Abstract

We demonstrate the feasibility of using the dominant frequency of the sample surface response to a mechanical stimulation as an effective indicator for sensing the depthwise distribution of elastic properties in transparent layered phantom samples simulating the cortex and nucleus of the crystalline lens. Focused ultrasound waves are used to noninvasively interrogate the sample surface. A phase-sensitive optical coherence tomography system is utilized to capture the surface dynamics over time with nanometer scale sensitivity. Spectral analysis is performed on the sample surface response to ultrasound stimulation and the dominant frequency is calculated under particular loading parameters. Pilot experiments were conducted on homogeneous and layered tissue-mimicking phantoms. Results indicate that the mechanical layers located at different depths introduce different frequencies to the sample surface response, which are correlated with the depth-dependent elasticity of the sample. The duration and the frequency of the ultrasound excitation are also investigated for their influences on this spectrum-based detection. This noninvasive method may be potentially applied for localized and rapid assessment of the depth dependence of the mechanical properties of the crystalline lens.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Atchison, “Accommodation and presbyopia,” Ophthalmic Physiol. Opt.15(4), 255–272 (1995).
    [CrossRef] [PubMed]
  2. H. A. Weeber and R. G. van der Heijde, “On the relationship between lens stiffness and accommodative amplitude,” Exp. Eye Res.85(5), 602–607 (2007).
    [CrossRef] [PubMed]
  3. H. A. Weeber, G. Eckert, W. Pechhold, and R. G. Heijde, “Stiffness gradient in the crystalline lens,” Graefes Arch. Clin. Exp. Ophthalmol.245(9), 1357–1366 (2007).
    [CrossRef] [PubMed]
  4. K. R. Heys, S. L. Cram, and R. J. Truscott, “Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia?” Mol. Vis.10, 956–963 (2004).
    [PubMed]
  5. J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging13(2), 111–134 (1991).
    [PubMed]
  6. A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol.24(9), 1419–1435 (1998).
    [CrossRef] [PubMed]
  7. J. Bercoff, M. Tanter, and M. Fink, “Supersonic shear imaging: a new technique for soft tissue elasticity mapping,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control51(4), 396–409 (2004).
    [CrossRef] [PubMed]
  8. S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force,” Phys. Med. Biol.57(15), 4871–4884 (2012).
    [CrossRef] [PubMed]
  9. S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “The mechanical properties of ex vivo bovine and porcine crystalline lenses: age-related changes and location-dependent variations,” Ultrasound Med. Biol.39(6), 1120–1127 (2013).
    [CrossRef] [PubMed]
  10. K. W. Hollman, M. O’Donnell, and T. N. Erpelding, “Mapping elasticity in human lenses using bubble-based acoustic radiation force,” Exp. Eye Res.85(6), 890–893 (2007).
    [CrossRef] [PubMed]
  11. S. T. Bailey, M. D. Twa, J. C. Gump, M. Venkiteshwar, M. A. Bullimore, and R. Sooryakumar, “Light-scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng.57(12), 2910–2917 (2010).
    [CrossRef] [PubMed]
  12. S. Reiß, G. Burau, O. Stachs, R. Guthoff, and H. Stolz, “Spatially resolved Brillouin spectroscopy to determine the rheological properties of the eye lens,” Biomed. Opt. Express2(8), 2144–2159 (2011).
    [CrossRef] [PubMed]
  13. G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J.101(6), 1539–1545 (2011).
    [CrossRef] [PubMed]
  14. G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express20(8), 9197–9202 (2012).
    [CrossRef] [PubMed]
  15. B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express19(7), 6623–6634 (2011).
    [CrossRef] [PubMed]
  16. C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett.37(4), 722–724 (2012).
    [CrossRef] [PubMed]
  17. X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express16(15), 11052–11065 (2008).
    [CrossRef] [PubMed]
  18. C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011).
    [CrossRef] [PubMed]
  19. R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett.90(16), 164105 (2007).
    [CrossRef]
  20. R. Manapuram, S. Aglyamov, F. M. Menodiado, M. Mashiatulla, S. Wang, S. A. Baranov, J. Li, S. Emelianov, and K. V. Larin, “Estimation of shear wave velocity in gelatin phantoms utilizing PhS-SSOCT,” Laser Phys.22(9), 1439–1444 (2012).
    [CrossRef]
  21. R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt.17(10), 100501 (2012).
    [CrossRef] [PubMed]
  22. R. K. Manapuram, S. A. Baranov, V. G. R. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. V. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett.8(2), 164–168 (2011).
    [CrossRef]
  23. S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express18(25), 25519–25534 (2010).
    [CrossRef] [PubMed]
  24. S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett.37(24), 5184–5186 (2012).
    [CrossRef] [PubMed]
  25. C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett.37(10), 1625–1627 (2012).
    [CrossRef] [PubMed]
  26. W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt.17(11), 110505 (2012).
    [CrossRef] [PubMed]
  27. S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol.54(10), 3129–3139 (2009).
    [CrossRef] [PubMed]
  28. X. Liang and S. A. Boppart, “Biomechanical properties of In vivo human skin from dynamic optical coherence elastography,’’ IEEE Trans. Biomed. Eng.57, 953–959 (2010).
  29. E. F. Carbajal, S. A. Baranov, V. G. R. Manne, E. D. Young, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Revealing retroperitoneal liposarcoma morphology using optical coherence tomography,” J. Biomed. Opt.16(2), 020502 (2011).
    [CrossRef] [PubMed]
  30. S. Wang, T. Sherlock, B. Salazar, N. Sudheendran, R. K. Manapuram, K. Kourentzi, P. Ruchhoeft, R. C. Willson, and K. V. Larin, “Detection and Monitoring of Microparticles Under Skin by Optical Coherence Tomography as an Approach to Continuous Glucose Sensing Using Implanted Retroreflectors,” IEEE Sens. J.13(11), 4534–4541 (2013).
    [CrossRef]
  31. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett.30(10), 1162–1164 (2005).
    [CrossRef] [PubMed]
  32. R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Phase-sensitive swept source optical coherence tomography for imaging and quantifying of microbubbles in clear and scattering media,” J. Appl. Phys.105(10), 102040 (2009).
    [CrossRef]
  33. V. Crecea, A. L. Oldenburg, X. Liang, T. S. Ralston, and S. A. Boppart, “Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials,” Opt. Express17(25), 23114–23122 (2009).
    [CrossRef] [PubMed]
  34. S. R. Aglyamov, A. B. Karpiouk, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Motion of a solid sphere in a viscoelastic medium in response to applied acoustic radiation force: Theoretical analysis and experimental verification,” J. Acoust. Soc. Am.122(4), 1927–1936 (2007).
    [CrossRef] [PubMed]
  35. R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-resolution photoacoustic imaging of ocular tissues,” Ultrasound Med. Biol.36(5), 733–742 (2010).
    [CrossRef] [PubMed]
  36. F. A. Duck, “Medical and non-medical protection standards for ultrasound and infrasound,” Prog. Biophys. Mol. Biol.93(1-3), 176–191 (2007).
    [CrossRef] [PubMed]
  37. S. Aglyamov, S. Wang, A. Karpiouk, J. Li, M. Twa, S. Emelianov, and K. V. Larin, “Assessment of the depth-dependence of the mechanical parameters of a layered medium using surface excitation and motion measurements on the surface,” in Proceedings of IEEE International Ultrasonics Symposium (2013), in print.
  38. C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface9(70), 831–841 (2012).
    [PubMed]
  39. C. Li, Z. Huang, and R. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt. Express19(11), 10153–10163 (2011).
    [CrossRef] [PubMed]
  40. W. Qi, R. Li, T. Ma, J. Li, K. Kirk Shung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett.103(10), 103704 (2013).
    [CrossRef] [PubMed]
  41. M. Razani, A. Mariampillai, C. Sun, T. W. H. Luk, V. X. D. Yang, and M. C. Kolios, “Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms,” Biomed. Opt. Express3(5), 972–980 (2012).
    [CrossRef] [PubMed]
  42. S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett.10(7), 075605 (2013).
    [CrossRef]
  43. X. Liang, M. Orescanin, K. S. Toohey, M. F. Insana, and S. A. Boppart, “Acoustomotive optical coherence elastography for measuring material mechanical properties,” Opt. Lett.34(19), 2894–2896 (2009).
    [CrossRef] [PubMed]

2013 (4)

S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “The mechanical properties of ex vivo bovine and porcine crystalline lenses: age-related changes and location-dependent variations,” Ultrasound Med. Biol.39(6), 1120–1127 (2013).
[CrossRef] [PubMed]

S. Wang, T. Sherlock, B. Salazar, N. Sudheendran, R. K. Manapuram, K. Kourentzi, P. Ruchhoeft, R. C. Willson, and K. V. Larin, “Detection and Monitoring of Microparticles Under Skin by Optical Coherence Tomography as an Approach to Continuous Glucose Sensing Using Implanted Retroreflectors,” IEEE Sens. J.13(11), 4534–4541 (2013).
[CrossRef]

W. Qi, R. Li, T. Ma, J. Li, K. Kirk Shung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett.103(10), 103704 (2013).
[CrossRef] [PubMed]

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett.10(7), 075605 (2013).
[CrossRef]

2012 (10)

M. Razani, A. Mariampillai, C. Sun, T. W. H. Luk, V. X. D. Yang, and M. C. Kolios, “Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms,” Biomed. Opt. Express3(5), 972–980 (2012).
[CrossRef] [PubMed]

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface9(70), 831–841 (2012).
[PubMed]

R. Manapuram, S. Aglyamov, F. M. Menodiado, M. Mashiatulla, S. Wang, S. A. Baranov, J. Li, S. Emelianov, and K. V. Larin, “Estimation of shear wave velocity in gelatin phantoms utilizing PhS-SSOCT,” Laser Phys.22(9), 1439–1444 (2012).
[CrossRef]

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt.17(10), 100501 (2012).
[CrossRef] [PubMed]

S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett.37(24), 5184–5186 (2012).
[CrossRef] [PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett.37(10), 1625–1627 (2012).
[CrossRef] [PubMed]

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt.17(11), 110505 (2012).
[CrossRef] [PubMed]

G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express20(8), 9197–9202 (2012).
[CrossRef] [PubMed]

C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett.37(4), 722–724 (2012).
[CrossRef] [PubMed]

S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force,” Phys. Med. Biol.57(15), 4871–4884 (2012).
[CrossRef] [PubMed]

2011 (7)

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express19(7), 6623–6634 (2011).
[CrossRef] [PubMed]

S. Reiß, G. Burau, O. Stachs, R. Guthoff, and H. Stolz, “Spatially resolved Brillouin spectroscopy to determine the rheological properties of the eye lens,” Biomed. Opt. Express2(8), 2144–2159 (2011).
[CrossRef] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J.101(6), 1539–1545 (2011).
[CrossRef] [PubMed]

R. K. Manapuram, S. A. Baranov, V. G. R. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. V. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett.8(2), 164–168 (2011).
[CrossRef]

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011).
[CrossRef] [PubMed]

C. Li, Z. Huang, and R. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt. Express19(11), 10153–10163 (2011).
[CrossRef] [PubMed]

E. F. Carbajal, S. A. Baranov, V. G. R. Manne, E. D. Young, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Revealing retroperitoneal liposarcoma morphology using optical coherence tomography,” J. Biomed. Opt.16(2), 020502 (2011).
[CrossRef] [PubMed]

2010 (4)

R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-resolution photoacoustic imaging of ocular tissues,” Ultrasound Med. Biol.36(5), 733–742 (2010).
[CrossRef] [PubMed]

S. T. Bailey, M. D. Twa, J. C. Gump, M. Venkiteshwar, M. A. Bullimore, and R. Sooryakumar, “Light-scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng.57(12), 2910–2917 (2010).
[CrossRef] [PubMed]

X. Liang and S. A. Boppart, “Biomechanical properties of In vivo human skin from dynamic optical coherence elastography,’’ IEEE Trans. Biomed. Eng.57, 953–959 (2010).

S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express18(25), 25519–25534 (2010).
[CrossRef] [PubMed]

2009 (4)

S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol.54(10), 3129–3139 (2009).
[CrossRef] [PubMed]

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Phase-sensitive swept source optical coherence tomography for imaging and quantifying of microbubbles in clear and scattering media,” J. Appl. Phys.105(10), 102040 (2009).
[CrossRef]

V. Crecea, A. L. Oldenburg, X. Liang, T. S. Ralston, and S. A. Boppart, “Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials,” Opt. Express17(25), 23114–23122 (2009).
[CrossRef] [PubMed]

X. Liang, M. Orescanin, K. S. Toohey, M. F. Insana, and S. A. Boppart, “Acoustomotive optical coherence elastography for measuring material mechanical properties,” Opt. Lett.34(19), 2894–2896 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (6)

K. W. Hollman, M. O’Donnell, and T. N. Erpelding, “Mapping elasticity in human lenses using bubble-based acoustic radiation force,” Exp. Eye Res.85(6), 890–893 (2007).
[CrossRef] [PubMed]

H. A. Weeber and R. G. van der Heijde, “On the relationship between lens stiffness and accommodative amplitude,” Exp. Eye Res.85(5), 602–607 (2007).
[CrossRef] [PubMed]

H. A. Weeber, G. Eckert, W. Pechhold, and R. G. Heijde, “Stiffness gradient in the crystalline lens,” Graefes Arch. Clin. Exp. Ophthalmol.245(9), 1357–1366 (2007).
[CrossRef] [PubMed]

S. R. Aglyamov, A. B. Karpiouk, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Motion of a solid sphere in a viscoelastic medium in response to applied acoustic radiation force: Theoretical analysis and experimental verification,” J. Acoust. Soc. Am.122(4), 1927–1936 (2007).
[CrossRef] [PubMed]

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett.90(16), 164105 (2007).
[CrossRef]

F. A. Duck, “Medical and non-medical protection standards for ultrasound and infrasound,” Prog. Biophys. Mol. Biol.93(1-3), 176–191 (2007).
[CrossRef] [PubMed]

2005 (1)

2004 (2)

K. R. Heys, S. L. Cram, and R. J. Truscott, “Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia?” Mol. Vis.10, 956–963 (2004).
[PubMed]

J. Bercoff, M. Tanter, and M. Fink, “Supersonic shear imaging: a new technique for soft tissue elasticity mapping,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control51(4), 396–409 (2004).
[CrossRef] [PubMed]

1998 (1)

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol.24(9), 1419–1435 (1998).
[CrossRef] [PubMed]

1995 (1)

D. A. Atchison, “Accommodation and presbyopia,” Ophthalmic Physiol. Opt.15(4), 255–272 (1995).
[CrossRef] [PubMed]

1991 (1)

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging13(2), 111–134 (1991).
[PubMed]

Adie, S. G.

Aglyamov, S.

S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “The mechanical properties of ex vivo bovine and porcine crystalline lenses: age-related changes and location-dependent variations,” Ultrasound Med. Biol.39(6), 1120–1127 (2013).
[CrossRef] [PubMed]

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett.10(7), 075605 (2013).
[CrossRef]

S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force,” Phys. Med. Biol.57(15), 4871–4884 (2012).
[CrossRef] [PubMed]

R. Manapuram, S. Aglyamov, F. M. Menodiado, M. Mashiatulla, S. Wang, S. A. Baranov, J. Li, S. Emelianov, and K. V. Larin, “Estimation of shear wave velocity in gelatin phantoms utilizing PhS-SSOCT,” Laser Phys.22(9), 1439–1444 (2012).
[CrossRef]

R. K. Manapuram, S. A. Baranov, V. G. R. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. V. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett.8(2), 164–168 (2011).
[CrossRef]

S. Aglyamov, S. Wang, A. Karpiouk, J. Li, M. Twa, S. Emelianov, and K. V. Larin, “Assessment of the depth-dependence of the mechanical parameters of a layered medium using surface excitation and motion measurements on the surface,” in Proceedings of IEEE International Ultrasonics Symposium (2013), in print.

Aglyamov, S. R.

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt.17(10), 100501 (2012).
[CrossRef] [PubMed]

S. R. Aglyamov, A. B. Karpiouk, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Motion of a solid sphere in a viscoelastic medium in response to applied acoustic radiation force: Theoretical analysis and experimental verification,” J. Acoust. Soc. Am.122(4), 1927–1936 (2007).
[CrossRef] [PubMed]

Alexandrov, S. A.

S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol.54(10), 3129–3139 (2009).
[CrossRef] [PubMed]

Armstrong, J. J.

S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol.54(10), 3129–3139 (2009).
[CrossRef] [PubMed]

Atchison, D. A.

D. A. Atchison, “Accommodation and presbyopia,” Ophthalmic Physiol. Opt.15(4), 255–272 (1995).
[CrossRef] [PubMed]

Bailey, S. T.

S. T. Bailey, M. D. Twa, J. C. Gump, M. Venkiteshwar, M. A. Bullimore, and R. Sooryakumar, “Light-scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng.57(12), 2910–2917 (2010).
[CrossRef] [PubMed]

Baranov, S. A.

R. Manapuram, S. Aglyamov, F. M. Menodiado, M. Mashiatulla, S. Wang, S. A. Baranov, J. Li, S. Emelianov, and K. V. Larin, “Estimation of shear wave velocity in gelatin phantoms utilizing PhS-SSOCT,” Laser Phys.22(9), 1439–1444 (2012).
[CrossRef]

R. K. Manapuram, S. A. Baranov, V. G. R. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. V. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett.8(2), 164–168 (2011).
[CrossRef]

E. F. Carbajal, S. A. Baranov, V. G. R. Manne, E. D. Young, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Revealing retroperitoneal liposarcoma morphology using optical coherence tomography,” J. Biomed. Opt.16(2), 020502 (2011).
[CrossRef] [PubMed]

Bercoff, J.

J. Bercoff, M. Tanter, and M. Fink, “Supersonic shear imaging: a new technique for soft tissue elasticity mapping,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control51(4), 396–409 (2004).
[CrossRef] [PubMed]

Boppart, S. A.

Bullimore, M. A.

S. T. Bailey, M. D. Twa, J. C. Gump, M. Venkiteshwar, M. A. Bullimore, and R. Sooryakumar, “Light-scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng.57(12), 2910–2917 (2010).
[CrossRef] [PubMed]

Burau, G.

Cannata, J. M.

R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-resolution photoacoustic imaging of ocular tissues,” Ultrasound Med. Biol.36(5), 733–742 (2010).
[CrossRef] [PubMed]

Carbajal, E. F.

E. F. Carbajal, S. A. Baranov, V. G. R. Manne, E. D. Young, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Revealing retroperitoneal liposarcoma morphology using optical coherence tomography,” J. Biomed. Opt.16(2), 020502 (2011).
[CrossRef] [PubMed]

Céspedes, I.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging13(2), 111–134 (1991).
[PubMed]

Chaney, E. J.

Chen, R.

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt.17(11), 110505 (2012).
[CrossRef] [PubMed]

Chen, Y. C.

R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-resolution photoacoustic imaging of ocular tissues,” Ultrasound Med. Biol.36(5), 733–742 (2010).
[CrossRef] [PubMed]

Chen, Z.

W. Qi, R. Li, T. Ma, J. Li, K. Kirk Shung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett.103(10), 103704 (2013).
[CrossRef] [PubMed]

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt.17(11), 110505 (2012).
[CrossRef] [PubMed]

Cheng, X.

Choma, M. A.

Chou, L.

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt.17(11), 110505 (2012).
[CrossRef] [PubMed]

Coleman, D. J.

R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-resolution photoacoustic imaging of ocular tissues,” Ultrasound Med. Biol.36(5), 733–742 (2010).
[CrossRef] [PubMed]

Cram, S. L.

K. R. Heys, S. L. Cram, and R. J. Truscott, “Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia?” Mol. Vis.10, 956–963 (2004).
[PubMed]

Creazzo, T. L.

Crecea, V.

Duck, F. A.

F. A. Duck, “Medical and non-medical protection standards for ultrasound and infrasound,” Prog. Biophys. Mol. Biol.93(1-3), 176–191 (2007).
[CrossRef] [PubMed]

Eckert, G.

H. A. Weeber, G. Eckert, W. Pechhold, and R. G. Heijde, “Stiffness gradient in the crystalline lens,” Graefes Arch. Clin. Exp. Ophthalmol.245(9), 1357–1366 (2007).
[CrossRef] [PubMed]

Ellerbee, A. K.

Emelianov, S.

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett.10(7), 075605 (2013).
[CrossRef]

S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “The mechanical properties of ex vivo bovine and porcine crystalline lenses: age-related changes and location-dependent variations,” Ultrasound Med. Biol.39(6), 1120–1127 (2013).
[CrossRef] [PubMed]

S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force,” Phys. Med. Biol.57(15), 4871–4884 (2012).
[CrossRef] [PubMed]

R. Manapuram, S. Aglyamov, F. M. Menodiado, M. Mashiatulla, S. Wang, S. A. Baranov, J. Li, S. Emelianov, and K. V. Larin, “Estimation of shear wave velocity in gelatin phantoms utilizing PhS-SSOCT,” Laser Phys.22(9), 1439–1444 (2012).
[CrossRef]

R. K. Manapuram, S. A. Baranov, V. G. R. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. V. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett.8(2), 164–168 (2011).
[CrossRef]

S. Aglyamov, S. Wang, A. Karpiouk, J. Li, M. Twa, S. Emelianov, and K. V. Larin, “Assessment of the depth-dependence of the mechanical parameters of a layered medium using surface excitation and motion measurements on the surface,” in Proceedings of IEEE International Ultrasonics Symposium (2013), in print.

Emelianov, S. Y.

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt.17(10), 100501 (2012).
[CrossRef] [PubMed]

S. R. Aglyamov, A. B. Karpiouk, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Motion of a solid sphere in a viscoelastic medium in response to applied acoustic radiation force: Theoretical analysis and experimental verification,” J. Acoust. Soc. Am.122(4), 1927–1936 (2007).
[CrossRef] [PubMed]

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol.24(9), 1419–1435 (1998).
[CrossRef] [PubMed]

Erpelding, T. N.

K. W. Hollman, M. O’Donnell, and T. N. Erpelding, “Mapping elasticity in human lenses using bubble-based acoustic radiation force,” Exp. Eye Res.85(6), 890–893 (2007).
[CrossRef] [PubMed]

Fink, M.

J. Bercoff, M. Tanter, and M. Fink, “Supersonic shear imaging: a new technique for soft tissue elasticity mapping,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control51(4), 396–409 (2004).
[CrossRef] [PubMed]

Fowlkes, J. B.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol.24(9), 1419–1435 (1998).
[CrossRef] [PubMed]

Gerstmann, D. K.

Guan, G.

Gump, J. C.

S. T. Bailey, M. D. Twa, J. C. Gump, M. Venkiteshwar, M. A. Bullimore, and R. Sooryakumar, “Light-scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng.57(12), 2910–2917 (2010).
[CrossRef] [PubMed]

Guthoff, R.

Heijde, R. G.

H. A. Weeber, G. Eckert, W. Pechhold, and R. G. Heijde, “Stiffness gradient in the crystalline lens,” Graefes Arch. Clin. Exp. Ophthalmol.245(9), 1357–1366 (2007).
[CrossRef] [PubMed]

Heys, K. R.

K. R. Heys, S. L. Cram, and R. J. Truscott, “Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia?” Mol. Vis.10, 956–963 (2004).
[PubMed]

Hinds, M.

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett.90(16), 164105 (2007).
[CrossRef]

Hollman, K. W.

K. W. Hollman, M. O’Donnell, and T. N. Erpelding, “Mapping elasticity in human lenses using bubble-based acoustic radiation force,” Exp. Eye Res.85(6), 890–893 (2007).
[CrossRef] [PubMed]

Huang, Z.

Ilinskii, Y. A.

S. R. Aglyamov, A. B. Karpiouk, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Motion of a solid sphere in a viscoelastic medium in response to applied acoustic radiation force: Theoretical analysis and experimental verification,” J. Acoust. Soc. Am.122(4), 1927–1936 (2007).
[CrossRef] [PubMed]

Ingram, D. R.

Insana, M. F.

Izatt, J. A.

John, R.

Johnstone, M.

Karpiouk, A.

S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “The mechanical properties of ex vivo bovine and porcine crystalline lenses: age-related changes and location-dependent variations,” Ultrasound Med. Biol.39(6), 1120–1127 (2013).
[CrossRef] [PubMed]

S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force,” Phys. Med. Biol.57(15), 4871–4884 (2012).
[CrossRef] [PubMed]

S. Aglyamov, S. Wang, A. Karpiouk, J. Li, M. Twa, S. Emelianov, and K. V. Larin, “Assessment of the depth-dependence of the mechanical parameters of a layered medium using surface excitation and motion measurements on the surface,” in Proceedings of IEEE International Ultrasonics Symposium (2013), in print.

Karpiouk, A. B.

S. R. Aglyamov, A. B. Karpiouk, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Motion of a solid sphere in a viscoelastic medium in response to applied acoustic radiation force: Theoretical analysis and experimental verification,” J. Acoust. Soc. Am.122(4), 1927–1936 (2007).
[CrossRef] [PubMed]

Kennedy, B. F.

Kim, H. H.

R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-resolution photoacoustic imaging of ocular tissues,” Ultrasound Med. Biol.36(5), 733–742 (2010).
[CrossRef] [PubMed]

Kim, P.

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J.101(6), 1539–1545 (2011).
[CrossRef] [PubMed]

Kirk Shung, K.

W. Qi, R. Li, T. Ma, J. Li, K. Kirk Shung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett.103(10), 103704 (2013).
[CrossRef] [PubMed]

Kirkpatrick, S.

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett.90(16), 164105 (2007).
[CrossRef]

Kolios, M. C.

Kong, F.

R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-resolution photoacoustic imaging of ocular tissues,” Ultrasound Med. Biol.36(5), 733–742 (2010).
[CrossRef] [PubMed]

Kourentzi, K.

S. Wang, T. Sherlock, B. Salazar, N. Sudheendran, R. K. Manapuram, K. Kourentzi, P. Ruchhoeft, R. C. Willson, and K. V. Larin, “Detection and Monitoring of Microparticles Under Skin by Optical Coherence Tomography as an Approach to Continuous Glucose Sensing Using Implanted Retroreflectors,” IEEE Sens. J.13(11), 4534–4541 (2013).
[CrossRef]

Larin, K. V.

S. Wang, T. Sherlock, B. Salazar, N. Sudheendran, R. K. Manapuram, K. Kourentzi, P. Ruchhoeft, R. C. Willson, and K. V. Larin, “Detection and Monitoring of Microparticles Under Skin by Optical Coherence Tomography as an Approach to Continuous Glucose Sensing Using Implanted Retroreflectors,” IEEE Sens. J.13(11), 4534–4541 (2013).
[CrossRef]

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett.10(7), 075605 (2013).
[CrossRef]

R. Manapuram, S. Aglyamov, F. M. Menodiado, M. Mashiatulla, S. Wang, S. A. Baranov, J. Li, S. Emelianov, and K. V. Larin, “Estimation of shear wave velocity in gelatin phantoms utilizing PhS-SSOCT,” Laser Phys.22(9), 1439–1444 (2012).
[CrossRef]

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt.17(10), 100501 (2012).
[CrossRef] [PubMed]

S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett.37(24), 5184–5186 (2012).
[CrossRef] [PubMed]

E. F. Carbajal, S. A. Baranov, V. G. R. Manne, E. D. Young, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Revealing retroperitoneal liposarcoma morphology using optical coherence tomography,” J. Biomed. Opt.16(2), 020502 (2011).
[CrossRef] [PubMed]

R. K. Manapuram, S. A. Baranov, V. G. R. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. V. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett.8(2), 164–168 (2011).
[CrossRef]

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Phase-sensitive swept source optical coherence tomography for imaging and quantifying of microbubbles in clear and scattering media,” J. Appl. Phys.105(10), 102040 (2009).
[CrossRef]

S. Aglyamov, S. Wang, A. Karpiouk, J. Li, M. Twa, S. Emelianov, and K. V. Larin, “Assessment of the depth-dependence of the mechanical parameters of a layered medium using surface excitation and motion measurements on the surface,” in Proceedings of IEEE International Ultrasonics Symposium (2013), in print.

Lazar, A. J.

Lev, D. C.

Li, C.

Li, J.

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett.10(7), 075605 (2013).
[CrossRef]

W. Qi, R. Li, T. Ma, J. Li, K. Kirk Shung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett.103(10), 103704 (2013).
[CrossRef] [PubMed]

S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett.37(24), 5184–5186 (2012).
[CrossRef] [PubMed]

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt.17(10), 100501 (2012).
[CrossRef] [PubMed]

R. Manapuram, S. Aglyamov, F. M. Menodiado, M. Mashiatulla, S. Wang, S. A. Baranov, J. Li, S. Emelianov, and K. V. Larin, “Estimation of shear wave velocity in gelatin phantoms utilizing PhS-SSOCT,” Laser Phys.22(9), 1439–1444 (2012).
[CrossRef]

S. Aglyamov, S. Wang, A. Karpiouk, J. Li, M. Twa, S. Emelianov, and K. V. Larin, “Assessment of the depth-dependence of the mechanical parameters of a layered medium using surface excitation and motion measurements on the surface,” in Proceedings of IEEE International Ultrasonics Symposium (2013), in print.

Li, R.

W. Qi, R. Li, T. Ma, J. Li, K. Kirk Shung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett.103(10), 103704 (2013).
[CrossRef] [PubMed]

Li, X.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging13(2), 111–134 (1991).
[PubMed]

Liang, X.

Liu, G.

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt.17(11), 110505 (2012).
[CrossRef] [PubMed]

Lloyd, H. O.

R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-resolution photoacoustic imaging of ocular tissues,” Ultrasound Med. Biol.36(5), 733–742 (2010).
[CrossRef] [PubMed]

Luk, T. W. H.

Ma, T.

W. Qi, R. Li, T. Ma, J. Li, K. Kirk Shung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett.103(10), 103704 (2013).
[CrossRef] [PubMed]

Manapuram, R.

R. Manapuram, S. Aglyamov, F. M. Menodiado, M. Mashiatulla, S. Wang, S. A. Baranov, J. Li, S. Emelianov, and K. V. Larin, “Estimation of shear wave velocity in gelatin phantoms utilizing PhS-SSOCT,” Laser Phys.22(9), 1439–1444 (2012).
[CrossRef]

Manapuram, R. K.

S. Wang, T. Sherlock, B. Salazar, N. Sudheendran, R. K. Manapuram, K. Kourentzi, P. Ruchhoeft, R. C. Willson, and K. V. Larin, “Detection and Monitoring of Microparticles Under Skin by Optical Coherence Tomography as an Approach to Continuous Glucose Sensing Using Implanted Retroreflectors,” IEEE Sens. J.13(11), 4534–4541 (2013).
[CrossRef]

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett.10(7), 075605 (2013).
[CrossRef]

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt.17(10), 100501 (2012).
[CrossRef] [PubMed]

S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett.37(24), 5184–5186 (2012).
[CrossRef] [PubMed]

R. K. Manapuram, S. A. Baranov, V. G. R. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. V. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett.8(2), 164–168 (2011).
[CrossRef]

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Phase-sensitive swept source optical coherence tomography for imaging and quantifying of microbubbles in clear and scattering media,” J. Appl. Phys.105(10), 102040 (2009).
[CrossRef]

Manne, V. G. R.

R. K. Manapuram, S. A. Baranov, V. G. R. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. V. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett.8(2), 164–168 (2011).
[CrossRef]

E. F. Carbajal, S. A. Baranov, V. G. R. Manne, E. D. Young, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Revealing retroperitoneal liposarcoma morphology using optical coherence tomography,” J. Biomed. Opt.16(2), 020502 (2011).
[CrossRef] [PubMed]

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Phase-sensitive swept source optical coherence tomography for imaging and quantifying of microbubbles in clear and scattering media,” J. Appl. Phys.105(10), 102040 (2009).
[CrossRef]

Mariampillai, A.

Mashiatulla, M.

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt.17(10), 100501 (2012).
[CrossRef] [PubMed]

R. Manapuram, S. Aglyamov, F. M. Menodiado, M. Mashiatulla, S. Wang, S. A. Baranov, J. Li, S. Emelianov, and K. V. Larin, “Estimation of shear wave velocity in gelatin phantoms utilizing PhS-SSOCT,” Laser Phys.22(9), 1439–1444 (2012).
[CrossRef]

R. K. Manapuram, S. A. Baranov, V. G. R. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. V. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett.8(2), 164–168 (2011).
[CrossRef]

Menodiado, F. M.

Monediado, F. M.

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt.17(10), 100501 (2012).
[CrossRef] [PubMed]

O’Donnell, M.

K. W. Hollman, M. O’Donnell, and T. N. Erpelding, “Mapping elasticity in human lenses using bubble-based acoustic radiation force,” Exp. Eye Res.85(6), 890–893 (2007).
[CrossRef] [PubMed]

Oldenburg, A. L.

Ophir, J.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging13(2), 111–134 (1991).
[PubMed]

Orescanin, M.

Pechhold, W.

H. A. Weeber, G. Eckert, W. Pechhold, and R. G. Heijde, “Stiffness gradient in the crystalline lens,” Graefes Arch. Clin. Exp. Ophthalmol.245(9), 1357–1366 (2007).
[CrossRef] [PubMed]

Pollock, R. E.

Ponnekanti, H.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging13(2), 111–134 (1991).
[PubMed]

Qi, W.

W. Qi, R. Li, T. Ma, J. Li, K. Kirk Shung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett.103(10), 103704 (2013).
[CrossRef] [PubMed]

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt.17(11), 110505 (2012).
[CrossRef] [PubMed]

Quirk, B. C.

Ralston, T. S.

Razani, M.

Reif, R.

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface9(70), 831–841 (2012).
[PubMed]

Reiß, S.

Ruchhoeft, P.

S. Wang, T. Sherlock, B. Salazar, N. Sudheendran, R. K. Manapuram, K. Kourentzi, P. Ruchhoeft, R. C. Willson, and K. V. Larin, “Detection and Monitoring of Microparticles Under Skin by Optical Coherence Tomography as an Approach to Continuous Glucose Sensing Using Implanted Retroreflectors,” IEEE Sens. J.13(11), 4534–4541 (2013).
[CrossRef]

Rudenko, O. V.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol.24(9), 1419–1435 (1998).
[CrossRef] [PubMed]

Salazar, B.

S. Wang, T. Sherlock, B. Salazar, N. Sudheendran, R. K. Manapuram, K. Kourentzi, P. Ruchhoeft, R. C. Willson, and K. V. Larin, “Detection and Monitoring of Microparticles Under Skin by Optical Coherence Tomography as an Approach to Continuous Glucose Sensing Using Implanted Retroreflectors,” IEEE Sens. J.13(11), 4534–4541 (2013).
[CrossRef]

Sampson, D. D.

Sarvazyan, A. P.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol.24(9), 1419–1435 (1998).
[CrossRef] [PubMed]

Scarcelli, G.

G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express20(8), 9197–9202 (2012).
[CrossRef] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J.101(6), 1539–1545 (2011).
[CrossRef] [PubMed]

Sherlock, T.

S. Wang, T. Sherlock, B. Salazar, N. Sudheendran, R. K. Manapuram, K. Kourentzi, P. Ruchhoeft, R. C. Willson, and K. V. Larin, “Detection and Monitoring of Microparticles Under Skin by Optical Coherence Tomography as an Approach to Continuous Glucose Sensing Using Implanted Retroreflectors,” IEEE Sens. J.13(11), 4534–4541 (2013).
[CrossRef]

Shung, K. K.

R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-resolution photoacoustic imaging of ocular tissues,” Ultrasound Med. Biol.36(5), 733–742 (2010).
[CrossRef] [PubMed]

Silverman, R. H.

R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-resolution photoacoustic imaging of ocular tissues,” Ultrasound Med. Biol.36(5), 733–742 (2010).
[CrossRef] [PubMed]

Sooryakumar, R.

S. T. Bailey, M. D. Twa, J. C. Gump, M. Venkiteshwar, M. A. Bullimore, and R. Sooryakumar, “Light-scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng.57(12), 2910–2917 (2010).
[CrossRef] [PubMed]

Stachs, O.

Standish, B.

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011).
[CrossRef] [PubMed]

Stolz, H.

Sudheendran, N.

S. Wang, T. Sherlock, B. Salazar, N. Sudheendran, R. K. Manapuram, K. Kourentzi, P. Ruchhoeft, R. C. Willson, and K. V. Larin, “Detection and Monitoring of Microparticles Under Skin by Optical Coherence Tomography as an Approach to Continuous Glucose Sensing Using Implanted Retroreflectors,” IEEE Sens. J.13(11), 4534–4541 (2013).
[CrossRef]

R. K. Manapuram, S. A. Baranov, V. G. R. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. V. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett.8(2), 164–168 (2011).
[CrossRef]

Sun, C.

Swanson, S. D.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol.24(9), 1419–1435 (1998).
[CrossRef] [PubMed]

Tanter, M.

J. Bercoff, M. Tanter, and M. Fink, “Supersonic shear imaging: a new technique for soft tissue elasticity mapping,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control51(4), 396–409 (2004).
[CrossRef] [PubMed]

Toohey, K. S.

Truscott, R. J.

K. R. Heys, S. L. Cram, and R. J. Truscott, “Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia?” Mol. Vis.10, 956–963 (2004).
[PubMed]

Twa, M.

S. Aglyamov, S. Wang, A. Karpiouk, J. Li, M. Twa, S. Emelianov, and K. V. Larin, “Assessment of the depth-dependence of the mechanical parameters of a layered medium using surface excitation and motion measurements on the surface,” in Proceedings of IEEE International Ultrasonics Symposium (2013), in print.

Twa, M. D.

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett.10(7), 075605 (2013).
[CrossRef]

S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett.37(24), 5184–5186 (2012).
[CrossRef] [PubMed]

S. T. Bailey, M. D. Twa, J. C. Gump, M. Venkiteshwar, M. A. Bullimore, and R. Sooryakumar, “Light-scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng.57(12), 2910–2917 (2010).
[CrossRef] [PubMed]

van der Heijde, R. G.

H. A. Weeber and R. G. van der Heijde, “On the relationship between lens stiffness and accommodative amplitude,” Exp. Eye Res.85(5), 602–607 (2007).
[CrossRef] [PubMed]

Vantipalli, S.

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett.10(7), 075605 (2013).
[CrossRef]

Venkiteshwar, M.

S. T. Bailey, M. D. Twa, J. C. Gump, M. Venkiteshwar, M. A. Bullimore, and R. Sooryakumar, “Light-scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng.57(12), 2910–2917 (2010).
[CrossRef] [PubMed]

Wang, R. K.

C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett.37(4), 722–724 (2012).
[CrossRef] [PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett.37(10), 1625–1627 (2012).
[CrossRef] [PubMed]

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface9(70), 831–841 (2012).
[PubMed]

C. Li, Z. Huang, and R. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt. Express19(11), 10153–10163 (2011).
[CrossRef] [PubMed]

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett.90(16), 164105 (2007).
[CrossRef]

Wang, S.

S. Wang, T. Sherlock, B. Salazar, N. Sudheendran, R. K. Manapuram, K. Kourentzi, P. Ruchhoeft, R. C. Willson, and K. V. Larin, “Detection and Monitoring of Microparticles Under Skin by Optical Coherence Tomography as an Approach to Continuous Glucose Sensing Using Implanted Retroreflectors,” IEEE Sens. J.13(11), 4534–4541 (2013).
[CrossRef]

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett.10(7), 075605 (2013).
[CrossRef]

R. Manapuram, S. Aglyamov, F. M. Menodiado, M. Mashiatulla, S. Wang, S. A. Baranov, J. Li, S. Emelianov, and K. V. Larin, “Estimation of shear wave velocity in gelatin phantoms utilizing PhS-SSOCT,” Laser Phys.22(9), 1439–1444 (2012).
[CrossRef]

S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett.37(24), 5184–5186 (2012).
[CrossRef] [PubMed]

S. Aglyamov, S. Wang, A. Karpiouk, J. Li, M. Twa, S. Emelianov, and K. V. Larin, “Assessment of the depth-dependence of the mechanical parameters of a layered medium using surface excitation and motion measurements on the surface,” in Proceedings of IEEE International Ultrasonics Symposium (2013), in print.

Weeber, H. A.

H. A. Weeber, G. Eckert, W. Pechhold, and R. G. Heijde, “Stiffness gradient in the crystalline lens,” Graefes Arch. Clin. Exp. Ophthalmol.245(9), 1357–1366 (2007).
[CrossRef] [PubMed]

H. A. Weeber and R. G. van der Heijde, “On the relationship between lens stiffness and accommodative amplitude,” Exp. Eye Res.85(5), 602–607 (2007).
[CrossRef] [PubMed]

Willson, R. C.

S. Wang, T. Sherlock, B. Salazar, N. Sudheendran, R. K. Manapuram, K. Kourentzi, P. Ruchhoeft, R. C. Willson, and K. V. Larin, “Detection and Monitoring of Microparticles Under Skin by Optical Coherence Tomography as an Approach to Continuous Glucose Sensing Using Implanted Retroreflectors,” IEEE Sens. J.13(11), 4534–4541 (2013).
[CrossRef]

Yang, C.

Yang, V. X. D.

Yazdi, Y.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging13(2), 111–134 (1991).
[PubMed]

Yoon, S.

S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “The mechanical properties of ex vivo bovine and porcine crystalline lenses: age-related changes and location-dependent variations,” Ultrasound Med. Biol.39(6), 1120–1127 (2013).
[CrossRef] [PubMed]

S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force,” Phys. Med. Biol.57(15), 4871–4884 (2012).
[CrossRef] [PubMed]

Young, E. D.

E. F. Carbajal, S. A. Baranov, V. G. R. Manne, E. D. Young, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Revealing retroperitoneal liposarcoma morphology using optical coherence tomography,” J. Biomed. Opt.16(2), 020502 (2011).
[CrossRef] [PubMed]

Yun, S. H.

G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express20(8), 9197–9202 (2012).
[CrossRef] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J.101(6), 1539–1545 (2011).
[CrossRef] [PubMed]

Zabolotskaya, E. A.

S. R. Aglyamov, A. B. Karpiouk, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Motion of a solid sphere in a viscoelastic medium in response to applied acoustic radiation force: Theoretical analysis and experimental verification,” J. Acoust. Soc. Am.122(4), 1927–1936 (2007).
[CrossRef] [PubMed]

Zhang, J.

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt.17(11), 110505 (2012).
[CrossRef] [PubMed]

Zhou, Q.

W. Qi, R. Li, T. Ma, J. Li, K. Kirk Shung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett.103(10), 103704 (2013).
[CrossRef] [PubMed]

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt.17(11), 110505 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett.90(16), 164105 (2007).
[CrossRef]

W. Qi, R. Li, T. Ma, J. Li, K. Kirk Shung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett.103(10), 103704 (2013).
[CrossRef] [PubMed]

Biomed. Opt. Express (2)

Biophys. J. (1)

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J.101(6), 1539–1545 (2011).
[CrossRef] [PubMed]

Exp. Eye Res. (2)

H. A. Weeber and R. G. van der Heijde, “On the relationship between lens stiffness and accommodative amplitude,” Exp. Eye Res.85(5), 602–607 (2007).
[CrossRef] [PubMed]

K. W. Hollman, M. O’Donnell, and T. N. Erpelding, “Mapping elasticity in human lenses using bubble-based acoustic radiation force,” Exp. Eye Res.85(6), 890–893 (2007).
[CrossRef] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

H. A. Weeber, G. Eckert, W. Pechhold, and R. G. Heijde, “Stiffness gradient in the crystalline lens,” Graefes Arch. Clin. Exp. Ophthalmol.245(9), 1357–1366 (2007).
[CrossRef] [PubMed]

IEEE Sens. J. (1)

S. Wang, T. Sherlock, B. Salazar, N. Sudheendran, R. K. Manapuram, K. Kourentzi, P. Ruchhoeft, R. C. Willson, and K. V. Larin, “Detection and Monitoring of Microparticles Under Skin by Optical Coherence Tomography as an Approach to Continuous Glucose Sensing Using Implanted Retroreflectors,” IEEE Sens. J.13(11), 4534–4541 (2013).
[CrossRef]

IEEE Trans. Biomed. Eng. (2)

X. Liang and S. A. Boppart, “Biomechanical properties of In vivo human skin from dynamic optical coherence elastography,’’ IEEE Trans. Biomed. Eng.57, 953–959 (2010).

S. T. Bailey, M. D. Twa, J. C. Gump, M. Venkiteshwar, M. A. Bullimore, and R. Sooryakumar, “Light-scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng.57(12), 2910–2917 (2010).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

J. Bercoff, M. Tanter, and M. Fink, “Supersonic shear imaging: a new technique for soft tissue elasticity mapping,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control51(4), 396–409 (2004).
[CrossRef] [PubMed]

J. Acoust. Soc. Am. (1)

S. R. Aglyamov, A. B. Karpiouk, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Motion of a solid sphere in a viscoelastic medium in response to applied acoustic radiation force: Theoretical analysis and experimental verification,” J. Acoust. Soc. Am.122(4), 1927–1936 (2007).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Phase-sensitive swept source optical coherence tomography for imaging and quantifying of microbubbles in clear and scattering media,” J. Appl. Phys.105(10), 102040 (2009).
[CrossRef]

J. Biomed. Opt. (4)

E. F. Carbajal, S. A. Baranov, V. G. R. Manne, E. D. Young, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Revealing retroperitoneal liposarcoma morphology using optical coherence tomography,” J. Biomed. Opt.16(2), 020502 (2011).
[CrossRef] [PubMed]

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt.17(11), 110505 (2012).
[CrossRef] [PubMed]

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt.17(10), 100501 (2012).
[CrossRef] [PubMed]

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011).
[CrossRef] [PubMed]

J. R. Soc. Interface (1)

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface9(70), 831–841 (2012).
[PubMed]

Laser Phys. (1)

R. Manapuram, S. Aglyamov, F. M. Menodiado, M. Mashiatulla, S. Wang, S. A. Baranov, J. Li, S. Emelianov, and K. V. Larin, “Estimation of shear wave velocity in gelatin phantoms utilizing PhS-SSOCT,” Laser Phys.22(9), 1439–1444 (2012).
[CrossRef]

Laser Phys. Lett. (2)

R. K. Manapuram, S. A. Baranov, V. G. R. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. V. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett.8(2), 164–168 (2011).
[CrossRef]

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett.10(7), 075605 (2013).
[CrossRef]

Mol. Vis. (1)

K. R. Heys, S. L. Cram, and R. J. Truscott, “Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia?” Mol. Vis.10, 956–963 (2004).
[PubMed]

Ophthalmic Physiol. Opt. (1)

D. A. Atchison, “Accommodation and presbyopia,” Ophthalmic Physiol. Opt.15(4), 255–272 (1995).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (5)

Phys. Med. Biol. (2)

S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force,” Phys. Med. Biol.57(15), 4871–4884 (2012).
[CrossRef] [PubMed]

S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol.54(10), 3129–3139 (2009).
[CrossRef] [PubMed]

Prog. Biophys. Mol. Biol. (1)

F. A. Duck, “Medical and non-medical protection standards for ultrasound and infrasound,” Prog. Biophys. Mol. Biol.93(1-3), 176–191 (2007).
[CrossRef] [PubMed]

Ultrason. Imaging (1)

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging13(2), 111–134 (1991).
[PubMed]

Ultrasound Med. Biol. (3)

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol.24(9), 1419–1435 (1998).
[CrossRef] [PubMed]

S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “The mechanical properties of ex vivo bovine and porcine crystalline lenses: age-related changes and location-dependent variations,” Ultrasound Med. Biol.39(6), 1120–1127 (2013).
[CrossRef] [PubMed]

R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-resolution photoacoustic imaging of ocular tissues,” Ultrasound Med. Biol.36(5), 733–742 (2010).
[CrossRef] [PubMed]

Other (1)

S. Aglyamov, S. Wang, A. Karpiouk, J. Li, M. Twa, S. Emelianov, and K. V. Larin, “Assessment of the depth-dependence of the mechanical parameters of a layered medium using surface excitation and motion measurements on the surface,” in Proceedings of IEEE International Ultrasonics Symposium (2013), in print.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the system setup which combines the focused single-element ultrasound transducer and the PhS-OCT system. L-laser; FOC-fiber optic coupler; FA-fiber adaptor; AL-achromatic lens; TG-transmission grating; C-collimator; A-aperture; M-mirror; GM-galvo mirror; SL-scan lens; WB-water bath; S-sample; SH-sample holder; LS-linear stage; UT-ultrasound transducer; SA-signal amplifier; FG-function generator; C1-channel 1; C2-channel 2; ADC-analog-to-digital convertor; DAC-digital-to-analog convertor.

Fig. 2
Fig. 2

Typical surface response from a 6% gelatin phantom with focused ultrasound excitation. The deformation and the recovery processes of the sample surface are called out. The squared part with dashed lines indicates the recovery process selected for the spectral analysis.

Fig. 3
Fig. 3

(a) Typical recovery processes from the surface dynamics of homogeneous and layered phantoms. (b) The amplitude spectra of the surface responses corresponding to (a), showing the frequency characteristics of the homogeneous and layered phantoms. Partial magnifications are presented with black and red borders for (a) and (b), respectively.

Fig. 4
Fig. 4

Box plots of the obtained dominant frequencies from the surface recovery processes on the layered phantoms. N = 3 for both measurements. The solid dots represent the mean values, and the whiskers represent the standard deviations. The measured values are identical for the dominant frequency from the layered phantom with 5 mm top layer.

Fig. 5
Fig. 5

Plots of the dominant frequencies with respect to the duration of excitation for the layered phantoms with (a) 2 mm top layer and (b) 5 mm top layer. Data are fitted with exponential functions. N = 3 for all measurements.

Fig. 6
Fig. 6

Typical recovery processes from the surface dynamics of 6% homogeneous phantom and layered phantom with 5 mm top layer. The duration of excitation is ~27 µsec.

Fig. 7
Fig. 7

Box plots of the obtained dominant frequencies from the layered phantom with 2 mm top layer under the same excitation duration but different ultrasound frequencies of excitation. N = 3 for both measurements. The solid dots represent the mean values, and the whiskers represent the standard deviations.

Metrics