Abstract

In this paper, a flexible luminous fabric device was developed and investigated for wearable three-dimensionally fitted low-level light therapy. The fabric device exhibited excellent optical and thermal properties. Its optical power density and operating temperature were stable during usage for 10 hours. In vitro experiments demonstrated a significant increase in collagen production in human fibroblast irradiated by the fabric device, compared with the fibroblast without light irradiation. A series of tests were conducted for the safety of the fabric for human skin contact according to ISO standard ISO 10993-1:2003. The results showed that there was no potential hazard when the luminous fabrics were in direct contact with human skin.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. I. Grossweiner, The Science of phototherapy: an introduction (Springer New York, 2005)
  2. E. L. Tanzi, J. R. Lupton, and T. S. Alster, “Lasers in dermatology: Four decades of progress,” J. Am. Acad. Dermatol.49(1), 1–34 (2003).
    [CrossRef] [PubMed]
  3. R. Roelandts, “The history of phototherapy: something new under the sun?” J. Am. Acad. Dermatol.46(6), 926–930 (2002).
    [CrossRef] [PubMed]
  4. R. J. Cremer, P. W. Perryman, and D. H. Richards, “Influence of light on the hyperbilirubinaemia of infants,” Lancet271(7030), 1094–1097 (1958).
    [CrossRef] [PubMed]
  5. F. H. Montgomery, “The present status of phototherapy,” J.Cutan. Dis.21, 529–548 (1903).
  6. K. L. Tan and W. H. Boon, “A simple method of phototherapy: inexpensive, blue incandescent bulbs,” Clin. Pediatr. (Phila.)13(12), 1048–1051 (1974).
    [CrossRef] [PubMed]
  7. L. D. Houk and T. Humphreys, “Masers to magic bullets: an updated history of lasers in dermatology,” Clin. Dermatol.25(5), 434–442 (2007).
    [CrossRef] [PubMed]
  8. P. Boixeda, M. Calvo, and L. Bagazgoitia, “Recent advances in laser therapy and other technologies,” Actas Dermosifiliogr.99(4), 262–268 (2008).
    [CrossRef] [PubMed]
  9. D. Barolet, “Light-emitting diodes (LEDs) in dermatology,” Semin. Cutan. Med. Surg.27(4), 227–238 (2008).
    [CrossRef] [PubMed]
  10. Y. A. Vladimirov, A. N. Osipov, and G. I. Klebanov, “Photobiological principles of therapeutic applications of laser radiation,” Biochemistry Mosc.69(1), 81–90 (2004).
    [CrossRef] [PubMed]
  11. P. F. Sebbe, A. B. Villaverde, L. M. Moreira, A. M. Barbosa, and N. Veissid, “Characterization of a novel LEDs device prototype for neonatal jaundice and its comparison with fluorescent lamps sources: phototherapy treatment of hyperbilirubinemia in wistarrats,” Spectros.23(5-6), 243–255 (2009).
    [CrossRef]
  12. X. M. Tao, Smart Fibres, Fabrics and Clothing (CRC press, 2001).
  13. S. Jung, C. Lauterbach, M. Strasser, and W. Weber, “Enabling technologies for disappearing electronics in smart textiles,” in Proceedings of IEEE Conference on International Solid-State Circuits (San Francisco, 2003), pp.386–387.
    [CrossRef]
  14. J. Rantanen, J. Impio, T. Karinsalo, M. Malmivaara, A. Reho, M. Tasanen, and J. Vanhala, “Smart clothing prototype for the arctic environment,” Pers. Ubiq. Comp.6(1), 3–16 (2002).
    [CrossRef]
  15. L. Shu, T. Hua, Y. Y. Wang, Q. Li, D. D. Feng, and X. M. Tao, “In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array,” IEEE Trans. Inform. Technol. Biomed.14, 767–775 (2010).
  16. X. M. Tao, “Nerves for Smart Clothing – Optical Fibre Sensors and their Responses,” Intern. J. Clothing Sci. Technol.14(3/4), 157–168 (2002).
    [CrossRef]
  17. Z. F. Zhang and X. M. Tao, “Synergetic effects of humidity and temperature on PMMA based fiber Bragg gratings,” J. Lightwave Technol.30(6), 841–845 (2012).
    [CrossRef]
  18. M. El-Sherif, “Smart fabrics: integrating fiber optic sensors and information networks,” Stud. Health Technol. Inform.108, 317–323 (2004).
    [PubMed]
  19. M. El-Sherif, “Smart structures and intelligent systems for health monitoring and diagnostics,” Appl. Bionics Biomech.2(3-4), 161–170 (2005).
    [CrossRef]
  20. L. V. Langenhove, Smart textiles for medicine and healthcare (Woodhead, 2007).
  21. S. Park and S. Jayaraman, “Enhancing the quality of life through wearable technology,” IEEE Eng. Med. Biol. Mag.22(3), 41–48 (2003).
    [CrossRef] [PubMed]
  22. ISO 10993–1:2003 Biological evaluation of medical devices–Part 1: Evaluation and testing.
  23. ISO 10993–5:2009 Biological evaluation of medical devices, Part 5:Test for in vitro cytotoxicity.
  24. ISO 10993–10:2002/Amd. 1: 2006 Biological evaluation of medical device, Part 10: Test for irritation and delayed-type hypersensitivity.
  25. D. Graham-Rowe, “Photonic fabrics take shape,” Nat. Photonics1, 6–7 (2007).
  26. V. Koncar, “Optical fiber fabric displays,” Opt. Photon. News16(4), 40–44 (2005).
    [CrossRef]
  27. A. Harlin, M. Mäkinen, and A. Vuorivirta, “Development of polymeric optical fibre fabrics as illumination elements and textile displays,” AutexRes. J.3, 1–8 (2003).
  28. M. H. Im, E. J. Park, C. H. Kim, and M. S. Lee, “Modification of plastic optical fiber for side-illumination,” Human-Comp. Interac.Interac Platforms Tech.4551, 1123–1129 (2007).
    [CrossRef]
  29. C. F. J. Pun, Z. Y. Liu, M. L. V. Tse, X. Chen, X. M. Tao, and H. Y. Tam, “Side-illumination fluorescence dye-doped-clad pmma-core polymer optical fiber: potential intrinsic light source for biosensing,” IEEE Photon. Technol. Lett.24(11), 960–962 (2012).
    [CrossRef]
  30. H. Chi, X. M. Tao, D. X. Yang, and K. S. Chen, “Simultaneous measurement of axial strain, temperature, and transverse load by a superstructure fiber grating,” Opt. Lett.26(24), 1949–1951 (2001).
    [CrossRef] [PubMed]
  31. B. Gauvreau, N. Guo, K. Schicker, K. Stoeffler, F. Boismenu, A. Ajji, R. Wingfield, C. Dubois, and M. Skorobogatiy, “Color-changing and color-tunable photonic bandgap fiber textiles,” Opt. Express16(20), 15677–15693 (2008).
    [CrossRef] [PubMed]
  32. D. Q. Ying, X. M. Tao, W. Zheng, and G. F. Wang, “Fabric strain sensor integrated with looped polymeric optical fiber with large angled V-shaped notches,” Smart Mater. Struct.22(1), 015004 (2013).
    [CrossRef]
  33. J. Shen, X. M. Tao, D. Q. Ying, C. Y. Hui, and G. F. Wang, “Light emitting fabrics integrated with structured polymer optical fibers treated with infrared CO2 laser,” Text. Res. J.83(7), 730–739 (2013).
    [CrossRef]
  34. S. M. Skinner, J. P. Gage, P. A. Wilce, and R. M. Shaw, “A preliminary study of the effects of laser radiation on collagen metabolism in cell culture,” Aust. Dent. J.41(3), 188–192 (1996).
    [CrossRef] [PubMed]
  35. Golden DRAGON® Enhanced thin film LED, LR W5SM, Data Sheet, OSRAM Opto Semiconductors GmbH, Germany.
  36. Y. Yamamoto, T. Kono, H. Kotani, S. Kasai, and M. Mito, “Effect of low-power laser irradiation on procollagen synthesis in human fibroblasts,” J. Clin. Laser Med. Surg.14(3), 129–132 (1996).
    [PubMed]
  37. T. Karu, “Primary and secondary mechanisms of action of visible to near-IR radiation on cells,” J. Photochem. Photobiol. B49(1), 1–17 (1999).
    [CrossRef] [PubMed]
  38. M. S. Ribeiro, D. F. Da Silva, C. E. De Araújo, S. F. De Oliveira, C. M. Pelegrini, T. M. Zorn, and D. M. Zezell, “Effects of low-intensity polarized visible laser radiation on skin burns: a light microscopy study,” J. Clin. Laser Med. Surg.22(1), 59–66 (2004).
    [CrossRef] [PubMed]
  39. P. S. Szczepanek, C. S. Gault, and H. I. Mandelberg, “Dependence of LED light distribution on electrical drive parameters,” J. Appl. Phys.48(7), 3183–3184 (1977).
    [CrossRef]

2013 (2)

D. Q. Ying, X. M. Tao, W. Zheng, and G. F. Wang, “Fabric strain sensor integrated with looped polymeric optical fiber with large angled V-shaped notches,” Smart Mater. Struct.22(1), 015004 (2013).
[CrossRef]

J. Shen, X. M. Tao, D. Q. Ying, C. Y. Hui, and G. F. Wang, “Light emitting fabrics integrated with structured polymer optical fibers treated with infrared CO2 laser,” Text. Res. J.83(7), 730–739 (2013).
[CrossRef]

2012 (2)

C. F. J. Pun, Z. Y. Liu, M. L. V. Tse, X. Chen, X. M. Tao, and H. Y. Tam, “Side-illumination fluorescence dye-doped-clad pmma-core polymer optical fiber: potential intrinsic light source for biosensing,” IEEE Photon. Technol. Lett.24(11), 960–962 (2012).
[CrossRef]

Z. F. Zhang and X. M. Tao, “Synergetic effects of humidity and temperature on PMMA based fiber Bragg gratings,” J. Lightwave Technol.30(6), 841–845 (2012).
[CrossRef]

2010 (1)

L. Shu, T. Hua, Y. Y. Wang, Q. Li, D. D. Feng, and X. M. Tao, “In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array,” IEEE Trans. Inform. Technol. Biomed.14, 767–775 (2010).

2009 (1)

P. F. Sebbe, A. B. Villaverde, L. M. Moreira, A. M. Barbosa, and N. Veissid, “Characterization of a novel LEDs device prototype for neonatal jaundice and its comparison with fluorescent lamps sources: phototherapy treatment of hyperbilirubinemia in wistarrats,” Spectros.23(5-6), 243–255 (2009).
[CrossRef]

2008 (3)

P. Boixeda, M. Calvo, and L. Bagazgoitia, “Recent advances in laser therapy and other technologies,” Actas Dermosifiliogr.99(4), 262–268 (2008).
[CrossRef] [PubMed]

D. Barolet, “Light-emitting diodes (LEDs) in dermatology,” Semin. Cutan. Med. Surg.27(4), 227–238 (2008).
[CrossRef] [PubMed]

B. Gauvreau, N. Guo, K. Schicker, K. Stoeffler, F. Boismenu, A. Ajji, R. Wingfield, C. Dubois, and M. Skorobogatiy, “Color-changing and color-tunable photonic bandgap fiber textiles,” Opt. Express16(20), 15677–15693 (2008).
[CrossRef] [PubMed]

2007 (3)

M. H. Im, E. J. Park, C. H. Kim, and M. S. Lee, “Modification of plastic optical fiber for side-illumination,” Human-Comp. Interac.Interac Platforms Tech.4551, 1123–1129 (2007).
[CrossRef]

D. Graham-Rowe, “Photonic fabrics take shape,” Nat. Photonics1, 6–7 (2007).

L. D. Houk and T. Humphreys, “Masers to magic bullets: an updated history of lasers in dermatology,” Clin. Dermatol.25(5), 434–442 (2007).
[CrossRef] [PubMed]

2005 (2)

M. El-Sherif, “Smart structures and intelligent systems for health monitoring and diagnostics,” Appl. Bionics Biomech.2(3-4), 161–170 (2005).
[CrossRef]

V. Koncar, “Optical fiber fabric displays,” Opt. Photon. News16(4), 40–44 (2005).
[CrossRef]

2004 (3)

M. S. Ribeiro, D. F. Da Silva, C. E. De Araújo, S. F. De Oliveira, C. M. Pelegrini, T. M. Zorn, and D. M. Zezell, “Effects of low-intensity polarized visible laser radiation on skin burns: a light microscopy study,” J. Clin. Laser Med. Surg.22(1), 59–66 (2004).
[CrossRef] [PubMed]

M. El-Sherif, “Smart fabrics: integrating fiber optic sensors and information networks,” Stud. Health Technol. Inform.108, 317–323 (2004).
[PubMed]

Y. A. Vladimirov, A. N. Osipov, and G. I. Klebanov, “Photobiological principles of therapeutic applications of laser radiation,” Biochemistry Mosc.69(1), 81–90 (2004).
[CrossRef] [PubMed]

2003 (3)

E. L. Tanzi, J. R. Lupton, and T. S. Alster, “Lasers in dermatology: Four decades of progress,” J. Am. Acad. Dermatol.49(1), 1–34 (2003).
[CrossRef] [PubMed]

S. Park and S. Jayaraman, “Enhancing the quality of life through wearable technology,” IEEE Eng. Med. Biol. Mag.22(3), 41–48 (2003).
[CrossRef] [PubMed]

A. Harlin, M. Mäkinen, and A. Vuorivirta, “Development of polymeric optical fibre fabrics as illumination elements and textile displays,” AutexRes. J.3, 1–8 (2003).

2002 (3)

J. Rantanen, J. Impio, T. Karinsalo, M. Malmivaara, A. Reho, M. Tasanen, and J. Vanhala, “Smart clothing prototype for the arctic environment,” Pers. Ubiq. Comp.6(1), 3–16 (2002).
[CrossRef]

X. M. Tao, “Nerves for Smart Clothing – Optical Fibre Sensors and their Responses,” Intern. J. Clothing Sci. Technol.14(3/4), 157–168 (2002).
[CrossRef]

R. Roelandts, “The history of phototherapy: something new under the sun?” J. Am. Acad. Dermatol.46(6), 926–930 (2002).
[CrossRef] [PubMed]

2001 (1)

1999 (1)

T. Karu, “Primary and secondary mechanisms of action of visible to near-IR radiation on cells,” J. Photochem. Photobiol. B49(1), 1–17 (1999).
[CrossRef] [PubMed]

1996 (2)

S. M. Skinner, J. P. Gage, P. A. Wilce, and R. M. Shaw, “A preliminary study of the effects of laser radiation on collagen metabolism in cell culture,” Aust. Dent. J.41(3), 188–192 (1996).
[CrossRef] [PubMed]

Y. Yamamoto, T. Kono, H. Kotani, S. Kasai, and M. Mito, “Effect of low-power laser irradiation on procollagen synthesis in human fibroblasts,” J. Clin. Laser Med. Surg.14(3), 129–132 (1996).
[PubMed]

1977 (1)

P. S. Szczepanek, C. S. Gault, and H. I. Mandelberg, “Dependence of LED light distribution on electrical drive parameters,” J. Appl. Phys.48(7), 3183–3184 (1977).
[CrossRef]

1974 (1)

K. L. Tan and W. H. Boon, “A simple method of phototherapy: inexpensive, blue incandescent bulbs,” Clin. Pediatr. (Phila.)13(12), 1048–1051 (1974).
[CrossRef] [PubMed]

1958 (1)

R. J. Cremer, P. W. Perryman, and D. H. Richards, “Influence of light on the hyperbilirubinaemia of infants,” Lancet271(7030), 1094–1097 (1958).
[CrossRef] [PubMed]

1903 (1)

F. H. Montgomery, “The present status of phototherapy,” J.Cutan. Dis.21, 529–548 (1903).

Ajji, A.

Alster, T. S.

E. L. Tanzi, J. R. Lupton, and T. S. Alster, “Lasers in dermatology: Four decades of progress,” J. Am. Acad. Dermatol.49(1), 1–34 (2003).
[CrossRef] [PubMed]

Bagazgoitia, L.

P. Boixeda, M. Calvo, and L. Bagazgoitia, “Recent advances in laser therapy and other technologies,” Actas Dermosifiliogr.99(4), 262–268 (2008).
[CrossRef] [PubMed]

Barbosa, A. M.

P. F. Sebbe, A. B. Villaverde, L. M. Moreira, A. M. Barbosa, and N. Veissid, “Characterization of a novel LEDs device prototype for neonatal jaundice and its comparison with fluorescent lamps sources: phototherapy treatment of hyperbilirubinemia in wistarrats,” Spectros.23(5-6), 243–255 (2009).
[CrossRef]

Barolet, D.

D. Barolet, “Light-emitting diodes (LEDs) in dermatology,” Semin. Cutan. Med. Surg.27(4), 227–238 (2008).
[CrossRef] [PubMed]

Boismenu, F.

Boixeda, P.

P. Boixeda, M. Calvo, and L. Bagazgoitia, “Recent advances in laser therapy and other technologies,” Actas Dermosifiliogr.99(4), 262–268 (2008).
[CrossRef] [PubMed]

Boon, W. H.

K. L. Tan and W. H. Boon, “A simple method of phototherapy: inexpensive, blue incandescent bulbs,” Clin. Pediatr. (Phila.)13(12), 1048–1051 (1974).
[CrossRef] [PubMed]

Calvo, M.

P. Boixeda, M. Calvo, and L. Bagazgoitia, “Recent advances in laser therapy and other technologies,” Actas Dermosifiliogr.99(4), 262–268 (2008).
[CrossRef] [PubMed]

Chen, K. S.

Chen, X.

C. F. J. Pun, Z. Y. Liu, M. L. V. Tse, X. Chen, X. M. Tao, and H. Y. Tam, “Side-illumination fluorescence dye-doped-clad pmma-core polymer optical fiber: potential intrinsic light source for biosensing,” IEEE Photon. Technol. Lett.24(11), 960–962 (2012).
[CrossRef]

Chi, H.

Cremer, R. J.

R. J. Cremer, P. W. Perryman, and D. H. Richards, “Influence of light on the hyperbilirubinaemia of infants,” Lancet271(7030), 1094–1097 (1958).
[CrossRef] [PubMed]

Da Silva, D. F.

M. S. Ribeiro, D. F. Da Silva, C. E. De Araújo, S. F. De Oliveira, C. M. Pelegrini, T. M. Zorn, and D. M. Zezell, “Effects of low-intensity polarized visible laser radiation on skin burns: a light microscopy study,” J. Clin. Laser Med. Surg.22(1), 59–66 (2004).
[CrossRef] [PubMed]

De Araújo, C. E.

M. S. Ribeiro, D. F. Da Silva, C. E. De Araújo, S. F. De Oliveira, C. M. Pelegrini, T. M. Zorn, and D. M. Zezell, “Effects of low-intensity polarized visible laser radiation on skin burns: a light microscopy study,” J. Clin. Laser Med. Surg.22(1), 59–66 (2004).
[CrossRef] [PubMed]

De Oliveira, S. F.

M. S. Ribeiro, D. F. Da Silva, C. E. De Araújo, S. F. De Oliveira, C. M. Pelegrini, T. M. Zorn, and D. M. Zezell, “Effects of low-intensity polarized visible laser radiation on skin burns: a light microscopy study,” J. Clin. Laser Med. Surg.22(1), 59–66 (2004).
[CrossRef] [PubMed]

Dubois, C.

El-Sherif, M.

M. El-Sherif, “Smart structures and intelligent systems for health monitoring and diagnostics,” Appl. Bionics Biomech.2(3-4), 161–170 (2005).
[CrossRef]

M. El-Sherif, “Smart fabrics: integrating fiber optic sensors and information networks,” Stud. Health Technol. Inform.108, 317–323 (2004).
[PubMed]

Feng, D. D.

L. Shu, T. Hua, Y. Y. Wang, Q. Li, D. D. Feng, and X. M. Tao, “In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array,” IEEE Trans. Inform. Technol. Biomed.14, 767–775 (2010).

Gage, J. P.

S. M. Skinner, J. P. Gage, P. A. Wilce, and R. M. Shaw, “A preliminary study of the effects of laser radiation on collagen metabolism in cell culture,” Aust. Dent. J.41(3), 188–192 (1996).
[CrossRef] [PubMed]

Gault, C. S.

P. S. Szczepanek, C. S. Gault, and H. I. Mandelberg, “Dependence of LED light distribution on electrical drive parameters,” J. Appl. Phys.48(7), 3183–3184 (1977).
[CrossRef]

Gauvreau, B.

Graham-Rowe, D.

D. Graham-Rowe, “Photonic fabrics take shape,” Nat. Photonics1, 6–7 (2007).

Guo, N.

Harlin, A.

A. Harlin, M. Mäkinen, and A. Vuorivirta, “Development of polymeric optical fibre fabrics as illumination elements and textile displays,” AutexRes. J.3, 1–8 (2003).

Houk, L. D.

L. D. Houk and T. Humphreys, “Masers to magic bullets: an updated history of lasers in dermatology,” Clin. Dermatol.25(5), 434–442 (2007).
[CrossRef] [PubMed]

Hua, T.

L. Shu, T. Hua, Y. Y. Wang, Q. Li, D. D. Feng, and X. M. Tao, “In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array,” IEEE Trans. Inform. Technol. Biomed.14, 767–775 (2010).

Hui, C. Y.

J. Shen, X. M. Tao, D. Q. Ying, C. Y. Hui, and G. F. Wang, “Light emitting fabrics integrated with structured polymer optical fibers treated with infrared CO2 laser,” Text. Res. J.83(7), 730–739 (2013).
[CrossRef]

Humphreys, T.

L. D. Houk and T. Humphreys, “Masers to magic bullets: an updated history of lasers in dermatology,” Clin. Dermatol.25(5), 434–442 (2007).
[CrossRef] [PubMed]

Im, M. H.

M. H. Im, E. J. Park, C. H. Kim, and M. S. Lee, “Modification of plastic optical fiber for side-illumination,” Human-Comp. Interac.Interac Platforms Tech.4551, 1123–1129 (2007).
[CrossRef]

Impio, J.

J. Rantanen, J. Impio, T. Karinsalo, M. Malmivaara, A. Reho, M. Tasanen, and J. Vanhala, “Smart clothing prototype for the arctic environment,” Pers. Ubiq. Comp.6(1), 3–16 (2002).
[CrossRef]

Jayaraman, S.

S. Park and S. Jayaraman, “Enhancing the quality of life through wearable technology,” IEEE Eng. Med. Biol. Mag.22(3), 41–48 (2003).
[CrossRef] [PubMed]

Karinsalo, T.

J. Rantanen, J. Impio, T. Karinsalo, M. Malmivaara, A. Reho, M. Tasanen, and J. Vanhala, “Smart clothing prototype for the arctic environment,” Pers. Ubiq. Comp.6(1), 3–16 (2002).
[CrossRef]

Karu, T.

T. Karu, “Primary and secondary mechanisms of action of visible to near-IR radiation on cells,” J. Photochem. Photobiol. B49(1), 1–17 (1999).
[CrossRef] [PubMed]

Kasai, S.

Y. Yamamoto, T. Kono, H. Kotani, S. Kasai, and M. Mito, “Effect of low-power laser irradiation on procollagen synthesis in human fibroblasts,” J. Clin. Laser Med. Surg.14(3), 129–132 (1996).
[PubMed]

Kim, C. H.

M. H. Im, E. J. Park, C. H. Kim, and M. S. Lee, “Modification of plastic optical fiber for side-illumination,” Human-Comp. Interac.Interac Platforms Tech.4551, 1123–1129 (2007).
[CrossRef]

Klebanov, G. I.

Y. A. Vladimirov, A. N. Osipov, and G. I. Klebanov, “Photobiological principles of therapeutic applications of laser radiation,” Biochemistry Mosc.69(1), 81–90 (2004).
[CrossRef] [PubMed]

Koncar, V.

V. Koncar, “Optical fiber fabric displays,” Opt. Photon. News16(4), 40–44 (2005).
[CrossRef]

Kono, T.

Y. Yamamoto, T. Kono, H. Kotani, S. Kasai, and M. Mito, “Effect of low-power laser irradiation on procollagen synthesis in human fibroblasts,” J. Clin. Laser Med. Surg.14(3), 129–132 (1996).
[PubMed]

Kotani, H.

Y. Yamamoto, T. Kono, H. Kotani, S. Kasai, and M. Mito, “Effect of low-power laser irradiation on procollagen synthesis in human fibroblasts,” J. Clin. Laser Med. Surg.14(3), 129–132 (1996).
[PubMed]

Lee, M. S.

M. H. Im, E. J. Park, C. H. Kim, and M. S. Lee, “Modification of plastic optical fiber for side-illumination,” Human-Comp. Interac.Interac Platforms Tech.4551, 1123–1129 (2007).
[CrossRef]

Li, Q.

L. Shu, T. Hua, Y. Y. Wang, Q. Li, D. D. Feng, and X. M. Tao, “In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array,” IEEE Trans. Inform. Technol. Biomed.14, 767–775 (2010).

Liu, Z. Y.

C. F. J. Pun, Z. Y. Liu, M. L. V. Tse, X. Chen, X. M. Tao, and H. Y. Tam, “Side-illumination fluorescence dye-doped-clad pmma-core polymer optical fiber: potential intrinsic light source for biosensing,” IEEE Photon. Technol. Lett.24(11), 960–962 (2012).
[CrossRef]

Lupton, J. R.

E. L. Tanzi, J. R. Lupton, and T. S. Alster, “Lasers in dermatology: Four decades of progress,” J. Am. Acad. Dermatol.49(1), 1–34 (2003).
[CrossRef] [PubMed]

Mäkinen, M.

A. Harlin, M. Mäkinen, and A. Vuorivirta, “Development of polymeric optical fibre fabrics as illumination elements and textile displays,” AutexRes. J.3, 1–8 (2003).

Malmivaara, M.

J. Rantanen, J. Impio, T. Karinsalo, M. Malmivaara, A. Reho, M. Tasanen, and J. Vanhala, “Smart clothing prototype for the arctic environment,” Pers. Ubiq. Comp.6(1), 3–16 (2002).
[CrossRef]

Mandelberg, H. I.

P. S. Szczepanek, C. S. Gault, and H. I. Mandelberg, “Dependence of LED light distribution on electrical drive parameters,” J. Appl. Phys.48(7), 3183–3184 (1977).
[CrossRef]

Mito, M.

Y. Yamamoto, T. Kono, H. Kotani, S. Kasai, and M. Mito, “Effect of low-power laser irradiation on procollagen synthesis in human fibroblasts,” J. Clin. Laser Med. Surg.14(3), 129–132 (1996).
[PubMed]

Montgomery, F. H.

F. H. Montgomery, “The present status of phototherapy,” J.Cutan. Dis.21, 529–548 (1903).

Moreira, L. M.

P. F. Sebbe, A. B. Villaverde, L. M. Moreira, A. M. Barbosa, and N. Veissid, “Characterization of a novel LEDs device prototype for neonatal jaundice and its comparison with fluorescent lamps sources: phototherapy treatment of hyperbilirubinemia in wistarrats,” Spectros.23(5-6), 243–255 (2009).
[CrossRef]

Osipov, A. N.

Y. A. Vladimirov, A. N. Osipov, and G. I. Klebanov, “Photobiological principles of therapeutic applications of laser radiation,” Biochemistry Mosc.69(1), 81–90 (2004).
[CrossRef] [PubMed]

Park, E. J.

M. H. Im, E. J. Park, C. H. Kim, and M. S. Lee, “Modification of plastic optical fiber for side-illumination,” Human-Comp. Interac.Interac Platforms Tech.4551, 1123–1129 (2007).
[CrossRef]

Park, S.

S. Park and S. Jayaraman, “Enhancing the quality of life through wearable technology,” IEEE Eng. Med. Biol. Mag.22(3), 41–48 (2003).
[CrossRef] [PubMed]

Pelegrini, C. M.

M. S. Ribeiro, D. F. Da Silva, C. E. De Araújo, S. F. De Oliveira, C. M. Pelegrini, T. M. Zorn, and D. M. Zezell, “Effects of low-intensity polarized visible laser radiation on skin burns: a light microscopy study,” J. Clin. Laser Med. Surg.22(1), 59–66 (2004).
[CrossRef] [PubMed]

Perryman, P. W.

R. J. Cremer, P. W. Perryman, and D. H. Richards, “Influence of light on the hyperbilirubinaemia of infants,” Lancet271(7030), 1094–1097 (1958).
[CrossRef] [PubMed]

Pun, C. F. J.

C. F. J. Pun, Z. Y. Liu, M. L. V. Tse, X. Chen, X. M. Tao, and H. Y. Tam, “Side-illumination fluorescence dye-doped-clad pmma-core polymer optical fiber: potential intrinsic light source for biosensing,” IEEE Photon. Technol. Lett.24(11), 960–962 (2012).
[CrossRef]

Rantanen, J.

J. Rantanen, J. Impio, T. Karinsalo, M. Malmivaara, A. Reho, M. Tasanen, and J. Vanhala, “Smart clothing prototype for the arctic environment,” Pers. Ubiq. Comp.6(1), 3–16 (2002).
[CrossRef]

Reho, A.

J. Rantanen, J. Impio, T. Karinsalo, M. Malmivaara, A. Reho, M. Tasanen, and J. Vanhala, “Smart clothing prototype for the arctic environment,” Pers. Ubiq. Comp.6(1), 3–16 (2002).
[CrossRef]

Ribeiro, M. S.

M. S. Ribeiro, D. F. Da Silva, C. E. De Araújo, S. F. De Oliveira, C. M. Pelegrini, T. M. Zorn, and D. M. Zezell, “Effects of low-intensity polarized visible laser radiation on skin burns: a light microscopy study,” J. Clin. Laser Med. Surg.22(1), 59–66 (2004).
[CrossRef] [PubMed]

Richards, D. H.

R. J. Cremer, P. W. Perryman, and D. H. Richards, “Influence of light on the hyperbilirubinaemia of infants,” Lancet271(7030), 1094–1097 (1958).
[CrossRef] [PubMed]

Roelandts, R.

R. Roelandts, “The history of phototherapy: something new under the sun?” J. Am. Acad. Dermatol.46(6), 926–930 (2002).
[CrossRef] [PubMed]

Schicker, K.

Sebbe, P. F.

P. F. Sebbe, A. B. Villaverde, L. M. Moreira, A. M. Barbosa, and N. Veissid, “Characterization of a novel LEDs device prototype for neonatal jaundice and its comparison with fluorescent lamps sources: phototherapy treatment of hyperbilirubinemia in wistarrats,” Spectros.23(5-6), 243–255 (2009).
[CrossRef]

Shaw, R. M.

S. M. Skinner, J. P. Gage, P. A. Wilce, and R. M. Shaw, “A preliminary study of the effects of laser radiation on collagen metabolism in cell culture,” Aust. Dent. J.41(3), 188–192 (1996).
[CrossRef] [PubMed]

Shen, J.

J. Shen, X. M. Tao, D. Q. Ying, C. Y. Hui, and G. F. Wang, “Light emitting fabrics integrated with structured polymer optical fibers treated with infrared CO2 laser,” Text. Res. J.83(7), 730–739 (2013).
[CrossRef]

Shu, L.

L. Shu, T. Hua, Y. Y. Wang, Q. Li, D. D. Feng, and X. M. Tao, “In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array,” IEEE Trans. Inform. Technol. Biomed.14, 767–775 (2010).

Skinner, S. M.

S. M. Skinner, J. P. Gage, P. A. Wilce, and R. M. Shaw, “A preliminary study of the effects of laser radiation on collagen metabolism in cell culture,” Aust. Dent. J.41(3), 188–192 (1996).
[CrossRef] [PubMed]

Skorobogatiy, M.

Stoeffler, K.

Szczepanek, P. S.

P. S. Szczepanek, C. S. Gault, and H. I. Mandelberg, “Dependence of LED light distribution on electrical drive parameters,” J. Appl. Phys.48(7), 3183–3184 (1977).
[CrossRef]

Tam, H. Y.

C. F. J. Pun, Z. Y. Liu, M. L. V. Tse, X. Chen, X. M. Tao, and H. Y. Tam, “Side-illumination fluorescence dye-doped-clad pmma-core polymer optical fiber: potential intrinsic light source for biosensing,” IEEE Photon. Technol. Lett.24(11), 960–962 (2012).
[CrossRef]

Tan, K. L.

K. L. Tan and W. H. Boon, “A simple method of phototherapy: inexpensive, blue incandescent bulbs,” Clin. Pediatr. (Phila.)13(12), 1048–1051 (1974).
[CrossRef] [PubMed]

Tanzi, E. L.

E. L. Tanzi, J. R. Lupton, and T. S. Alster, “Lasers in dermatology: Four decades of progress,” J. Am. Acad. Dermatol.49(1), 1–34 (2003).
[CrossRef] [PubMed]

Tao, X. M.

D. Q. Ying, X. M. Tao, W. Zheng, and G. F. Wang, “Fabric strain sensor integrated with looped polymeric optical fiber with large angled V-shaped notches,” Smart Mater. Struct.22(1), 015004 (2013).
[CrossRef]

J. Shen, X. M. Tao, D. Q. Ying, C. Y. Hui, and G. F. Wang, “Light emitting fabrics integrated with structured polymer optical fibers treated with infrared CO2 laser,” Text. Res. J.83(7), 730–739 (2013).
[CrossRef]

C. F. J. Pun, Z. Y. Liu, M. L. V. Tse, X. Chen, X. M. Tao, and H. Y. Tam, “Side-illumination fluorescence dye-doped-clad pmma-core polymer optical fiber: potential intrinsic light source for biosensing,” IEEE Photon. Technol. Lett.24(11), 960–962 (2012).
[CrossRef]

Z. F. Zhang and X. M. Tao, “Synergetic effects of humidity and temperature on PMMA based fiber Bragg gratings,” J. Lightwave Technol.30(6), 841–845 (2012).
[CrossRef]

L. Shu, T. Hua, Y. Y. Wang, Q. Li, D. D. Feng, and X. M. Tao, “In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array,” IEEE Trans. Inform. Technol. Biomed.14, 767–775 (2010).

X. M. Tao, “Nerves for Smart Clothing – Optical Fibre Sensors and their Responses,” Intern. J. Clothing Sci. Technol.14(3/4), 157–168 (2002).
[CrossRef]

H. Chi, X. M. Tao, D. X. Yang, and K. S. Chen, “Simultaneous measurement of axial strain, temperature, and transverse load by a superstructure fiber grating,” Opt. Lett.26(24), 1949–1951 (2001).
[CrossRef] [PubMed]

Tasanen, M.

J. Rantanen, J. Impio, T. Karinsalo, M. Malmivaara, A. Reho, M. Tasanen, and J. Vanhala, “Smart clothing prototype for the arctic environment,” Pers. Ubiq. Comp.6(1), 3–16 (2002).
[CrossRef]

Tse, M. L. V.

C. F. J. Pun, Z. Y. Liu, M. L. V. Tse, X. Chen, X. M. Tao, and H. Y. Tam, “Side-illumination fluorescence dye-doped-clad pmma-core polymer optical fiber: potential intrinsic light source for biosensing,” IEEE Photon. Technol. Lett.24(11), 960–962 (2012).
[CrossRef]

Vanhala, J.

J. Rantanen, J. Impio, T. Karinsalo, M. Malmivaara, A. Reho, M. Tasanen, and J. Vanhala, “Smart clothing prototype for the arctic environment,” Pers. Ubiq. Comp.6(1), 3–16 (2002).
[CrossRef]

Veissid, N.

P. F. Sebbe, A. B. Villaverde, L. M. Moreira, A. M. Barbosa, and N. Veissid, “Characterization of a novel LEDs device prototype for neonatal jaundice and its comparison with fluorescent lamps sources: phototherapy treatment of hyperbilirubinemia in wistarrats,” Spectros.23(5-6), 243–255 (2009).
[CrossRef]

Villaverde, A. B.

P. F. Sebbe, A. B. Villaverde, L. M. Moreira, A. M. Barbosa, and N. Veissid, “Characterization of a novel LEDs device prototype for neonatal jaundice and its comparison with fluorescent lamps sources: phototherapy treatment of hyperbilirubinemia in wistarrats,” Spectros.23(5-6), 243–255 (2009).
[CrossRef]

Vladimirov, Y. A.

Y. A. Vladimirov, A. N. Osipov, and G. I. Klebanov, “Photobiological principles of therapeutic applications of laser radiation,” Biochemistry Mosc.69(1), 81–90 (2004).
[CrossRef] [PubMed]

Vuorivirta, A.

A. Harlin, M. Mäkinen, and A. Vuorivirta, “Development of polymeric optical fibre fabrics as illumination elements and textile displays,” AutexRes. J.3, 1–8 (2003).

Wang, G. F.

J. Shen, X. M. Tao, D. Q. Ying, C. Y. Hui, and G. F. Wang, “Light emitting fabrics integrated with structured polymer optical fibers treated with infrared CO2 laser,” Text. Res. J.83(7), 730–739 (2013).
[CrossRef]

D. Q. Ying, X. M. Tao, W. Zheng, and G. F. Wang, “Fabric strain sensor integrated with looped polymeric optical fiber with large angled V-shaped notches,” Smart Mater. Struct.22(1), 015004 (2013).
[CrossRef]

Wang, Y. Y.

L. Shu, T. Hua, Y. Y. Wang, Q. Li, D. D. Feng, and X. M. Tao, “In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array,” IEEE Trans. Inform. Technol. Biomed.14, 767–775 (2010).

Wilce, P. A.

S. M. Skinner, J. P. Gage, P. A. Wilce, and R. M. Shaw, “A preliminary study of the effects of laser radiation on collagen metabolism in cell culture,” Aust. Dent. J.41(3), 188–192 (1996).
[CrossRef] [PubMed]

Wingfield, R.

Yamamoto, Y.

Y. Yamamoto, T. Kono, H. Kotani, S. Kasai, and M. Mito, “Effect of low-power laser irradiation on procollagen synthesis in human fibroblasts,” J. Clin. Laser Med. Surg.14(3), 129–132 (1996).
[PubMed]

Yang, D. X.

Ying, D. Q.

D. Q. Ying, X. M. Tao, W. Zheng, and G. F. Wang, “Fabric strain sensor integrated with looped polymeric optical fiber with large angled V-shaped notches,” Smart Mater. Struct.22(1), 015004 (2013).
[CrossRef]

J. Shen, X. M. Tao, D. Q. Ying, C. Y. Hui, and G. F. Wang, “Light emitting fabrics integrated with structured polymer optical fibers treated with infrared CO2 laser,” Text. Res. J.83(7), 730–739 (2013).
[CrossRef]

Zezell, D. M.

M. S. Ribeiro, D. F. Da Silva, C. E. De Araújo, S. F. De Oliveira, C. M. Pelegrini, T. M. Zorn, and D. M. Zezell, “Effects of low-intensity polarized visible laser radiation on skin burns: a light microscopy study,” J. Clin. Laser Med. Surg.22(1), 59–66 (2004).
[CrossRef] [PubMed]

Zhang, Z. F.

Zheng, W.

D. Q. Ying, X. M. Tao, W. Zheng, and G. F. Wang, “Fabric strain sensor integrated with looped polymeric optical fiber with large angled V-shaped notches,” Smart Mater. Struct.22(1), 015004 (2013).
[CrossRef]

Zorn, T. M.

M. S. Ribeiro, D. F. Da Silva, C. E. De Araújo, S. F. De Oliveira, C. M. Pelegrini, T. M. Zorn, and D. M. Zezell, “Effects of low-intensity polarized visible laser radiation on skin burns: a light microscopy study,” J. Clin. Laser Med. Surg.22(1), 59–66 (2004).
[CrossRef] [PubMed]

Actas Dermosifiliogr. (1)

P. Boixeda, M. Calvo, and L. Bagazgoitia, “Recent advances in laser therapy and other technologies,” Actas Dermosifiliogr.99(4), 262–268 (2008).
[CrossRef] [PubMed]

Appl. Bionics Biomech. (1)

M. El-Sherif, “Smart structures and intelligent systems for health monitoring and diagnostics,” Appl. Bionics Biomech.2(3-4), 161–170 (2005).
[CrossRef]

Aust. Dent. J. (1)

S. M. Skinner, J. P. Gage, P. A. Wilce, and R. M. Shaw, “A preliminary study of the effects of laser radiation on collagen metabolism in cell culture,” Aust. Dent. J.41(3), 188–192 (1996).
[CrossRef] [PubMed]

AutexRes. J. (1)

A. Harlin, M. Mäkinen, and A. Vuorivirta, “Development of polymeric optical fibre fabrics as illumination elements and textile displays,” AutexRes. J.3, 1–8 (2003).

Biochemistry Mosc. (1)

Y. A. Vladimirov, A. N. Osipov, and G. I. Klebanov, “Photobiological principles of therapeutic applications of laser radiation,” Biochemistry Mosc.69(1), 81–90 (2004).
[CrossRef] [PubMed]

Clin. Dermatol. (1)

L. D. Houk and T. Humphreys, “Masers to magic bullets: an updated history of lasers in dermatology,” Clin. Dermatol.25(5), 434–442 (2007).
[CrossRef] [PubMed]

Clin. Pediatr. (Phila.) (1)

K. L. Tan and W. H. Boon, “A simple method of phototherapy: inexpensive, blue incandescent bulbs,” Clin. Pediatr. (Phila.)13(12), 1048–1051 (1974).
[CrossRef] [PubMed]

Human-Comp. Interac.Interac Platforms Tech. (1)

M. H. Im, E. J. Park, C. H. Kim, and M. S. Lee, “Modification of plastic optical fiber for side-illumination,” Human-Comp. Interac.Interac Platforms Tech.4551, 1123–1129 (2007).
[CrossRef]

IEEE Eng. Med. Biol. Mag. (1)

S. Park and S. Jayaraman, “Enhancing the quality of life through wearable technology,” IEEE Eng. Med. Biol. Mag.22(3), 41–48 (2003).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett. (1)

C. F. J. Pun, Z. Y. Liu, M. L. V. Tse, X. Chen, X. M. Tao, and H. Y. Tam, “Side-illumination fluorescence dye-doped-clad pmma-core polymer optical fiber: potential intrinsic light source for biosensing,” IEEE Photon. Technol. Lett.24(11), 960–962 (2012).
[CrossRef]

IEEE Trans. Inform. Technol. Biomed. (1)

L. Shu, T. Hua, Y. Y. Wang, Q. Li, D. D. Feng, and X. M. Tao, “In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array,” IEEE Trans. Inform. Technol. Biomed.14, 767–775 (2010).

Intern. J. Clothing Sci. Technol. (1)

X. M. Tao, “Nerves for Smart Clothing – Optical Fibre Sensors and their Responses,” Intern. J. Clothing Sci. Technol.14(3/4), 157–168 (2002).
[CrossRef]

J. Am. Acad. Dermatol. (2)

E. L. Tanzi, J. R. Lupton, and T. S. Alster, “Lasers in dermatology: Four decades of progress,” J. Am. Acad. Dermatol.49(1), 1–34 (2003).
[CrossRef] [PubMed]

R. Roelandts, “The history of phototherapy: something new under the sun?” J. Am. Acad. Dermatol.46(6), 926–930 (2002).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

P. S. Szczepanek, C. S. Gault, and H. I. Mandelberg, “Dependence of LED light distribution on electrical drive parameters,” J. Appl. Phys.48(7), 3183–3184 (1977).
[CrossRef]

J. Clin. Laser Med. Surg. (2)

Y. Yamamoto, T. Kono, H. Kotani, S. Kasai, and M. Mito, “Effect of low-power laser irradiation on procollagen synthesis in human fibroblasts,” J. Clin. Laser Med. Surg.14(3), 129–132 (1996).
[PubMed]

M. S. Ribeiro, D. F. Da Silva, C. E. De Araújo, S. F. De Oliveira, C. M. Pelegrini, T. M. Zorn, and D. M. Zezell, “Effects of low-intensity polarized visible laser radiation on skin burns: a light microscopy study,” J. Clin. Laser Med. Surg.22(1), 59–66 (2004).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

J. Photochem. Photobiol. B (1)

T. Karu, “Primary and secondary mechanisms of action of visible to near-IR radiation on cells,” J. Photochem. Photobiol. B49(1), 1–17 (1999).
[CrossRef] [PubMed]

J.Cutan. Dis. (1)

F. H. Montgomery, “The present status of phototherapy,” J.Cutan. Dis.21, 529–548 (1903).

Lancet (1)

R. J. Cremer, P. W. Perryman, and D. H. Richards, “Influence of light on the hyperbilirubinaemia of infants,” Lancet271(7030), 1094–1097 (1958).
[CrossRef] [PubMed]

Nat. Photonics (1)

D. Graham-Rowe, “Photonic fabrics take shape,” Nat. Photonics1, 6–7 (2007).

Opt. Express (1)

Opt. Lett. (1)

Opt. Photon. News (1)

V. Koncar, “Optical fiber fabric displays,” Opt. Photon. News16(4), 40–44 (2005).
[CrossRef]

Pers. Ubiq. Comp. (1)

J. Rantanen, J. Impio, T. Karinsalo, M. Malmivaara, A. Reho, M. Tasanen, and J. Vanhala, “Smart clothing prototype for the arctic environment,” Pers. Ubiq. Comp.6(1), 3–16 (2002).
[CrossRef]

Semin. Cutan. Med. Surg. (1)

D. Barolet, “Light-emitting diodes (LEDs) in dermatology,” Semin. Cutan. Med. Surg.27(4), 227–238 (2008).
[CrossRef] [PubMed]

Smart Mater. Struct. (1)

D. Q. Ying, X. M. Tao, W. Zheng, and G. F. Wang, “Fabric strain sensor integrated with looped polymeric optical fiber with large angled V-shaped notches,” Smart Mater. Struct.22(1), 015004 (2013).
[CrossRef]

Spectros. (1)

P. F. Sebbe, A. B. Villaverde, L. M. Moreira, A. M. Barbosa, and N. Veissid, “Characterization of a novel LEDs device prototype for neonatal jaundice and its comparison with fluorescent lamps sources: phototherapy treatment of hyperbilirubinemia in wistarrats,” Spectros.23(5-6), 243–255 (2009).
[CrossRef]

Stud. Health Technol. Inform. (1)

M. El-Sherif, “Smart fabrics: integrating fiber optic sensors and information networks,” Stud. Health Technol. Inform.108, 317–323 (2004).
[PubMed]

Text. Res. J. (1)

J. Shen, X. M. Tao, D. Q. Ying, C. Y. Hui, and G. F. Wang, “Light emitting fabrics integrated with structured polymer optical fibers treated with infrared CO2 laser,” Text. Res. J.83(7), 730–739 (2013).
[CrossRef]

Other (8)

Golden DRAGON® Enhanced thin film LED, LR W5SM, Data Sheet, OSRAM Opto Semiconductors GmbH, Germany.

L. V. Langenhove, Smart textiles for medicine and healthcare (Woodhead, 2007).

ISO 10993–1:2003 Biological evaluation of medical devices–Part 1: Evaluation and testing.

ISO 10993–5:2009 Biological evaluation of medical devices, Part 5:Test for in vitro cytotoxicity.

ISO 10993–10:2002/Amd. 1: 2006 Biological evaluation of medical device, Part 10: Test for irritation and delayed-type hypersensitivity.

X. M. Tao, Smart Fibres, Fabrics and Clothing (CRC press, 2001).

S. Jung, C. Lauterbach, M. Strasser, and W. Weber, “Enabling technologies for disappearing electronics in smart textiles,” in Proceedings of IEEE Conference on International Solid-State Circuits (San Francisco, 2003), pp.386–387.
[CrossRef]

L. I. Grossweiner, The Science of phototherapy: an introduction (Springer New York, 2005)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Segment of POF with V-groove

Fig. 2
Fig. 2

Schematic of the POF Fabric with V-grooves

Fig. 3
Fig. 3

Light propagation in the POF with V-grooved notch

Fig. 4
Fig. 4

Photo of woven fabrics produced from cotton yarns and POF of 250 μm diameter (inset: enlarged image)

Fig. 5
Fig. 5

Scheme of luminous POF fabric device.

Fig. 6
Fig. 6

Fabric device used for in vitro experiments (a) in day light; (b) in dark.

Fig. 7
Fig. 7

LED array device for in vitro experiments

Fig. 8
Fig. 8

An example of the phototherapy device used in practice

Fig. 9
Fig. 9

Emission spectra of red LED (6546417)

Fig. 10
Fig. 10

Variation of power density during 10 hours (a) LED array device; (b) POF fabric device

Fig. 11
Fig. 11

(a)Temperature and relative humidity in the chamber. (b) LED array device; (c) POF fabric system device

Fig. 12
Fig. 12

Expression of human collagen type I from human fibroblasts. Three independent experiments were conducted and representative results are shown. (a) (c)cells incubated without light irradiation; (b) cells irradiated by LED array device; (d) cells irradiated by POF fabric device

Fig. 13
Fig. 13

(a) The schematic of light distribution of single POF with V-grooves; (b) The light distribution at one V-groove; (c) The light distribution of POF fabric

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

dP=I( θ 0 )dΩdS
P br = S 0 dS Ω I 0 ( θ 0 ) dΩ
P e = S e dS Ω I 0 ( θ t ) dΩ
P 1e = P e
P 2e =( P br P 1e ) P e P br = P e ( 1 P e P br )
P Ne = P e ( 1 P e P br ) N1
P seN =( P 1e + P 2e + P 3e + P 4e ++ P Ne )= P br ( 1 P e P br ) N
E e =m P sen .

Metrics