Abstract

Near infrared dynamic diffuse optical tomography measurements of breast hemodynamics during fractional mammographic compression offer a novel contrast mechanism for detecting breast cancer and monitoring chemotherapy. Tissue viscoelastic relaxation during the compression period leads to a slow reduction in the compression force and reveals biomechanical and metabolic differences between healthy and lesion tissue. We measured both the absolute values and the temporal evolution of hemoglobin concentration during 25-35 N of compression for 22 stage II and III breast cancer patients scheduled to undergo neoadjuvant chemotherapy. 17 patients were included in the group analysis (average tumor size 3.2 cm, range: 1.3-5.7 cm). We observed a statistically significant differential decrease in total and oxy-hemoglobin, as well as in hemoglobin oxygen saturation in tumor areas vs. healthy tissue, as early as 30 seconds into the compression period. The hemodynamic contrast is likely driven by the higher tumor stiffness and different viscoelastic relaxation rate, as well as the higher tumor oxygen metabolism rate.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Cancer Facts & Figs. 2013 (American Cancer Society, Atlanta, 2013).
  2. E. D. Pisano, C. Gatsonis, E. Hendrick, M. Yaffe, J. K. Baum, S. Acharyya, E. F. Conant, L. L. Fajardo, L. Bassett, C. D’Orsi, R. Jong, M. Rebner, and Digital Mammographic Imaging Screening Trial (DMIST) Investigators Group, “Diagnostic performance of digital versus film mammography for breast-cancer screening,” N. Engl. J. Med.353(17), 1773–1783 (2005).
    [CrossRef] [PubMed]
  3. M. L. Zuley, A. I. Bandos, M. A. Ganott, J. H. Sumkin, A. E. Kelly, V. J. Catullo, G. Y. Rathfon, A. H. Lu, and D. Gur, “Digital breast tomosynthesis versus supplemental diagnostic mammographic views for evaluation of noncalcified breast lesions,” Radiology266(1), 89–95 (2013).
    [CrossRef] [PubMed]
  4. S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng.40(2), 398–407 (2012).
    [CrossRef] [PubMed]
  5. P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment f breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
    [CrossRef] [PubMed]
  6. R. Choe and T. Durduran, “Diffuse Optical Monitoring of the Neoadjuvant Breast Cancer Therapy,” IEEE J. Sel. Top. Quantum Electron.18(4), 1367–1386 (2012).
    [CrossRef] [PubMed]
  7. A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Philos Trans A Math Phys Eng. Sci.369, 4512–4530 (2011).
  8. R. Al abdi, H. L. Graber, Y. Xu, and R. L. Barbour, “Optomechanical imaging system for breast cancer detection,” J. Opt. Soc. Am. A28(12), 2473–2493 (2011).
    [CrossRef]
  9. R. X. Xu, D. C. Young, J. J. Mao, and S. P. Povoski, “A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions,” Breast Cancer Res.9(6), R88 (2007).
    [CrossRef] [PubMed]
  10. L. S. Fournier, D. Vanel, A. Athanasiou, W. Gatzemeier, I. V. Masuykov, A. R. Padhani, C. Dromain, K. Galetti, R. Sigal, A. Costa, and C. Balleyguier, “Dynamic optical breast imaging: a novel technique to detect and characterize tumor vessels,” Eur. J. Radiol.69(1), 43–49 (2009).
    [CrossRef] [PubMed]
  11. S. Jiang, B. W. Pogue, A. M. Laughney, C. A. Kogel, and K. D. Paulsen, “Measurement of pressure-displacement kinetics of hemoglobin in normal breast tissue with near-infrared spectral imaging,” Appl. Opt.48(10), D130–D136 (2009).
    [CrossRef] [PubMed]
  12. S. A. Carp, J. Selb, Q. Fang, R. Moore, D. B. Kopans, E. Rafferty, and D. A. Boas, “Dynamic functional and mechanical response of breast tissue to compression,” Opt. Express16(20), 16064–16078 (2008).
    [CrossRef] [PubMed]
  13. M. L. Flexman, M. A. Khalil, R. Al Abdi, H. K. Kim, C. J. Fong, E. Desperito, D. L. Hershman, R. L. Barbour, and A. H. Hielscher, “Digital optical tomography system for dynamic breast imaging,” J. Biomed. Opt.16(7), 076014 (2011).
    [CrossRef] [PubMed]
  14. R. P. Beaney, A. A. Lammertsma, T. Jones, C. G. McKenzie, and K. E. Halnan, “Positron emission tomography for in-vivo measurement of regional blood flow, oxygen utilisation, and blood volume in patients with breast carcinoma,” Lancet323(8369), 131–134 (1984).
    [CrossRef] [PubMed]
  15. C. B. Wilson, A. A. Lammertsma, C. G. McKenzie, K. Sikora, and T. Jones, “Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: a rapid and noninvasive dynamic method,” Cancer Res.52(6), 1592–1597 (1992).
    [PubMed]
  16. J. M. Chang, I. A. Park, S. H. Lee, W. H. Kim, M. S. Bae, H. R. Koo, A. Yi, S. J. Kim, N. Cho, and W. K. Moon, “Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer,” Eur. Radiol.23(9), 2450–2458 (2013).
    [CrossRef] [PubMed]
  17. M. Sridhar and M. F. Insana, “Ultrasonic measurements of breast viscoelasticity,” Med. Phys.34(12), 4757–4767 (2007).
    [CrossRef] [PubMed]
  18. S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt.11(6), 064016 (2006).
    [CrossRef] [PubMed]
  19. D. K. Joseph, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging,” Appl. Opt.45(31), 8142–8151 (2006).
    [CrossRef] [PubMed]
  20. Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging28(1), 30–42 (2009).
    [CrossRef] [PubMed]
  21. Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology258(1), 89–97 (2011).
    [CrossRef] [PubMed]
  22. D. Boas, T. Gaudette, and S. Arridge, “Simultaneous imaging and optode calibration with diffuse optical tomography,” Opt. Express8(5), 263–270 (2001).
    [CrossRef] [PubMed]
  23. A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett.29(3), 256–258 (2004).
    [CrossRef] [PubMed]
  24. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl. Opt.44(10), 1858–1869 (2005).
    [CrossRef] [PubMed]
  25. H. Q. Woodard and D. R. White, “The composition of body tissues,” Br. J. Radiol.59(708), 1209–1218 (1986).
    [CrossRef] [PubMed]
  26. K. D. Paulsen, P. M. Meaney, M. J. Moskowitz, and J. R. Sullivan, “A dual mesh scheme for finite element based reconstruction algorithms,” IEEE Trans. Med. Imaging14(3), 504–514 (1995).
    [CrossRef] [PubMed]
  27. A. L. Darling, P. K. Yalavarthy, M. M. Doyley, H. Dehghani, and B. W. Pogue, “Interstitial fluid pressure in soft tissue as a result of an externally applied contact pressure,” Phys. Med. Biol.52(14), 4121–4136 (2007).
    [CrossRef] [PubMed]
  28. A. A. Gilad, T. Israely, H. Dafni, G. Meir, B. Cohen, and M. Neeman, “Functional and molecular mapping of uncoupling between vascular permeability and loss of vascular maturation in ovarian carcinoma xenografts: the role of stroma cells in tumor angiogenesis,” Int. J. Cancer117(2), 202–211 (2005).
    [CrossRef] [PubMed]
  29. S. Dische, M. I. Saunders, R. Sealy, I. D. Werner, N. Verma, C. Foy, and S. M. Bentzen, “Carcinoma of the cervix and the use of hyperbaric oxygen with radiotherapy: a report of a randomised controlled trial,” Radiother. Oncol.53(2), 93–98 (1999).
    [CrossRef] [PubMed]
  30. D. R. White, H. Q. Woodard, and S. M. Hammond, “Average soft-tissue and bone models for use in radiation dosimetry,” Br. J. Radiol.60(717), 907–913 (1987).
    [CrossRef] [PubMed]

2013

M. L. Zuley, A. I. Bandos, M. A. Ganott, J. H. Sumkin, A. E. Kelly, V. J. Catullo, G. Y. Rathfon, A. H. Lu, and D. Gur, “Digital breast tomosynthesis versus supplemental diagnostic mammographic views for evaluation of noncalcified breast lesions,” Radiology266(1), 89–95 (2013).
[CrossRef] [PubMed]

J. M. Chang, I. A. Park, S. H. Lee, W. H. Kim, M. S. Bae, H. R. Koo, A. Yi, S. J. Kim, N. Cho, and W. K. Moon, “Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer,” Eur. Radiol.23(9), 2450–2458 (2013).
[CrossRef] [PubMed]

2012

S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng.40(2), 398–407 (2012).
[CrossRef] [PubMed]

R. Choe and T. Durduran, “Diffuse Optical Monitoring of the Neoadjuvant Breast Cancer Therapy,” IEEE J. Sel. Top. Quantum Electron.18(4), 1367–1386 (2012).
[CrossRef] [PubMed]

2011

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Philos Trans A Math Phys Eng. Sci.369, 4512–4530 (2011).

M. L. Flexman, M. A. Khalil, R. Al Abdi, H. K. Kim, C. J. Fong, E. Desperito, D. L. Hershman, R. L. Barbour, and A. H. Hielscher, “Digital optical tomography system for dynamic breast imaging,” J. Biomed. Opt.16(7), 076014 (2011).
[CrossRef] [PubMed]

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology258(1), 89–97 (2011).
[CrossRef] [PubMed]

R. Al abdi, H. L. Graber, Y. Xu, and R. L. Barbour, “Optomechanical imaging system for breast cancer detection,” J. Opt. Soc. Am. A28(12), 2473–2493 (2011).
[CrossRef]

2010

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment f breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

2009

S. Jiang, B. W. Pogue, A. M. Laughney, C. A. Kogel, and K. D. Paulsen, “Measurement of pressure-displacement kinetics of hemoglobin in normal breast tissue with near-infrared spectral imaging,” Appl. Opt.48(10), D130–D136 (2009).
[CrossRef] [PubMed]

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging28(1), 30–42 (2009).
[CrossRef] [PubMed]

L. S. Fournier, D. Vanel, A. Athanasiou, W. Gatzemeier, I. V. Masuykov, A. R. Padhani, C. Dromain, K. Galetti, R. Sigal, A. Costa, and C. Balleyguier, “Dynamic optical breast imaging: a novel technique to detect and characterize tumor vessels,” Eur. J. Radiol.69(1), 43–49 (2009).
[CrossRef] [PubMed]

2008

2007

R. X. Xu, D. C. Young, J. J. Mao, and S. P. Povoski, “A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions,” Breast Cancer Res.9(6), R88 (2007).
[CrossRef] [PubMed]

M. Sridhar and M. F. Insana, “Ultrasonic measurements of breast viscoelasticity,” Med. Phys.34(12), 4757–4767 (2007).
[CrossRef] [PubMed]

A. L. Darling, P. K. Yalavarthy, M. M. Doyley, H. Dehghani, and B. W. Pogue, “Interstitial fluid pressure in soft tissue as a result of an externally applied contact pressure,” Phys. Med. Biol.52(14), 4121–4136 (2007).
[CrossRef] [PubMed]

2006

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt.11(6), 064016 (2006).
[CrossRef] [PubMed]

D. K. Joseph, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging,” Appl. Opt.45(31), 8142–8151 (2006).
[CrossRef] [PubMed]

2005

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl. Opt.44(10), 1858–1869 (2005).
[CrossRef] [PubMed]

A. A. Gilad, T. Israely, H. Dafni, G. Meir, B. Cohen, and M. Neeman, “Functional and molecular mapping of uncoupling between vascular permeability and loss of vascular maturation in ovarian carcinoma xenografts: the role of stroma cells in tumor angiogenesis,” Int. J. Cancer117(2), 202–211 (2005).
[CrossRef] [PubMed]

E. D. Pisano, C. Gatsonis, E. Hendrick, M. Yaffe, J. K. Baum, S. Acharyya, E. F. Conant, L. L. Fajardo, L. Bassett, C. D’Orsi, R. Jong, M. Rebner, and Digital Mammographic Imaging Screening Trial (DMIST) Investigators Group, “Diagnostic performance of digital versus film mammography for breast-cancer screening,” N. Engl. J. Med.353(17), 1773–1783 (2005).
[CrossRef] [PubMed]

2004

2001

1999

S. Dische, M. I. Saunders, R. Sealy, I. D. Werner, N. Verma, C. Foy, and S. M. Bentzen, “Carcinoma of the cervix and the use of hyperbaric oxygen with radiotherapy: a report of a randomised controlled trial,” Radiother. Oncol.53(2), 93–98 (1999).
[CrossRef] [PubMed]

1995

K. D. Paulsen, P. M. Meaney, M. J. Moskowitz, and J. R. Sullivan, “A dual mesh scheme for finite element based reconstruction algorithms,” IEEE Trans. Med. Imaging14(3), 504–514 (1995).
[CrossRef] [PubMed]

1992

C. B. Wilson, A. A. Lammertsma, C. G. McKenzie, K. Sikora, and T. Jones, “Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: a rapid and noninvasive dynamic method,” Cancer Res.52(6), 1592–1597 (1992).
[PubMed]

1987

D. R. White, H. Q. Woodard, and S. M. Hammond, “Average soft-tissue and bone models for use in radiation dosimetry,” Br. J. Radiol.60(717), 907–913 (1987).
[CrossRef] [PubMed]

1986

H. Q. Woodard and D. R. White, “The composition of body tissues,” Br. J. Radiol.59(708), 1209–1218 (1986).
[CrossRef] [PubMed]

1984

R. P. Beaney, A. A. Lammertsma, T. Jones, C. G. McKenzie, and K. E. Halnan, “Positron emission tomography for in-vivo measurement of regional blood flow, oxygen utilisation, and blood volume in patients with breast carcinoma,” Lancet323(8369), 131–134 (1984).
[CrossRef] [PubMed]

Abbate, F.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment f breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

Acharyya, S.

E. D. Pisano, C. Gatsonis, E. Hendrick, M. Yaffe, J. K. Baum, S. Acharyya, E. F. Conant, L. L. Fajardo, L. Bassett, C. D’Orsi, R. Jong, M. Rebner, and Digital Mammographic Imaging Screening Trial (DMIST) Investigators Group, “Diagnostic performance of digital versus film mammography for breast-cancer screening,” N. Engl. J. Med.353(17), 1773–1783 (2005).
[CrossRef] [PubMed]

Al Abdi, R.

M. L. Flexman, M. A. Khalil, R. Al Abdi, H. K. Kim, C. J. Fong, E. Desperito, D. L. Hershman, R. L. Barbour, and A. H. Hielscher, “Digital optical tomography system for dynamic breast imaging,” J. Biomed. Opt.16(7), 076014 (2011).
[CrossRef] [PubMed]

R. Al abdi, H. L. Graber, Y. Xu, and R. L. Barbour, “Optomechanical imaging system for breast cancer detection,” J. Opt. Soc. Am. A28(12), 2473–2493 (2011).
[CrossRef]

Arridge, S.

Athanasiou, A.

L. S. Fournier, D. Vanel, A. Athanasiou, W. Gatzemeier, I. V. Masuykov, A. R. Padhani, C. Dromain, K. Galetti, R. Sigal, A. Costa, and C. Balleyguier, “Dynamic optical breast imaging: a novel technique to detect and characterize tumor vessels,” Eur. J. Radiol.69(1), 43–49 (2009).
[CrossRef] [PubMed]

Bae, M. S.

J. M. Chang, I. A. Park, S. H. Lee, W. H. Kim, M. S. Bae, H. R. Koo, A. Yi, S. J. Kim, N. Cho, and W. K. Moon, “Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer,” Eur. Radiol.23(9), 2450–2458 (2013).
[CrossRef] [PubMed]

Balestreri, N.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment f breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

Balleyguier, C.

L. S. Fournier, D. Vanel, A. Athanasiou, W. Gatzemeier, I. V. Masuykov, A. R. Padhani, C. Dromain, K. Galetti, R. Sigal, A. Costa, and C. Balleyguier, “Dynamic optical breast imaging: a novel technique to detect and characterize tumor vessels,” Eur. J. Radiol.69(1), 43–49 (2009).
[CrossRef] [PubMed]

Bandos, A. I.

M. L. Zuley, A. I. Bandos, M. A. Ganott, J. H. Sumkin, A. E. Kelly, V. J. Catullo, G. Y. Rathfon, A. H. Lu, and D. Gur, “Digital breast tomosynthesis versus supplemental diagnostic mammographic views for evaluation of noncalcified breast lesions,” Radiology266(1), 89–95 (2013).
[CrossRef] [PubMed]

Barbour, R. L.

M. L. Flexman, M. A. Khalil, R. Al Abdi, H. K. Kim, C. J. Fong, E. Desperito, D. L. Hershman, R. L. Barbour, and A. H. Hielscher, “Digital optical tomography system for dynamic breast imaging,” J. Biomed. Opt.16(7), 076014 (2011).
[CrossRef] [PubMed]

R. Al abdi, H. L. Graber, Y. Xu, and R. L. Barbour, “Optomechanical imaging system for breast cancer detection,” J. Opt. Soc. Am. A28(12), 2473–2493 (2011).
[CrossRef]

Bassett, L.

E. D. Pisano, C. Gatsonis, E. Hendrick, M. Yaffe, J. K. Baum, S. Acharyya, E. F. Conant, L. L. Fajardo, L. Bassett, C. D’Orsi, R. Jong, M. Rebner, and Digital Mammographic Imaging Screening Trial (DMIST) Investigators Group, “Diagnostic performance of digital versus film mammography for breast-cancer screening,” N. Engl. J. Med.353(17), 1773–1783 (2005).
[CrossRef] [PubMed]

Baum, J. K.

E. D. Pisano, C. Gatsonis, E. Hendrick, M. Yaffe, J. K. Baum, S. Acharyya, E. F. Conant, L. L. Fajardo, L. Bassett, C. D’Orsi, R. Jong, M. Rebner, and Digital Mammographic Imaging Screening Trial (DMIST) Investigators Group, “Diagnostic performance of digital versus film mammography for breast-cancer screening,” N. Engl. J. Med.353(17), 1773–1783 (2005).
[CrossRef] [PubMed]

Beaney, R. P.

R. P. Beaney, A. A. Lammertsma, T. Jones, C. G. McKenzie, and K. E. Halnan, “Positron emission tomography for in-vivo measurement of regional blood flow, oxygen utilisation, and blood volume in patients with breast carcinoma,” Lancet323(8369), 131–134 (1984).
[CrossRef] [PubMed]

Bentzen, S. M.

S. Dische, M. I. Saunders, R. Sealy, I. D. Werner, N. Verma, C. Foy, and S. M. Bentzen, “Carcinoma of the cervix and the use of hyperbaric oxygen with radiotherapy: a report of a randomised controlled trial,” Radiother. Oncol.53(2), 93–98 (1999).
[CrossRef] [PubMed]

Boas, D.

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt.11(6), 064016 (2006).
[CrossRef] [PubMed]

D. Boas, T. Gaudette, and S. Arridge, “Simultaneous imaging and optode calibration with diffuse optical tomography,” Opt. Express8(5), 263–270 (2001).
[CrossRef] [PubMed]

Boas, D. A.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology258(1), 89–97 (2011).
[CrossRef] [PubMed]

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging28(1), 30–42 (2009).
[CrossRef] [PubMed]

S. A. Carp, J. Selb, Q. Fang, R. Moore, D. B. Kopans, E. Rafferty, and D. A. Boas, “Dynamic functional and mechanical response of breast tissue to compression,” Opt. Express16(20), 16064–16078 (2008).
[CrossRef] [PubMed]

D. K. Joseph, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging,” Appl. Opt.45(31), 8142–8151 (2006).
[CrossRef] [PubMed]

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett.29(3), 256–258 (2004).
[CrossRef] [PubMed]

Boverman, G.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology258(1), 89–97 (2011).
[CrossRef] [PubMed]

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging28(1), 30–42 (2009).
[CrossRef] [PubMed]

Brooks, D. H.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology258(1), 89–97 (2011).
[CrossRef] [PubMed]

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging28(1), 30–42 (2009).
[CrossRef] [PubMed]

Butler, J.

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Philos Trans A Math Phys Eng. Sci.369, 4512–4530 (2011).

Carp, S. A.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology258(1), 89–97 (2011).
[CrossRef] [PubMed]

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging28(1), 30–42 (2009).
[CrossRef] [PubMed]

S. A. Carp, J. Selb, Q. Fang, R. Moore, D. B. Kopans, E. Rafferty, and D. A. Boas, “Dynamic functional and mechanical response of breast tissue to compression,” Opt. Express16(20), 16064–16078 (2008).
[CrossRef] [PubMed]

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt.11(6), 064016 (2006).
[CrossRef] [PubMed]

Cassano, E.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment f breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

Catullo, V. J.

M. L. Zuley, A. I. Bandos, M. A. Ganott, J. H. Sumkin, A. E. Kelly, V. J. Catullo, G. Y. Rathfon, A. H. Lu, and D. Gur, “Digital breast tomosynthesis versus supplemental diagnostic mammographic views for evaluation of noncalcified breast lesions,” Radiology266(1), 89–95 (2013).
[CrossRef] [PubMed]

Cerussi, A. E.

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Philos Trans A Math Phys Eng. Sci.369, 4512–4530 (2011).

Chang, J. M.

J. M. Chang, I. A. Park, S. H. Lee, W. H. Kim, M. S. Bae, H. R. Koo, A. Yi, S. J. Kim, N. Cho, and W. K. Moon, “Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer,” Eur. Radiol.23(9), 2450–2458 (2013).
[CrossRef] [PubMed]

Cho, N.

J. M. Chang, I. A. Park, S. H. Lee, W. H. Kim, M. S. Bae, H. R. Koo, A. Yi, S. J. Kim, N. Cho, and W. K. Moon, “Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer,” Eur. Radiol.23(9), 2450–2458 (2013).
[CrossRef] [PubMed]

Choe, R.

R. Choe and T. Durduran, “Diffuse Optical Monitoring of the Neoadjuvant Breast Cancer Therapy,” IEEE J. Sel. Top. Quantum Electron.18(4), 1367–1386 (2012).
[CrossRef] [PubMed]

Cohen, B.

A. A. Gilad, T. Israely, H. Dafni, G. Meir, B. Cohen, and M. Neeman, “Functional and molecular mapping of uncoupling between vascular permeability and loss of vascular maturation in ovarian carcinoma xenografts: the role of stroma cells in tumor angiogenesis,” Int. J. Cancer117(2), 202–211 (2005).
[CrossRef] [PubMed]

Conant, E. F.

E. D. Pisano, C. Gatsonis, E. Hendrick, M. Yaffe, J. K. Baum, S. Acharyya, E. F. Conant, L. L. Fajardo, L. Bassett, C. D’Orsi, R. Jong, M. Rebner, and Digital Mammographic Imaging Screening Trial (DMIST) Investigators Group, “Diagnostic performance of digital versus film mammography for breast-cancer screening,” N. Engl. J. Med.353(17), 1773–1783 (2005).
[CrossRef] [PubMed]

Costa, A.

L. S. Fournier, D. Vanel, A. Athanasiou, W. Gatzemeier, I. V. Masuykov, A. R. Padhani, C. Dromain, K. Galetti, R. Sigal, A. Costa, and C. Balleyguier, “Dynamic optical breast imaging: a novel technique to detect and characterize tumor vessels,” Eur. J. Radiol.69(1), 43–49 (2009).
[CrossRef] [PubMed]

Cubeddu, R.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment f breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

Culver, J. P.

D’Orsi, C.

E. D. Pisano, C. Gatsonis, E. Hendrick, M. Yaffe, J. K. Baum, S. Acharyya, E. F. Conant, L. L. Fajardo, L. Bassett, C. D’Orsi, R. Jong, M. Rebner, and Digital Mammographic Imaging Screening Trial (DMIST) Investigators Group, “Diagnostic performance of digital versus film mammography for breast-cancer screening,” N. Engl. J. Med.353(17), 1773–1783 (2005).
[CrossRef] [PubMed]

Dafni, H.

A. A. Gilad, T. Israely, H. Dafni, G. Meir, B. Cohen, and M. Neeman, “Functional and molecular mapping of uncoupling between vascular permeability and loss of vascular maturation in ovarian carcinoma xenografts: the role of stroma cells in tumor angiogenesis,” Int. J. Cancer117(2), 202–211 (2005).
[CrossRef] [PubMed]

Darling, A. L.

A. L. Darling, P. K. Yalavarthy, M. M. Doyley, H. Dehghani, and B. W. Pogue, “Interstitial fluid pressure in soft tissue as a result of an externally applied contact pressure,” Phys. Med. Biol.52(14), 4121–4136 (2007).
[CrossRef] [PubMed]

Dehghani, H.

A. L. Darling, P. K. Yalavarthy, M. M. Doyley, H. Dehghani, and B. W. Pogue, “Interstitial fluid pressure in soft tissue as a result of an externally applied contact pressure,” Phys. Med. Biol.52(14), 4121–4136 (2007).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl. Opt.44(10), 1858–1869 (2005).
[CrossRef] [PubMed]

Desperito, E.

M. L. Flexman, M. A. Khalil, R. Al Abdi, H. K. Kim, C. J. Fong, E. Desperito, D. L. Hershman, R. L. Barbour, and A. H. Hielscher, “Digital optical tomography system for dynamic breast imaging,” J. Biomed. Opt.16(7), 076014 (2011).
[CrossRef] [PubMed]

Dische, S.

S. Dische, M. I. Saunders, R. Sealy, I. D. Werner, N. Verma, C. Foy, and S. M. Bentzen, “Carcinoma of the cervix and the use of hyperbaric oxygen with radiotherapy: a report of a randomised controlled trial,” Radiother. Oncol.53(2), 93–98 (1999).
[CrossRef] [PubMed]

Doyley, M. M.

A. L. Darling, P. K. Yalavarthy, M. M. Doyley, H. Dehghani, and B. W. Pogue, “Interstitial fluid pressure in soft tissue as a result of an externally applied contact pressure,” Phys. Med. Biol.52(14), 4121–4136 (2007).
[CrossRef] [PubMed]

Dromain, C.

L. S. Fournier, D. Vanel, A. Athanasiou, W. Gatzemeier, I. V. Masuykov, A. R. Padhani, C. Dromain, K. Galetti, R. Sigal, A. Costa, and C. Balleyguier, “Dynamic optical breast imaging: a novel technique to detect and characterize tumor vessels,” Eur. J. Radiol.69(1), 43–49 (2009).
[CrossRef] [PubMed]

Durduran, T.

R. Choe and T. Durduran, “Diffuse Optical Monitoring of the Neoadjuvant Breast Cancer Therapy,” IEEE J. Sel. Top. Quantum Electron.18(4), 1367–1386 (2012).
[CrossRef] [PubMed]

Fajardo, L. L.

E. D. Pisano, C. Gatsonis, E. Hendrick, M. Yaffe, J. K. Baum, S. Acharyya, E. F. Conant, L. L. Fajardo, L. Bassett, C. D’Orsi, R. Jong, M. Rebner, and Digital Mammographic Imaging Screening Trial (DMIST) Investigators Group, “Diagnostic performance of digital versus film mammography for breast-cancer screening,” N. Engl. J. Med.353(17), 1773–1783 (2005).
[CrossRef] [PubMed]

Fang, Q.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology258(1), 89–97 (2011).
[CrossRef] [PubMed]

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging28(1), 30–42 (2009).
[CrossRef] [PubMed]

S. A. Carp, J. Selb, Q. Fang, R. Moore, D. B. Kopans, E. Rafferty, and D. A. Boas, “Dynamic functional and mechanical response of breast tissue to compression,” Opt. Express16(20), 16064–16078 (2008).
[CrossRef] [PubMed]

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt.11(6), 064016 (2006).
[CrossRef] [PubMed]

Fantini, S.

S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng.40(2), 398–407 (2012).
[CrossRef] [PubMed]

Flexman, M. L.

M. L. Flexman, M. A. Khalil, R. Al Abdi, H. K. Kim, C. J. Fong, E. Desperito, D. L. Hershman, R. L. Barbour, and A. H. Hielscher, “Digital optical tomography system for dynamic breast imaging,” J. Biomed. Opt.16(7), 076014 (2011).
[CrossRef] [PubMed]

Fong, C. J.

M. L. Flexman, M. A. Khalil, R. Al Abdi, H. K. Kim, C. J. Fong, E. Desperito, D. L. Hershman, R. L. Barbour, and A. H. Hielscher, “Digital optical tomography system for dynamic breast imaging,” J. Biomed. Opt.16(7), 076014 (2011).
[CrossRef] [PubMed]

Fournier, L. S.

L. S. Fournier, D. Vanel, A. Athanasiou, W. Gatzemeier, I. V. Masuykov, A. R. Padhani, C. Dromain, K. Galetti, R. Sigal, A. Costa, and C. Balleyguier, “Dynamic optical breast imaging: a novel technique to detect and characterize tumor vessels,” Eur. J. Radiol.69(1), 43–49 (2009).
[CrossRef] [PubMed]

Foy, C.

S. Dische, M. I. Saunders, R. Sealy, I. D. Werner, N. Verma, C. Foy, and S. M. Bentzen, “Carcinoma of the cervix and the use of hyperbaric oxygen with radiotherapy: a report of a randomised controlled trial,” Radiother. Oncol.53(2), 93–98 (1999).
[CrossRef] [PubMed]

Franceschini, M. A.

Galetti, K.

L. S. Fournier, D. Vanel, A. Athanasiou, W. Gatzemeier, I. V. Masuykov, A. R. Padhani, C. Dromain, K. Galetti, R. Sigal, A. Costa, and C. Balleyguier, “Dynamic optical breast imaging: a novel technique to detect and characterize tumor vessels,” Eur. J. Radiol.69(1), 43–49 (2009).
[CrossRef] [PubMed]

Ganott, M. A.

M. L. Zuley, A. I. Bandos, M. A. Ganott, J. H. Sumkin, A. E. Kelly, V. J. Catullo, G. Y. Rathfon, A. H. Lu, and D. Gur, “Digital breast tomosynthesis versus supplemental diagnostic mammographic views for evaluation of noncalcified breast lesions,” Radiology266(1), 89–95 (2013).
[CrossRef] [PubMed]

Gatsonis, C.

E. D. Pisano, C. Gatsonis, E. Hendrick, M. Yaffe, J. K. Baum, S. Acharyya, E. F. Conant, L. L. Fajardo, L. Bassett, C. D’Orsi, R. Jong, M. Rebner, and Digital Mammographic Imaging Screening Trial (DMIST) Investigators Group, “Diagnostic performance of digital versus film mammography for breast-cancer screening,” N. Engl. J. Med.353(17), 1773–1783 (2005).
[CrossRef] [PubMed]

Gatzemeier, W.

L. S. Fournier, D. Vanel, A. Athanasiou, W. Gatzemeier, I. V. Masuykov, A. R. Padhani, C. Dromain, K. Galetti, R. Sigal, A. Costa, and C. Balleyguier, “Dynamic optical breast imaging: a novel technique to detect and characterize tumor vessels,” Eur. J. Radiol.69(1), 43–49 (2009).
[CrossRef] [PubMed]

Gaudette, T.

Gilad, A. A.

A. A. Gilad, T. Israely, H. Dafni, G. Meir, B. Cohen, and M. Neeman, “Functional and molecular mapping of uncoupling between vascular permeability and loss of vascular maturation in ovarian carcinoma xenografts: the role of stroma cells in tumor angiogenesis,” Int. J. Cancer117(2), 202–211 (2005).
[CrossRef] [PubMed]

Graber, H. L.

Gur, D.

M. L. Zuley, A. I. Bandos, M. A. Ganott, J. H. Sumkin, A. E. Kelly, V. J. Catullo, G. Y. Rathfon, A. H. Lu, and D. Gur, “Digital breast tomosynthesis versus supplemental diagnostic mammographic views for evaluation of noncalcified breast lesions,” Radiology266(1), 89–95 (2013).
[CrossRef] [PubMed]

Halnan, K. E.

R. P. Beaney, A. A. Lammertsma, T. Jones, C. G. McKenzie, and K. E. Halnan, “Positron emission tomography for in-vivo measurement of regional blood flow, oxygen utilisation, and blood volume in patients with breast carcinoma,” Lancet323(8369), 131–134 (1984).
[CrossRef] [PubMed]

Hammond, S. M.

D. R. White, H. Q. Woodard, and S. M. Hammond, “Average soft-tissue and bone models for use in radiation dosimetry,” Br. J. Radiol.60(717), 907–913 (1987).
[CrossRef] [PubMed]

Hendrick, E.

E. D. Pisano, C. Gatsonis, E. Hendrick, M. Yaffe, J. K. Baum, S. Acharyya, E. F. Conant, L. L. Fajardo, L. Bassett, C. D’Orsi, R. Jong, M. Rebner, and Digital Mammographic Imaging Screening Trial (DMIST) Investigators Group, “Diagnostic performance of digital versus film mammography for breast-cancer screening,” N. Engl. J. Med.353(17), 1773–1783 (2005).
[CrossRef] [PubMed]

Hershman, D. L.

M. L. Flexman, M. A. Khalil, R. Al Abdi, H. K. Kim, C. J. Fong, E. Desperito, D. L. Hershman, R. L. Barbour, and A. H. Hielscher, “Digital optical tomography system for dynamic breast imaging,” J. Biomed. Opt.16(7), 076014 (2011).
[CrossRef] [PubMed]

Hielscher, A. H.

M. L. Flexman, M. A. Khalil, R. Al Abdi, H. K. Kim, C. J. Fong, E. Desperito, D. L. Hershman, R. L. Barbour, and A. H. Hielscher, “Digital optical tomography system for dynamic breast imaging,” J. Biomed. Opt.16(7), 076014 (2011).
[CrossRef] [PubMed]

Hsiang, D.

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Philos Trans A Math Phys Eng. Sci.369, 4512–4530 (2011).

Huppert, T. J.

Insana, M. F.

M. Sridhar and M. F. Insana, “Ultrasonic measurements of breast viscoelasticity,” Med. Phys.34(12), 4757–4767 (2007).
[CrossRef] [PubMed]

Israely, T.

A. A. Gilad, T. Israely, H. Dafni, G. Meir, B. Cohen, and M. Neeman, “Functional and molecular mapping of uncoupling between vascular permeability and loss of vascular maturation in ovarian carcinoma xenografts: the role of stroma cells in tumor angiogenesis,” Int. J. Cancer117(2), 202–211 (2005).
[CrossRef] [PubMed]

Jiang, S.

Jones, T.

C. B. Wilson, A. A. Lammertsma, C. G. McKenzie, K. Sikora, and T. Jones, “Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: a rapid and noninvasive dynamic method,” Cancer Res.52(6), 1592–1597 (1992).
[PubMed]

R. P. Beaney, A. A. Lammertsma, T. Jones, C. G. McKenzie, and K. E. Halnan, “Positron emission tomography for in-vivo measurement of regional blood flow, oxygen utilisation, and blood volume in patients with breast carcinoma,” Lancet323(8369), 131–134 (1984).
[CrossRef] [PubMed]

Jong, R.

E. D. Pisano, C. Gatsonis, E. Hendrick, M. Yaffe, J. K. Baum, S. Acharyya, E. F. Conant, L. L. Fajardo, L. Bassett, C. D’Orsi, R. Jong, M. Rebner, and Digital Mammographic Imaging Screening Trial (DMIST) Investigators Group, “Diagnostic performance of digital versus film mammography for breast-cancer screening,” N. Engl. J. Med.353(17), 1773–1783 (2005).
[CrossRef] [PubMed]

Joseph, D. K.

Kauffman, T.

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt.11(6), 064016 (2006).
[CrossRef] [PubMed]

Kelly, A. E.

M. L. Zuley, A. I. Bandos, M. A. Ganott, J. H. Sumkin, A. E. Kelly, V. J. Catullo, G. Y. Rathfon, A. H. Lu, and D. Gur, “Digital breast tomosynthesis versus supplemental diagnostic mammographic views for evaluation of noncalcified breast lesions,” Radiology266(1), 89–95 (2013).
[CrossRef] [PubMed]

Khalil, M. A.

M. L. Flexman, M. A. Khalil, R. Al Abdi, H. K. Kim, C. J. Fong, E. Desperito, D. L. Hershman, R. L. Barbour, and A. H. Hielscher, “Digital optical tomography system for dynamic breast imaging,” J. Biomed. Opt.16(7), 076014 (2011).
[CrossRef] [PubMed]

Kim, H. K.

M. L. Flexman, M. A. Khalil, R. Al Abdi, H. K. Kim, C. J. Fong, E. Desperito, D. L. Hershman, R. L. Barbour, and A. H. Hielscher, “Digital optical tomography system for dynamic breast imaging,” J. Biomed. Opt.16(7), 076014 (2011).
[CrossRef] [PubMed]

Kim, S. J.

J. M. Chang, I. A. Park, S. H. Lee, W. H. Kim, M. S. Bae, H. R. Koo, A. Yi, S. J. Kim, N. Cho, and W. K. Moon, “Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer,” Eur. Radiol.23(9), 2450–2458 (2013).
[CrossRef] [PubMed]

Kim, W. H.

J. M. Chang, I. A. Park, S. H. Lee, W. H. Kim, M. S. Bae, H. R. Koo, A. Yi, S. J. Kim, N. Cho, and W. K. Moon, “Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer,” Eur. Radiol.23(9), 2450–2458 (2013).
[CrossRef] [PubMed]

Kogel, C. A.

Koo, H. R.

J. M. Chang, I. A. Park, S. H. Lee, W. H. Kim, M. S. Bae, H. R. Koo, A. Yi, S. J. Kim, N. Cho, and W. K. Moon, “Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer,” Eur. Radiol.23(9), 2450–2458 (2013).
[CrossRef] [PubMed]

Kopans, D.

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt.11(6), 064016 (2006).
[CrossRef] [PubMed]

Kopans, D. B.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology258(1), 89–97 (2011).
[CrossRef] [PubMed]

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging28(1), 30–42 (2009).
[CrossRef] [PubMed]

S. A. Carp, J. Selb, Q. Fang, R. Moore, D. B. Kopans, E. Rafferty, and D. A. Boas, “Dynamic functional and mechanical response of breast tissue to compression,” Opt. Express16(20), 16064–16078 (2008).
[CrossRef] [PubMed]

Lammertsma, A. A.

C. B. Wilson, A. A. Lammertsma, C. G. McKenzie, K. Sikora, and T. Jones, “Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: a rapid and noninvasive dynamic method,” Cancer Res.52(6), 1592–1597 (1992).
[PubMed]

R. P. Beaney, A. A. Lammertsma, T. Jones, C. G. McKenzie, and K. E. Halnan, “Positron emission tomography for in-vivo measurement of regional blood flow, oxygen utilisation, and blood volume in patients with breast carcinoma,” Lancet323(8369), 131–134 (1984).
[CrossRef] [PubMed]

Laughney, A. M.

Lee, S. H.

J. M. Chang, I. A. Park, S. H. Lee, W. H. Kim, M. S. Bae, H. R. Koo, A. Yi, S. J. Kim, N. Cho, and W. K. Moon, “Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer,” Eur. Radiol.23(9), 2450–2458 (2013).
[CrossRef] [PubMed]

Li, A.

Lu, A. H.

M. L. Zuley, A. I. Bandos, M. A. Ganott, J. H. Sumkin, A. E. Kelly, V. J. Catullo, G. Y. Rathfon, A. H. Lu, and D. Gur, “Digital breast tomosynthesis versus supplemental diagnostic mammographic views for evaluation of noncalcified breast lesions,” Radiology266(1), 89–95 (2013).
[CrossRef] [PubMed]

Mao, J. J.

R. X. Xu, D. C. Young, J. J. Mao, and S. P. Povoski, “A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions,” Breast Cancer Res.9(6), R88 (2007).
[CrossRef] [PubMed]

Masuykov, I. V.

L. S. Fournier, D. Vanel, A. Athanasiou, W. Gatzemeier, I. V. Masuykov, A. R. Padhani, C. Dromain, K. Galetti, R. Sigal, A. Costa, and C. Balleyguier, “Dynamic optical breast imaging: a novel technique to detect and characterize tumor vessels,” Eur. J. Radiol.69(1), 43–49 (2009).
[CrossRef] [PubMed]

McKenzie, C. G.

C. B. Wilson, A. A. Lammertsma, C. G. McKenzie, K. Sikora, and T. Jones, “Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: a rapid and noninvasive dynamic method,” Cancer Res.52(6), 1592–1597 (1992).
[PubMed]

R. P. Beaney, A. A. Lammertsma, T. Jones, C. G. McKenzie, and K. E. Halnan, “Positron emission tomography for in-vivo measurement of regional blood flow, oxygen utilisation, and blood volume in patients with breast carcinoma,” Lancet323(8369), 131–134 (1984).
[CrossRef] [PubMed]

Meaney, P. M.

K. D. Paulsen, P. M. Meaney, M. J. Moskowitz, and J. R. Sullivan, “A dual mesh scheme for finite element based reconstruction algorithms,” IEEE Trans. Med. Imaging14(3), 504–514 (1995).
[CrossRef] [PubMed]

Mehta, R. S.

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Philos Trans A Math Phys Eng. Sci.369, 4512–4530 (2011).

Meir, G.

A. A. Gilad, T. Israely, H. Dafni, G. Meir, B. Cohen, and M. Neeman, “Functional and molecular mapping of uncoupling between vascular permeability and loss of vascular maturation in ovarian carcinoma xenografts: the role of stroma cells in tumor angiogenesis,” Int. J. Cancer117(2), 202–211 (2005).
[CrossRef] [PubMed]

Menna, S.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment f breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

Miller, E. L.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology258(1), 89–97 (2011).
[CrossRef] [PubMed]

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging28(1), 30–42 (2009).
[CrossRef] [PubMed]

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett.29(3), 256–258 (2004).
[CrossRef] [PubMed]

Moon, W. K.

J. M. Chang, I. A. Park, S. H. Lee, W. H. Kim, M. S. Bae, H. R. Koo, A. Yi, S. J. Kim, N. Cho, and W. K. Moon, “Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer,” Eur. Radiol.23(9), 2450–2458 (2013).
[CrossRef] [PubMed]

Moore, R.

S. A. Carp, J. Selb, Q. Fang, R. Moore, D. B. Kopans, E. Rafferty, and D. A. Boas, “Dynamic functional and mechanical response of breast tissue to compression,” Opt. Express16(20), 16064–16078 (2008).
[CrossRef] [PubMed]

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt.11(6), 064016 (2006).
[CrossRef] [PubMed]

Moore, R. H.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology258(1), 89–97 (2011).
[CrossRef] [PubMed]

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging28(1), 30–42 (2009).
[CrossRef] [PubMed]

Moskowitz, M. J.

K. D. Paulsen, P. M. Meaney, M. J. Moskowitz, and J. R. Sullivan, “A dual mesh scheme for finite element based reconstruction algorithms,” IEEE Trans. Med. Imaging14(3), 504–514 (1995).
[CrossRef] [PubMed]

Neeman, M.

A. A. Gilad, T. Israely, H. Dafni, G. Meir, B. Cohen, and M. Neeman, “Functional and molecular mapping of uncoupling between vascular permeability and loss of vascular maturation in ovarian carcinoma xenografts: the role of stroma cells in tumor angiogenesis,” Int. J. Cancer117(2), 202–211 (2005).
[CrossRef] [PubMed]

Padhani, A. R.

L. S. Fournier, D. Vanel, A. Athanasiou, W. Gatzemeier, I. V. Masuykov, A. R. Padhani, C. Dromain, K. Galetti, R. Sigal, A. Costa, and C. Balleyguier, “Dynamic optical breast imaging: a novel technique to detect and characterize tumor vessels,” Eur. J. Radiol.69(1), 43–49 (2009).
[CrossRef] [PubMed]

Park, I. A.

J. M. Chang, I. A. Park, S. H. Lee, W. H. Kim, M. S. Bae, H. R. Koo, A. Yi, S. J. Kim, N. Cho, and W. K. Moon, “Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer,” Eur. Radiol.23(9), 2450–2458 (2013).
[CrossRef] [PubMed]

Paulsen, K. D.

Pifferi, A.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment f breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

Pisano, E. D.

E. D. Pisano, C. Gatsonis, E. Hendrick, M. Yaffe, J. K. Baum, S. Acharyya, E. F. Conant, L. L. Fajardo, L. Bassett, C. D’Orsi, R. Jong, M. Rebner, and Digital Mammographic Imaging Screening Trial (DMIST) Investigators Group, “Diagnostic performance of digital versus film mammography for breast-cancer screening,” N. Engl. J. Med.353(17), 1773–1783 (2005).
[CrossRef] [PubMed]

Pogue, B. W.

Povoski, S. P.

R. X. Xu, D. C. Young, J. J. Mao, and S. P. Povoski, “A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions,” Breast Cancer Res.9(6), R88 (2007).
[CrossRef] [PubMed]

Quarto, G.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment f breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

Rafferty, E.

S. A. Carp, J. Selb, Q. Fang, R. Moore, D. B. Kopans, E. Rafferty, and D. A. Boas, “Dynamic functional and mechanical response of breast tissue to compression,” Opt. Express16(20), 16064–16078 (2008).
[CrossRef] [PubMed]

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt.11(6), 064016 (2006).
[CrossRef] [PubMed]

Rathfon, G. Y.

M. L. Zuley, A. I. Bandos, M. A. Ganott, J. H. Sumkin, A. E. Kelly, V. J. Catullo, G. Y. Rathfon, A. H. Lu, and D. Gur, “Digital breast tomosynthesis versus supplemental diagnostic mammographic views for evaluation of noncalcified breast lesions,” Radiology266(1), 89–95 (2013).
[CrossRef] [PubMed]

Rebner, M.

E. D. Pisano, C. Gatsonis, E. Hendrick, M. Yaffe, J. K. Baum, S. Acharyya, E. F. Conant, L. L. Fajardo, L. Bassett, C. D’Orsi, R. Jong, M. Rebner, and Digital Mammographic Imaging Screening Trial (DMIST) Investigators Group, “Diagnostic performance of digital versus film mammography for breast-cancer screening,” N. Engl. J. Med.353(17), 1773–1783 (2005).
[CrossRef] [PubMed]

Sassaroli, A.

S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng.40(2), 398–407 (2012).
[CrossRef] [PubMed]

Saunders, M. I.

S. Dische, M. I. Saunders, R. Sealy, I. D. Werner, N. Verma, C. Foy, and S. M. Bentzen, “Carcinoma of the cervix and the use of hyperbaric oxygen with radiotherapy: a report of a randomised controlled trial,” Radiother. Oncol.53(2), 93–98 (1999).
[CrossRef] [PubMed]

Sealy, R.

S. Dische, M. I. Saunders, R. Sealy, I. D. Werner, N. Verma, C. Foy, and S. M. Bentzen, “Carcinoma of the cervix and the use of hyperbaric oxygen with radiotherapy: a report of a randomised controlled trial,” Radiother. Oncol.53(2), 93–98 (1999).
[CrossRef] [PubMed]

Selb, J.

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology258(1), 89–97 (2011).
[CrossRef] [PubMed]

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging28(1), 30–42 (2009).
[CrossRef] [PubMed]

S. A. Carp, J. Selb, Q. Fang, R. Moore, D. B. Kopans, E. Rafferty, and D. A. Boas, “Dynamic functional and mechanical response of breast tissue to compression,” Opt. Express16(20), 16064–16078 (2008).
[CrossRef] [PubMed]

Sigal, R.

L. S. Fournier, D. Vanel, A. Athanasiou, W. Gatzemeier, I. V. Masuykov, A. R. Padhani, C. Dromain, K. Galetti, R. Sigal, A. Costa, and C. Balleyguier, “Dynamic optical breast imaging: a novel technique to detect and characterize tumor vessels,” Eur. J. Radiol.69(1), 43–49 (2009).
[CrossRef] [PubMed]

Sikora, K.

C. B. Wilson, A. A. Lammertsma, C. G. McKenzie, K. Sikora, and T. Jones, “Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: a rapid and noninvasive dynamic method,” Cancer Res.52(6), 1592–1597 (1992).
[PubMed]

Spinelli, L.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment f breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

Sridhar, M.

M. Sridhar and M. F. Insana, “Ultrasonic measurements of breast viscoelasticity,” Med. Phys.34(12), 4757–4767 (2007).
[CrossRef] [PubMed]

Srinivasan, S.

Sullivan, J. R.

K. D. Paulsen, P. M. Meaney, M. J. Moskowitz, and J. R. Sullivan, “A dual mesh scheme for finite element based reconstruction algorithms,” IEEE Trans. Med. Imaging14(3), 504–514 (1995).
[CrossRef] [PubMed]

Sumkin, J. H.

M. L. Zuley, A. I. Bandos, M. A. Ganott, J. H. Sumkin, A. E. Kelly, V. J. Catullo, G. Y. Rathfon, A. H. Lu, and D. Gur, “Digital breast tomosynthesis versus supplemental diagnostic mammographic views for evaluation of noncalcified breast lesions,” Radiology266(1), 89–95 (2013).
[CrossRef] [PubMed]

Tanamai, V. W.

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Philos Trans A Math Phys Eng. Sci.369, 4512–4530 (2011).

Taroni, P.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment f breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

Torricelli, A.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment f breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

Tromberg, B. J.

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Philos Trans A Math Phys Eng. Sci.369, 4512–4530 (2011).

Vanel, D.

L. S. Fournier, D. Vanel, A. Athanasiou, W. Gatzemeier, I. V. Masuykov, A. R. Padhani, C. Dromain, K. Galetti, R. Sigal, A. Costa, and C. Balleyguier, “Dynamic optical breast imaging: a novel technique to detect and characterize tumor vessels,” Eur. J. Radiol.69(1), 43–49 (2009).
[CrossRef] [PubMed]

Verma, N.

S. Dische, M. I. Saunders, R. Sealy, I. D. Werner, N. Verma, C. Foy, and S. M. Bentzen, “Carcinoma of the cervix and the use of hyperbaric oxygen with radiotherapy: a report of a randomised controlled trial,” Radiother. Oncol.53(2), 93–98 (1999).
[CrossRef] [PubMed]

Villa, A.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment f breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

Werner, I. D.

S. Dische, M. I. Saunders, R. Sealy, I. D. Werner, N. Verma, C. Foy, and S. M. Bentzen, “Carcinoma of the cervix and the use of hyperbaric oxygen with radiotherapy: a report of a randomised controlled trial,” Radiother. Oncol.53(2), 93–98 (1999).
[CrossRef] [PubMed]

White, D. R.

D. R. White, H. Q. Woodard, and S. M. Hammond, “Average soft-tissue and bone models for use in radiation dosimetry,” Br. J. Radiol.60(717), 907–913 (1987).
[CrossRef] [PubMed]

H. Q. Woodard and D. R. White, “The composition of body tissues,” Br. J. Radiol.59(708), 1209–1218 (1986).
[CrossRef] [PubMed]

Wilson, C. B.

C. B. Wilson, A. A. Lammertsma, C. G. McKenzie, K. Sikora, and T. Jones, “Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: a rapid and noninvasive dynamic method,” Cancer Res.52(6), 1592–1597 (1992).
[PubMed]

Woodard, H. Q.

D. R. White, H. Q. Woodard, and S. M. Hammond, “Average soft-tissue and bone models for use in radiation dosimetry,” Br. J. Radiol.60(717), 907–913 (1987).
[CrossRef] [PubMed]

H. Q. Woodard and D. R. White, “The composition of body tissues,” Br. J. Radiol.59(708), 1209–1218 (1986).
[CrossRef] [PubMed]

Xu, R. X.

R. X. Xu, D. C. Young, J. J. Mao, and S. P. Povoski, “A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions,” Breast Cancer Res.9(6), R88 (2007).
[CrossRef] [PubMed]

Xu, Y.

Yaffe, M.

E. D. Pisano, C. Gatsonis, E. Hendrick, M. Yaffe, J. K. Baum, S. Acharyya, E. F. Conant, L. L. Fajardo, L. Bassett, C. D’Orsi, R. Jong, M. Rebner, and Digital Mammographic Imaging Screening Trial (DMIST) Investigators Group, “Diagnostic performance of digital versus film mammography for breast-cancer screening,” N. Engl. J. Med.353(17), 1773–1783 (2005).
[CrossRef] [PubMed]

Yalavarthy, P. K.

A. L. Darling, P. K. Yalavarthy, M. M. Doyley, H. Dehghani, and B. W. Pogue, “Interstitial fluid pressure in soft tissue as a result of an externally applied contact pressure,” Phys. Med. Biol.52(14), 4121–4136 (2007).
[CrossRef] [PubMed]

Yi, A.

J. M. Chang, I. A. Park, S. H. Lee, W. H. Kim, M. S. Bae, H. R. Koo, A. Yi, S. J. Kim, N. Cho, and W. K. Moon, “Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer,” Eur. Radiol.23(9), 2450–2458 (2013).
[CrossRef] [PubMed]

Young, D. C.

R. X. Xu, D. C. Young, J. J. Mao, and S. P. Povoski, “A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions,” Breast Cancer Res.9(6), R88 (2007).
[CrossRef] [PubMed]

Zhang, Q.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging28(1), 30–42 (2009).
[CrossRef] [PubMed]

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett.29(3), 256–258 (2004).
[CrossRef] [PubMed]

Zuley, M. L.

M. L. Zuley, A. I. Bandos, M. A. Ganott, J. H. Sumkin, A. E. Kelly, V. J. Catullo, G. Y. Rathfon, A. H. Lu, and D. Gur, “Digital breast tomosynthesis versus supplemental diagnostic mammographic views for evaluation of noncalcified breast lesions,” Radiology266(1), 89–95 (2013).
[CrossRef] [PubMed]

Ann. Biomed. Eng.

S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng.40(2), 398–407 (2012).
[CrossRef] [PubMed]

Appl. Opt.

Br. J. Radiol.

D. R. White, H. Q. Woodard, and S. M. Hammond, “Average soft-tissue and bone models for use in radiation dosimetry,” Br. J. Radiol.60(717), 907–913 (1987).
[CrossRef] [PubMed]

H. Q. Woodard and D. R. White, “The composition of body tissues,” Br. J. Radiol.59(708), 1209–1218 (1986).
[CrossRef] [PubMed]

Breast Cancer Res.

R. X. Xu, D. C. Young, J. J. Mao, and S. P. Povoski, “A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions,” Breast Cancer Res.9(6), R88 (2007).
[CrossRef] [PubMed]

Cancer Res.

C. B. Wilson, A. A. Lammertsma, C. G. McKenzie, K. Sikora, and T. Jones, “Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: a rapid and noninvasive dynamic method,” Cancer Res.52(6), 1592–1597 (1992).
[PubMed]

Eur. J. Radiol.

L. S. Fournier, D. Vanel, A. Athanasiou, W. Gatzemeier, I. V. Masuykov, A. R. Padhani, C. Dromain, K. Galetti, R. Sigal, A. Costa, and C. Balleyguier, “Dynamic optical breast imaging: a novel technique to detect and characterize tumor vessels,” Eur. J. Radiol.69(1), 43–49 (2009).
[CrossRef] [PubMed]

Eur. Radiol.

J. M. Chang, I. A. Park, S. H. Lee, W. H. Kim, M. S. Bae, H. R. Koo, A. Yi, S. J. Kim, N. Cho, and W. K. Moon, “Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer,” Eur. Radiol.23(9), 2450–2458 (2013).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

R. Choe and T. Durduran, “Diffuse Optical Monitoring of the Neoadjuvant Breast Cancer Therapy,” IEEE J. Sel. Top. Quantum Electron.18(4), 1367–1386 (2012).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging

K. D. Paulsen, P. M. Meaney, M. J. Moskowitz, and J. R. Sullivan, “A dual mesh scheme for finite element based reconstruction algorithms,” IEEE Trans. Med. Imaging14(3), 504–514 (1995).
[CrossRef] [PubMed]

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging28(1), 30–42 (2009).
[CrossRef] [PubMed]

Int. J. Cancer

A. A. Gilad, T. Israely, H. Dafni, G. Meir, B. Cohen, and M. Neeman, “Functional and molecular mapping of uncoupling between vascular permeability and loss of vascular maturation in ovarian carcinoma xenografts: the role of stroma cells in tumor angiogenesis,” Int. J. Cancer117(2), 202–211 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt.

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt.11(6), 064016 (2006).
[CrossRef] [PubMed]

M. L. Flexman, M. A. Khalil, R. Al Abdi, H. K. Kim, C. J. Fong, E. Desperito, D. L. Hershman, R. L. Barbour, and A. H. Hielscher, “Digital optical tomography system for dynamic breast imaging,” J. Biomed. Opt.16(7), 076014 (2011).
[CrossRef] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment f breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Lancet

R. P. Beaney, A. A. Lammertsma, T. Jones, C. G. McKenzie, and K. E. Halnan, “Positron emission tomography for in-vivo measurement of regional blood flow, oxygen utilisation, and blood volume in patients with breast carcinoma,” Lancet323(8369), 131–134 (1984).
[CrossRef] [PubMed]

Med. Phys.

M. Sridhar and M. F. Insana, “Ultrasonic measurements of breast viscoelasticity,” Med. Phys.34(12), 4757–4767 (2007).
[CrossRef] [PubMed]

N. Engl. J. Med.

E. D. Pisano, C. Gatsonis, E. Hendrick, M. Yaffe, J. K. Baum, S. Acharyya, E. F. Conant, L. L. Fajardo, L. Bassett, C. D’Orsi, R. Jong, M. Rebner, and Digital Mammographic Imaging Screening Trial (DMIST) Investigators Group, “Diagnostic performance of digital versus film mammography for breast-cancer screening,” N. Engl. J. Med.353(17), 1773–1783 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Philos Trans A Math Phys Eng. Sci.

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Philos Trans A Math Phys Eng. Sci.369, 4512–4530 (2011).

Phys. Med. Biol.

A. L. Darling, P. K. Yalavarthy, M. M. Doyley, H. Dehghani, and B. W. Pogue, “Interstitial fluid pressure in soft tissue as a result of an externally applied contact pressure,” Phys. Med. Biol.52(14), 4121–4136 (2007).
[CrossRef] [PubMed]

Radiology

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology258(1), 89–97 (2011).
[CrossRef] [PubMed]

M. L. Zuley, A. I. Bandos, M. A. Ganott, J. H. Sumkin, A. E. Kelly, V. J. Catullo, G. Y. Rathfon, A. H. Lu, and D. Gur, “Digital breast tomosynthesis versus supplemental diagnostic mammographic views for evaluation of noncalcified breast lesions,” Radiology266(1), 89–95 (2013).
[CrossRef] [PubMed]

Radiother. Oncol.

S. Dische, M. I. Saunders, R. Sealy, I. D. Werner, N. Verma, C. Foy, and S. M. Bentzen, “Carcinoma of the cervix and the use of hyperbaric oxygen with radiotherapy: a report of a randomised controlled trial,” Radiother. Oncol.53(2), 93–98 (1999).
[CrossRef] [PubMed]

Other

Cancer Facts & Figs. 2013 (American Cancer Society, Atlanta, 2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Dynamic optical imaging instrumentation (a) Dynamic optical imaging clinical cart. (b) Detail of compression mechanism; (c) Source and (d) detector fiber co-ordinates

Fig. 2
Fig. 2

Schematic of the measurement protocol. The Tekscan pressure mapping system acquires data continuously during the entire measurement session (for each breast), while each the FD system is used to capture absolute optical properties from 2 seconds before to 2 seconds after the compression is applied in each cycle, and also for 5 seconds at end of each cycle, just before compression is released. The CW imager acquires data for 120 seconds during the compression, from 2 seconds after the upper plate stopped moving until 5 seconds before compression is released.

Fig. 3
Fig. 3

(a) Maximum intensity projection of Gd-DTPA Dynamic Contrast Enhancement (DCE) MRI scan for both breasts of a 39 year old patient. MRI images show a 3.4x2.9x3.2 cm enhancing mass in the right breast at 12 o’clock; (b) Total hemoglobin concentration CC slice, half way between the compression plates, from the lesion breast of the same patient; (c) Corresponding total hemoglobin differential image (t = 60s).

Fig. 4
Fig. 4

Example dynamic measurements (a) strain gauge force data for the entire measurement on the tumor breast; gray areas highlight the three main compression periods; (b,c) HbT/SO2 variation vs. initial state for the tumor (solid) and healthy (dashed) ROIs over the three compression cycles (blue, green, red for cycles 1, 2, and 3)

Fig. 5
Fig. 5

Scatter plot of changes in (a) HbT and (b) SO2 in the tumor area vs. the surrounding normal tissue across the patient group (one symbol per patient) at t = 60 seconds into the first compression cycle.

Fig. 6
Fig. 6

Group averages of changes in HbT, HbO, HbR, and SO2, respectively, in the tumor (blue) and healthy (red) regions over the three compression cycles. Error bars (displayed only every 4th timepoint for clarity) show the standard error across the group.

Fig. 7
Fig. 7

ROC curve derived by setting a sliding ΔHbT threshold at t = 30s into cycle 1, to classify tissue type.

Fig. 8
Fig. 8

Hemodynamic response to partial compression release (tumor area in blue, normal tissue in red).

Tables (4)

Tables Icon

Table 1 Summary of Patient Characteristics

Tables Icon

Table 2 Summary of absolute optical properties of breast tissue across compression cycles

Tables Icon

Table 3 p-values for the statistical analysis of tumor vs. healthy contrast in absolute HbT/HbO/HbR/SO2

Tables Icon

Table 4 p-values for the statistical significance test of differential hemodynamics in lesions vs normal tissue. Significant values (p<0.05) are shown in bold font.

Metrics