Tada, N. Shibata, and H. Ishii, “Fast and stable frequency switching employing a delayed self-duplex (DSD) light source,” IEEE Photon. Technol. Lett.6(1), 13–16 (1994).
[CrossRef]

Taira, K.

Takeda, M.

Tamamura, T.

Y. Tohmori, Y. Yoshikuni, T. Tamamura, H. Ishii, Y. Kondo, and M. Yamamoto, “Broad-range wavelength tuning in DBR lasers with super structure grating (SSG),” IEEE Photon. Technol. Lett.5(2), 126–129 (1993).
[CrossRef]

Tanobe, H.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super- structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron.32(3), 433–441 (1996).
[CrossRef]

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Broad-range wavelength coverage (62.4 nm) with superstructure-grating DBR laser,” Electron. Lett.32(5), 454–455 (1996).
[CrossRef]

Tearney, G. J.

Tearney, G. T.

Todd, M.

R. Laroy, G. Morthier, T. Mullane, M. Todd, and R. Baets, “Stabilisation and control of widely tunable MG-Y lasers with integrated photodetectors,” IET Optoelectron.1(1), 35–38 (2007).
[CrossRef]

Tohmori, Y.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super- structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron.32(3), 433–441 (1996).
[CrossRef]

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Broad-range wavelength coverage (62.4 nm) with superstructure-grating DBR laser,” Electron. Lett.32(5), 454–455 (1996).
[CrossRef]

F. Kano, H. Ishii, Y. Tohmori, M. Yamamoto, and Y. Yoshikuni, “Broad range wavelength switching in superstructure grating distributed Bragg reflector lasers,” Electron. Lett.29(12), 1091–1092 (1993).
[CrossRef]

Y. Tohmori, Y. Yoshikuni, T. Tamamura, H. Ishii, Y. Kondo, and M. Yamamoto, “Broad-range wavelength tuning in DBR lasers with super structure grating (SSG),” IEEE Photon. Technol. Lett.5(2), 126–129 (1993).
[CrossRef]

Tsai, T. H.

Vakoc, B. J.

Wale, M. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005).
[CrossRef]

Wallin, J.

M. Öberg, S. Nilsson, K. Streubel, J. Wallin, L. Bäckbom, and T. Klinga, “74 nm wavelength tuning range of an InGaAsP-InP vertical grating assisted codirectional coupler laser with rear sampled grating reflector,” IEEE Photon. Technol. Lett.5(7), 735–737 (1993).
[CrossRef]

Ward, A. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005).
[CrossRef]

Whitbread, N. D.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005).
[CrossRef]

Wieser, W.

Williams, P. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005).
[CrossRef]

Wojtkowski, M.

Xu, H.

J. E. Simsarian, M. C. Larson, H. E. Garrett, H. Xu, and T. A. Strand, “Less than 5-ns wavelength switching with an SG-DBR laser,” IEEE Photon. Technol. Lett.18(4), 565–567 (2006).
[CrossRef]

Yamamoto, M.

Y. Tohmori, Y. Yoshikuni, T. Tamamura, H. Ishii, Y. Kondo, and M. Yamamoto, “Broad-range wavelength tuning in DBR lasers with super structure grating (SSG),” IEEE Photon. Technol. Lett.5(2), 126–129 (1993).
[CrossRef]

F. Kano, H. Ishii, Y. Tohmori, M. Yamamoto, and Y. Yoshikuni, “Broad range wavelength switching in superstructure grating distributed Bragg reflector lasers,” Electron. Lett.29(12), 1091–1092 (1993).
[CrossRef]

Yang, C. H.

Yoshikuni, Y.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super- structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron.32(3), 433–441 (1996).
[CrossRef]

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Broad-range wavelength coverage (62.4 nm) with superstructure-grating DBR laser,” Electron. Lett.32(5), 454–455 (1996).
[CrossRef]

F. Kano, H. Ishii, Y. Tohmori, M. Yamamoto, and Y. Yoshikuni, “Broad range wavelength switching in superstructure grating distributed Bragg reflector lasers,” Electron. Lett.29(12), 1091–1092 (1993).
[CrossRef]

Y. Tohmori, Y. Yoshikuni, T. Tamamura, H. Ishii, Y. Kondo, and M. Yamamoto, “Broad-range wavelength tuning in DBR lasers with super structure grating (SSG),” IEEE Photon. Technol. Lett.5(2), 126–129 (1993).
[CrossRef]

Yoshimura, R.

D. Choi, R. Yoshimura, H. Hiro-oka, H. Furukawa, A. Goto, N. Satoh, A. Igarashi, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Discretly swept optical coherence tomography system using super-structure grating distributed Bragg reflector lasers at 1561-1639 nm,” Proc. SPIE8213(82132F), 82132F (2012).
[CrossRef]

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm quasi-continuous fast sweep using SSG-DBR lasers,” IEEE Photon. Technol. Lett.20(12), 1015–1017 (2008).
[CrossRef]

K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency domain imaging toward high-resolution, high-speed, high-sensitivity, and long-depth-range,” Proc. SPIE6429(64291G), 64291G (2007).
[CrossRef]

D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Tissue imaging by OFDR-OCT using an SSG-DBR laser,” Proc. SPIE5690, 101–113 (2005).
[CrossRef]

Yun, S. H.

Zhou, C.

Appl. Opt. (1)

Biomed. Opt. Express (3)

Electron. Lett. (2)

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Broad-range wavelength coverage (62.4 nm) with superstructure-grating DBR laser,” Electron. Lett.32(5), 454–455 (1996).
[CrossRef]

F. Kano, H. Ishii, Y. Tohmori, M. Yamamoto, and Y. Yoshikuni, “Broad range wavelength switching in superstructure grating distributed Bragg reflector lasers,” Electron. Lett.29(12), 1091–1092 (1993).
[CrossRef]

IEEE J. Quantum Electron. (2)

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super- structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron.32(3), 433–441 (1996).
[CrossRef]

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron.29(6), 1824–1834 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005).
[CrossRef]

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 988–999 (2000).
[CrossRef]

N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of Thermal Wavelength Drift in Super-Structure Grating Distributed Bragg Reflector (SSG-DBR) Laser with Thermal Drift Compensator,” IEEE J. Sel. Top. Quantum Electron.13(5), 1164–1169 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

O. Ishida, Y. Tada, N. Shibata, and H. Ishii, “Fast and stable frequency switching employing a delayed self-duplex (DSD) light source,” IEEE Photon. Technol. Lett.6(1), 13–16 (1994).
[CrossRef]

J. E. Simsarian, M. C. Larson, H. E. Garrett, H. Xu, and T. A. Strand, “Less than 5-ns wavelength switching with an SG-DBR laser,” IEEE Photon. Technol. Lett.18(4), 565–567 (2006).
[CrossRef]

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm quasi-continuous fast sweep using SSG-DBR lasers,” IEEE Photon. Technol. Lett.20(12), 1015–1017 (2008).
[CrossRef]

Y. Tohmori, Y. Yoshikuni, T. Tamamura, H. Ishii, Y. Kondo, and M. Yamamoto, “Broad-range wavelength tuning in DBR lasers with super structure grating (SSG),” IEEE Photon. Technol. Lett.5(2), 126–129 (1993).
[CrossRef]

M. Öberg, S. Nilsson, K. Streubel, J. Wallin, L. Bäckbom, and T. Klinga, “74 nm wavelength tuning range of an InGaAsP-InP vertical grating assisted codirectional coupler laser with rear sampled grating reflector,” IEEE Photon. Technol. Lett.5(7), 735–737 (1993).
[CrossRef]

IET Optoelectron. (1)

R. Laroy, G. Morthier, T. Mullane, M. Todd, and R. Baets, “Stabilisation and control of widely tunable MG-Y lasers with integrated photodetectors,” IET Optoelectron.1(1), 35–38 (2007).
[CrossRef]

J. Biomed. Opt. (3)

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt.10(4), 044009 (2005).
[CrossRef] [PubMed]

G. Häusler and M. W. Lindner, “Coherence radar” and “Spectral radar”-New tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998).
[CrossRef] [PubMed]

H. Kakuma, K. Ohbayashi, and Y. Arakawa, “Optical imaging of hard and soft dental tissues using discretely swept optical frequency domain reflectometry optical coherence tomography at wavelengths from 1560 to 1600 nm,” J. Biomed. Opt.13(1), 014012 (2008).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

Opt. Express (12)

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11(22), 2953–2963 (2003).
[CrossRef] [PubMed]

S. H. Yun, G. T. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength,” Opt. Express11(26), 3598–3604 (2003).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express13(9), 3513–3528 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express16(6), 4163–4176 (2008).
[CrossRef] [PubMed]

U. Sharma, E. W. Chang, and S. H. Yun, “Long-wavelength optical coherence tomography at 1.7 microm for enhanced imaging depth,” Opt. Express16(24), 19712–19723 (2008).
[CrossRef] [PubMed]

B. D. Goldberg, S. M. R. Motaghian Nezam, P. Jillella, B. E. Bouma, and G. J. Tearney, “Miniature swept source for point of care optical frequency domain imaging,” Opt. Express17(5), 3619–3629 (2009).
[CrossRef] [PubMed]

T. H. Tsai, C. Zhou, D. C. Adler, and J. G. Fujimoto, “Frequency comb swept lasers,” Opt. Express17(23), 21257–21270 (2009).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

Opt. Lett. (4)

Proc. SPIE (12)

H. Kakuma, D. Choi, H. Furukawa, H. Hiro-oka, and K. Ohbayashi, “24 mm depth range discretely swept optical frequency domain imaging in dentistry,” Proc. SPIE7162(717208), 717208 (2009).

D. Choi, R. Yoshimura, H. Hiro-oka, H. Furukawa, A. Goto, N. Satoh, A. Igarashi, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Discretly swept optical coherence tomography system using super-structure grating distributed Bragg reflector lasers at 1561-1639 nm,” Proc. SPIE8213(82132F), 82132F (2012).
[CrossRef]

T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Obayashi, “OFDR with an SSG-DBR laser,” Proc. SPIE5531, 375–382 (2004).
[CrossRef]

D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Tissue imaging by OFDR-OCT using an SSG-DBR laser,” Proc. SPIE5690, 101–113 (2005).
[CrossRef]

D. Choi, H. Hiro-oka, T. Amano, H. Furukawa, N. Fujiwara, H. Ishii, and K. Ohbayashi, “A method of improving scanning speed and resolution of OFDR-OCT using multiple SSG-DBR lasers simultaneously,” Proc. SPIE6429(64292E), 64292E (2007).
[CrossRef]

K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency domain imaging toward high-resolution, high-speed, high-sensitivity, and long-depth-range,” Proc. SPIE6429(64291G), 64291G (2007).
[CrossRef]

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications,” Proc. SPIE7554(75541F), 75541F (2010).
[CrossRef]

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz-1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213(82130M), 82130M (2012).
[CrossRef]

D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, S. O’Connor, M. N. Sysak, and L. Johanssen, “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proc. SPIE6847(68472P), 68472P(2008).
[CrossRef]

S. O’Connor, M. A. Bernacil, A. DeKelaita, B. Maher, and D. Derickson, “100 kHz axial scan rate swept-wavelength OCT using sampled grating distributed Bragg reflector lasers,” Proc. SPIE7168(716825), 716825(2009).
[CrossRef]

B. George and D. Derickson, “High-speed concatenation of frequency ramps using sampled grating distributed Bragg reflector laser diode source for OCT resolution enhancement,” Proc. SPIE7554(75542O), 75542O (2010).
[CrossRef]

J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. Minneman, C. Chiccone, and D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” Proc. SPIE8213(82130T), 82130T(2012).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other (3)

W. Drexler and J. G. Fujimoto eds., Optical Coherence Tomography: Technology and Applications (Springer-Verlag, Berlin, 2008).

B. E. Bouma, G. J. Tearney, B. J. Vakoc, and S. H. Yun, “Optical frequency domain imaging,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer-Verlag, Berlin, 2008), pp. 209–237.

American National Standards Institute, “American national standard for safe use of lasers,” ANSI Z136.1–200 (ANSI, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic of SSG-DBR laser and control circuit. Laser consists of two sections: laser and thermal drift compensator (TDC) sections. Laser output is controlled by five injection currents: Ir to rear SSG segment (R-SSG), Ip to phase segment (P), Ia to active segment (Act), If to front SSG segment, and Is to semiconductor optical amplifier segment (SOA). No current is injected to absorber segment (Ab). Four currents (Irt, Ipt, Ift, and Ist) are supplied to TDC section. Injection currents are scanned following look-up tables and scan mode is controlled by scan control circuit.

Fig. 2
Fig. 2

(a) Set up to measure output optical spectrum of SSG-DBR laser as a function of front DBR current (If) and rear DBR current (Ir). (b) Example of optical spectrum output from L-band SSG-DBR laser with good side-mode-suppression-ratio (SMSR). (c) Example of optical spectrum output from L-band SSG-DBR laser with relatively strong side mode and reduced SMSR.

Fig. 3
Fig. 3

(a) and (b): Values for front DBR current If (blue) and rear DBR current Ir (red) are plotted as functions of frequency positions of strongest peak in each optical spectrum for L-band SSG-DBR laser. (a) All 10000 data are plotted. (b) Data with SMSR values larger than 35 dB are plotted. Data points indicated by arrows were not used. Thin solid curves plot least- square fit of If (blue) and Ir (red) to data points. (c) and (d): Thick solid curves are designed curves for look-up tables of If and Ir. (c) L-band SSG-DBR laser and (d) UL-band SSG-DBR laser. Label s indicates stitching frequencies.

Fig. 4
Fig. 4

Combined laser system for UL-band and L-band SSG-DBR lasers. PC-UL and PC-L: polarization controller, CP: coupler, SOA: semiconductor optical amplifier, and POL: polarizer.

Fig. 5
Fig. 5

Frequency tuning system for SSG-DBR lasers (optics: blue line and electronics: green line). MZI-1, MZI-2, and MZI-3 correspond to Mach-Zehnder interferometers of frequency spacing of 351 GHz, 25 GHz, and 12.5 GHz. Outputs of balanced photoreceivers BPR1, BPR2, BPR3, and BPR4 are A/D converted by DAQ and displayed on screen of monitor. Output curve of BPR1 (intensity) is not shown in this figure.

Fig. 6
Fig. 6

Intensity (black) and SOA-injection current Is (red) of lasers before and after intensity was regulated to constant value. (a), (b), (c), and (d): intensity. (e), (f), (g), and (h): SOA current. Left represents UL-band laser and right represents L-band laser. Labels s and c correspond to stitching acquisition point numbers and boundary acquisition point number for two lasers.

Fig. 7
Fig. 7

Tuning process for L-band SSG-DBR laser. (a) Interference signal observed with constant phase injection current of 6 mA before fine tuning. (b) Dependence of output optical frequency on phase injection current for selected acquisition point numbers indicated in figure. (c) Part of interference signal within red rectangle indicated in (a). Black curve is before fine tuning and red curve is after fine tuning. (d) Phase injection current used for fine tuning as function of acquisition point number. (e) Interference signal after fine tuning with phase injection current.

Fig. 8
Fig. 8

Spectra of selected outputs under static CW operation: (a) L-band SSG-DBR laser and (b) UL-band SSG-DBR laser.

Fig. 9
Fig. 9

Figures to explain method of selective sampling to eliminate stitching noise and concatenation of interference signal obtained with UL-band SSG-DBR and L-band SSG-DBR lasers. Stitching points are labeled s. Connection point of two lasers is labeled c. (a) Interference signal before selective sampling at stitching points. (b) Interference signal after selective sampling at stitching points. Green area indicates overlapping redundant region. (c) Interference signal after two lasers are connected by selective sampling. (d) Interference signal near stitching point is shown. Red portion is redundant and discarded in data processing. (e) Interference signal after redundant portion was disposed of. (f) Connection of interference signals obtained with two lasers by discarding redundant data. Noiseless continuation was confirmed.

Fig. 10
Fig. 10

Schematic of OCT system (optics: blue, electronics: green, and optical beam in free space: red). CP1, CP2, CP3, CP4, and CP5: couplers, PCR and PCS: polarization controllers, OT: optical terminator, CLR and CLS: collimators, OLR and OLS: objective lenses, RM: reference mirror, GM: galvano mirror, BPR5 and BPR6: balanced photoreceivers, and F: filter.

Fig. 11
Fig. 11

Point spread functions within principal OCT imaging depth. (a) Observed and (b) corrected point spread functions at OCT imaging depth of 8.99 mm. Label P indicates main peak and labels N1–N6 indicate noise peaks. (c) Observed and (d) corrected point spread functions at selected OCT imaging depths.

Fig. 12
Fig. 12

Sensitivity roll-off and noise floor variations in point spread function as depth increases. Dots indicate experimental peak intensities (blue) and noise floors (red) of point spread functions. Dotted line (a) indicates drop in peak value by 6 dB. Dashed line (b) indicates averaged signal roll-off due to variations in optical frequency during frequency step. Dashed curve (c) is calculated signal and (d) is noise floor, considering optical frequency deviations from targeted values when lasers are scanned. Smallest value of noise floor is limited by intensity fluctuations at value indicated by dashed line (e). Solid curves (f) and (g) are respective calculated signal and noise floor to compare with experimental data points.

Fig. 13
Fig. 13

(a) and (b). Two examples of frequency variations Δf at selected acquisition point of UL-band SSG-DBR laser under CW operation. (d) Frequency variations Δf during A-scan. (c) Histogram of frequency variations during A-scan. Red dashed curve is Gaussian distribution with standard deviation of 0.32 GHz. (e) Power spectrum obtained by FFT of data in (d).

Fig. 14
Fig. 14

OCT images of tissues. (a) Whole anterior segment of human eye. Cornea (C), sclera (S), iris (I), ciliary body (CB), crystalline lens (CL), anterior capsule (AC), and posterior capsule (PC) are imaged. (b) By tilting subject’s eye, sometimes surface of crystalline lens (SC) is observed beneath pigmented iris. C, I, CB, and CL are imaged. (c) Imaging of nail plate (NP) and skin. Dorsal nail plate (DNP), layered intermediate nail plate (INP), eponychium (E), epidermis (EP), and dermis (D) can be identified. (d) Blood vessel (BV) is imaged in skin at back of hand.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

cos[ 4π( f i + Δ f )z c ]=cos[ 4π f i z c ]cos[ 4π Δ f z c ]sin[ 4π f i z c ]sin[ 4π Δ f z c ],
| 1 t s t s /2 t s /2 cos[ 4π Δ f (t)z c ]dt | 2 | 1 M j=1 M cos( 4π Δ f,j z c ) | 2 .
t i τ/2 t i +τ/2 cos[ 4πz c ( f 0 + f ˙ t ) ] dt=τcos( 4π f i z c )[ sin(Kz) Kz ].

Metrics