Abstract

Geographic atrophy (GA) is a condition that is associated with retinal thinning and loss of the retinal pigment epithelium (RPE) layer. It appears in advanced stages of non-exudative age-related macular degeneration (AMD) and can lead to vision loss. We present a semi-automated GA segmentation algorithm for spectral-domain optical coherence tomography (SD-OCT) images. The method first identifies and segments a surface between the RPE and the choroid to generate retinal projection images in which the projection region is restricted to a sub-volume of the retina where the presence of GA can be identified. Subsequently, a geometric active contour model is employed to automatically detect and segment the extent of GA in the projection images. Two image data sets, consisting on 55 SD-OCT scans from twelve eyes in eight patients with GA and 56 SD-OCT scans from 56 eyes in 56 patients with GA, respectively, were utilized to qualitatively and quantitatively evaluate the proposed GA segmentation method. Experimental results suggest that the proposed algorithm can achieve high segmentation accuracy. The mean GA overlap ratios between our proposed method and outlines drawn in the SD-OCT scans, our method and outlines drawn in the fundus auto-fluorescence (FAF) images, and the commercial software (Carl Zeiss Meditec proprietary software, Cirrus version 6.0) and outlines drawn in FAF images were 72.60%, 65.88% and 59.83%, respectively.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Wang, E. Rochtchina, A. J. Lee, E. M. Chia, W. Smith, R. G. Cumming, and P. Mitchell, “Ten-year incidence and progression of age-related maculopathy: the blue Mountains Eye Study,” Ophthalmology114(1), 92–98 (2007).
    [CrossRef] [PubMed]
  2. R. Klein, B. E. Klein, M. D. Knudtson, S. M. Meuer, M. Swift, and R. E. Gangnon, “Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study,” Ophthalmology114(2), 253–262 (2007).
    [CrossRef] [PubMed]
  3. H. Buch, N. V. Nielsen, T. Vinding, G. B. Jensen, J. U. Prause, and M. la Cour, “14-year incidence, progression, and visual morbidity of age-related maculopathy: the Copenhagen City Eye Study,” Ophthalmology112(5), 787–798 (2005).
    [CrossRef] [PubMed]
  4. P. Maguire and A. K. Vine, “Geographic atrophy of the retinal pigment epithelium,” Am. J. Ophthalmol.102(5), 621–625 (1986).
    [PubMed]
  5. H. Schatz and H. R. McDonald, “Atrophic macular degeneration. Rate of spread of geographic atrophy and visual loss,” Ophthalmology96(10), 1541–1551 (1989).
    [PubMed]
  6. J. S. Sunness, “The natural history of geographic atrophy, the advanced atrophic form of age-related macular degeneration,” Mol. Vis.5, 25 (1999).
    [PubMed]
  7. R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy,” Ophthalmology118(9), 1844–1851 (2011).
    [CrossRef] [PubMed]
  8. R. Klein, B. E. Klein, and T. Franke, “The relationship of cardiovascular disease and its risk factors to age-related maculopathy. The Beaver Dam Eye Study,” Ophthalmology100(3), 406–414 (1993).
    [PubMed]
  9. J. R. Vingerling, I. Dielemans, A. Hofman, D. E. Grobbee, M. Hijmering, C. F. Kramer, and P. T. de Jong, “The prevalence of age-related maculopathy in the Rotterdam Study,” Ophthalmology102(2), 205–210 (1995).
    [CrossRef] [PubMed]
  10. H. Hirvelä, H. Luukinen, E. Läärä, and L. Laatikainen, “Risk factors of age-related maculopathy in a population 70 years of age or older,” Ophthalmology103(6), 871–877 (1996).
    [CrossRef] [PubMed]
  11. A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci.46(9), 3309–3314 (2005).
    [CrossRef] [PubMed]
  12. S. Schmitz-Valckenberg, C. K. Brinkmann, F. Alten, P. Herrmann, N. K. Stratmann, A. P. Göbel, M. Fleckenstein, M. Diller, G. J. Jaffe, and F. G. Holz, “Semiautomated image processing method for identification and quantification of geographic atrophy in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.52(10), 7640–7646 (2011).
    [CrossRef] [PubMed]
  13. A. Deckert, S. Schmitz-Valckenberg, J. Jorzik, A. Bindewald, F. G. Holz, and U. Mansmann, “Automated analysis of digital fundus autofluorescence images of geographic atrophy in advanced age-related macular degeneration using confocal scanning laser ophthalmoscopy (cSLO),” BMC Ophthalmol.5(1), 8 (2005).
    [CrossRef] [PubMed]
  14. N. Lee, A. F. Laine, I. Barbazetto, M. Busuoic, and R. Smith, “Level set segmentation of geographic atrophy in macular autofluorescence images,” Invest. Ophthalmol. Vis. Sci.47, (2006).
  15. N. Lee, A. F. Laine, and R. T. Smith, “A hybrid segmentation approach for geographic atrophy in fundus auto-fluorescence images for diagnosis of age-related macular degeneration,” Proceeding of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2007), pp. 4965–4968.
    [CrossRef]
  16. N. Lee, R. T. Smith, and A. F. Laine, “Interactive segmentation for geographic atrophy in retinal fundus images,” The 42nd Asilomar Conference on Signals, Systems and Computers (2008), 42, pp. 655–658.
    [CrossRef]
  17. U. E. Wolf-Schnurrbusch, V. Enzmann, C. K. Brinkmann, and S. Wolf, “Morphologic changes in patients with geographic atrophy assessed with a novel spectral OCT-SLO combination,” Invest. Ophthalmol. Vis. Sci.49(7), 3095–3099 (2008).
    [CrossRef] [PubMed]
  18. S. Bearelly, F. Y. Chau, A. Koreishi, S. S. Stinnett, J. A. Izatt, and C. A. Toth, “Spectral domain optical coherence tomography imaging of geographic atrophy margins,” Ophthalmology116(9), 1762–1769 (2009).
    [CrossRef] [PubMed]
  19. M. Brar, I. Kozak, L. Cheng, D. U. Bartsch, R. Yuson, N. Nigam, S. F. Oster, F. Mojana, and W. R. Freeman, “Correlation between spectral-domain optical coherence tomography and fundus autofluorescence at the margins of geographic atrophy,” Am. J. Ophthalmol.148(3), 439–444, 444.e1 (2009).
    [CrossRef] [PubMed]
  20. S. Schmitz-Valckenberg, M. Fleckenstein, H. M. Helb, P. Charbel Issa, H. P. Scholl, and F. G. Holz, “In vivo imaging of foveal sparing in geographic atrophy secondary to age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.50(8), 3915–3921 (2009).
    [CrossRef] [PubMed]
  21. W. R. Green and S. N. Key, “Senile macular degeneration: a histopathologic study,” Trans. Am. Ophthalmol. Soc.75, 180–254 (1977).
    [PubMed]
  22. R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy,” Ophthalmology118(9), 1844–1851 (2011).
    [CrossRef] [PubMed]
  23. S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci.53(1), 53–61 (2012).
    [CrossRef] [PubMed]
  24. Z. Yehoshua, C. A. A. Garcia Filho, F. M. Penha, G. Gregori, P. F. Stetson, W. J. Feuer, and P. J. Rosenfeld, “Comparison of geographic atrophy measurements from the OCT fundus image and the sub-RPE slab image,” Ophthalmic Surg Lasers Imaging Retina44(2), 127–132 (2013).
    [CrossRef] [PubMed]
  25. C. Schütze, C. Ahlers, S. Sacu, G. Mylonas, R. Sayegh, I. Golbaz, G. Matt, G. Stock, and U. Schmidt-Erfurth, “Performance of OCT segmentation procedures to assess morphology and extension in geographic atrophy,” Acta Ophthalmol. (Copenh.)89(3), 235–240 (2011).
    [CrossRef] [PubMed]
  26. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18(18), 19413–19428 (2010).
    [CrossRef] [PubMed]
  27. S. Lu, C. Y. L. Cheung, J. Liu, J. H. Lim, C. K. S. Leung, and T. Y. Wong, “Automated layer segmentation of optical coherence tomography images,” IEEE Trans. Biomed. Eng.57(10), 2605–2608 (2010).
    [CrossRef] [PubMed]
  28. M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging28(9), 1436–1447 (2009).
    [CrossRef] [PubMed]
  29. Q. Chen, T. Leng, L. L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal.17(8), 1058–1072 (2013).
    [CrossRef] [PubMed]
  30. C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” Proceedings of the International Conference on Computer Vision (ICCV) (1998), pp. 839–846.
    [CrossRef]
  31. S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express13(2), 444–452 (2005).
    [CrossRef] [PubMed]
  32. V. Caselles, F. Catte, T. Coll, and F. Dibos, “A geometric model for active contours in image processing,” Numer. Math.66, 1–31 (1993).
    [CrossRef]
  33. R. Malladi, J. A. Sethian, and B. C. Vemuri, “Shape modeling with front propagation: a level set approach,” IEEE Trans. Pattern Anal. Mach. Intell.17(2), 158–175 (1995).
    [CrossRef]
  34. C. Li, C. Xu, C. Gui, and M. D. Fox, “Level set evolution without re-initialization: a new variational formulation,” InProc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2005) 1, pp. 430–436.
  35. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern.9(1), 62–66 (1979).
    [CrossRef]
  36. D. Adalsteinsson and J. A. Sethian, “A fast level set method for propagating interfaces,” J. Comput. Phys.118(2), 269–277 (1995).
    [CrossRef]
  37. S. Farsiu, S. J. Chiu, R. V. O’Cornell, F. A. Folgar, E. Yuan, J. A. Izatt, and C. A. Toth, “Quantitative classification of Eyes with and without intermediate age-related macular degeneration using optical coherence tomography,” Ophthalmologyin press.
  38. R. P. Nunes, G. Gregori, Z. Yehoshua, P. F. Stetson, W. Feuer, A. A. Moshfeghi, and P. J. Rosenfeld, “Predicting the progression of geographic atrophy in age-related macular degeneration with SD-Oct en face imaging of the outer retina,” Ophthalmic Surg. Lasers Imaging Retina44(4), 344–359 (2013).

2013 (3)

Z. Yehoshua, C. A. A. Garcia Filho, F. M. Penha, G. Gregori, P. F. Stetson, W. J. Feuer, and P. J. Rosenfeld, “Comparison of geographic atrophy measurements from the OCT fundus image and the sub-RPE slab image,” Ophthalmic Surg Lasers Imaging Retina44(2), 127–132 (2013).
[CrossRef] [PubMed]

Q. Chen, T. Leng, L. L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal.17(8), 1058–1072 (2013).
[CrossRef] [PubMed]

R. P. Nunes, G. Gregori, Z. Yehoshua, P. F. Stetson, W. Feuer, A. A. Moshfeghi, and P. J. Rosenfeld, “Predicting the progression of geographic atrophy in age-related macular degeneration with SD-Oct en face imaging of the outer retina,” Ophthalmic Surg. Lasers Imaging Retina44(4), 344–359 (2013).

2012 (1)

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci.53(1), 53–61 (2012).
[CrossRef] [PubMed]

2011 (4)

C. Schütze, C. Ahlers, S. Sacu, G. Mylonas, R. Sayegh, I. Golbaz, G. Matt, G. Stock, and U. Schmidt-Erfurth, “Performance of OCT segmentation procedures to assess morphology and extension in geographic atrophy,” Acta Ophthalmol. (Copenh.)89(3), 235–240 (2011).
[CrossRef] [PubMed]

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy,” Ophthalmology118(9), 1844–1851 (2011).
[CrossRef] [PubMed]

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy,” Ophthalmology118(9), 1844–1851 (2011).
[CrossRef] [PubMed]

S. Schmitz-Valckenberg, C. K. Brinkmann, F. Alten, P. Herrmann, N. K. Stratmann, A. P. Göbel, M. Fleckenstein, M. Diller, G. J. Jaffe, and F. G. Holz, “Semiautomated image processing method for identification and quantification of geographic atrophy in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.52(10), 7640–7646 (2011).
[CrossRef] [PubMed]

2010 (2)

S. Lu, C. Y. L. Cheung, J. Liu, J. H. Lim, C. K. S. Leung, and T. Y. Wong, “Automated layer segmentation of optical coherence tomography images,” IEEE Trans. Biomed. Eng.57(10), 2605–2608 (2010).
[CrossRef] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18(18), 19413–19428 (2010).
[CrossRef] [PubMed]

2009 (4)

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging28(9), 1436–1447 (2009).
[CrossRef] [PubMed]

S. Bearelly, F. Y. Chau, A. Koreishi, S. S. Stinnett, J. A. Izatt, and C. A. Toth, “Spectral domain optical coherence tomography imaging of geographic atrophy margins,” Ophthalmology116(9), 1762–1769 (2009).
[CrossRef] [PubMed]

M. Brar, I. Kozak, L. Cheng, D. U. Bartsch, R. Yuson, N. Nigam, S. F. Oster, F. Mojana, and W. R. Freeman, “Correlation between spectral-domain optical coherence tomography and fundus autofluorescence at the margins of geographic atrophy,” Am. J. Ophthalmol.148(3), 439–444, 444.e1 (2009).
[CrossRef] [PubMed]

S. Schmitz-Valckenberg, M. Fleckenstein, H. M. Helb, P. Charbel Issa, H. P. Scholl, and F. G. Holz, “In vivo imaging of foveal sparing in geographic atrophy secondary to age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.50(8), 3915–3921 (2009).
[CrossRef] [PubMed]

2008 (1)

U. E. Wolf-Schnurrbusch, V. Enzmann, C. K. Brinkmann, and S. Wolf, “Morphologic changes in patients with geographic atrophy assessed with a novel spectral OCT-SLO combination,” Invest. Ophthalmol. Vis. Sci.49(7), 3095–3099 (2008).
[CrossRef] [PubMed]

2007 (2)

J. J. Wang, E. Rochtchina, A. J. Lee, E. M. Chia, W. Smith, R. G. Cumming, and P. Mitchell, “Ten-year incidence and progression of age-related maculopathy: the blue Mountains Eye Study,” Ophthalmology114(1), 92–98 (2007).
[CrossRef] [PubMed]

R. Klein, B. E. Klein, M. D. Knudtson, S. M. Meuer, M. Swift, and R. E. Gangnon, “Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study,” Ophthalmology114(2), 253–262 (2007).
[CrossRef] [PubMed]

2006 (1)

N. Lee, A. F. Laine, I. Barbazetto, M. Busuoic, and R. Smith, “Level set segmentation of geographic atrophy in macular autofluorescence images,” Invest. Ophthalmol. Vis. Sci.47, (2006).

2005 (4)

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci.46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express13(2), 444–452 (2005).
[CrossRef] [PubMed]

H. Buch, N. V. Nielsen, T. Vinding, G. B. Jensen, J. U. Prause, and M. la Cour, “14-year incidence, progression, and visual morbidity of age-related maculopathy: the Copenhagen City Eye Study,” Ophthalmology112(5), 787–798 (2005).
[CrossRef] [PubMed]

A. Deckert, S. Schmitz-Valckenberg, J. Jorzik, A. Bindewald, F. G. Holz, and U. Mansmann, “Automated analysis of digital fundus autofluorescence images of geographic atrophy in advanced age-related macular degeneration using confocal scanning laser ophthalmoscopy (cSLO),” BMC Ophthalmol.5(1), 8 (2005).
[CrossRef] [PubMed]

1999 (1)

J. S. Sunness, “The natural history of geographic atrophy, the advanced atrophic form of age-related macular degeneration,” Mol. Vis.5, 25 (1999).
[PubMed]

1996 (1)

H. Hirvelä, H. Luukinen, E. Läärä, and L. Laatikainen, “Risk factors of age-related maculopathy in a population 70 years of age or older,” Ophthalmology103(6), 871–877 (1996).
[CrossRef] [PubMed]

1995 (3)

J. R. Vingerling, I. Dielemans, A. Hofman, D. E. Grobbee, M. Hijmering, C. F. Kramer, and P. T. de Jong, “The prevalence of age-related maculopathy in the Rotterdam Study,” Ophthalmology102(2), 205–210 (1995).
[CrossRef] [PubMed]

D. Adalsteinsson and J. A. Sethian, “A fast level set method for propagating interfaces,” J. Comput. Phys.118(2), 269–277 (1995).
[CrossRef]

R. Malladi, J. A. Sethian, and B. C. Vemuri, “Shape modeling with front propagation: a level set approach,” IEEE Trans. Pattern Anal. Mach. Intell.17(2), 158–175 (1995).
[CrossRef]

1993 (2)

V. Caselles, F. Catte, T. Coll, and F. Dibos, “A geometric model for active contours in image processing,” Numer. Math.66, 1–31 (1993).
[CrossRef]

R. Klein, B. E. Klein, and T. Franke, “The relationship of cardiovascular disease and its risk factors to age-related maculopathy. The Beaver Dam Eye Study,” Ophthalmology100(3), 406–414 (1993).
[PubMed]

1989 (1)

H. Schatz and H. R. McDonald, “Atrophic macular degeneration. Rate of spread of geographic atrophy and visual loss,” Ophthalmology96(10), 1541–1551 (1989).
[PubMed]

1986 (1)

P. Maguire and A. K. Vine, “Geographic atrophy of the retinal pigment epithelium,” Am. J. Ophthalmol.102(5), 621–625 (1986).
[PubMed]

1979 (1)

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern.9(1), 62–66 (1979).
[CrossRef]

1977 (1)

W. R. Green and S. N. Key, “Senile macular degeneration: a histopathologic study,” Trans. Am. Ophthalmol. Soc.75, 180–254 (1977).
[PubMed]

Abràmoff, M. D.

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging28(9), 1436–1447 (2009).
[CrossRef] [PubMed]

Adalsteinsson, D.

D. Adalsteinsson and J. A. Sethian, “A fast level set method for propagating interfaces,” J. Comput. Phys.118(2), 269–277 (1995).
[CrossRef]

Ahlers, C.

C. Schütze, C. Ahlers, S. Sacu, G. Mylonas, R. Sayegh, I. Golbaz, G. Matt, G. Stock, and U. Schmidt-Erfurth, “Performance of OCT segmentation procedures to assess morphology and extension in geographic atrophy,” Acta Ophthalmol. (Copenh.)89(3), 235–240 (2011).
[CrossRef] [PubMed]

Alten, F.

S. Schmitz-Valckenberg, C. K. Brinkmann, F. Alten, P. Herrmann, N. K. Stratmann, A. P. Göbel, M. Fleckenstein, M. Diller, G. J. Jaffe, and F. G. Holz, “Semiautomated image processing method for identification and quantification of geographic atrophy in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.52(10), 7640–7646 (2011).
[CrossRef] [PubMed]

Barbazetto, I.

N. Lee, A. F. Laine, I. Barbazetto, M. Busuoic, and R. Smith, “Level set segmentation of geographic atrophy in macular autofluorescence images,” Invest. Ophthalmol. Vis. Sci.47, (2006).

Bartsch, D. U.

M. Brar, I. Kozak, L. Cheng, D. U. Bartsch, R. Yuson, N. Nigam, S. F. Oster, F. Mojana, and W. R. Freeman, “Correlation between spectral-domain optical coherence tomography and fundus autofluorescence at the margins of geographic atrophy,” Am. J. Ophthalmol.148(3), 439–444, 444.e1 (2009).
[CrossRef] [PubMed]

Bearelly, S.

S. Bearelly, F. Y. Chau, A. Koreishi, S. S. Stinnett, J. A. Izatt, and C. A. Toth, “Spectral domain optical coherence tomography imaging of geographic atrophy margins,” Ophthalmology116(9), 1762–1769 (2009).
[CrossRef] [PubMed]

Bindewald, A.

A. Deckert, S. Schmitz-Valckenberg, J. Jorzik, A. Bindewald, F. G. Holz, and U. Mansmann, “Automated analysis of digital fundus autofluorescence images of geographic atrophy in advanced age-related macular degeneration using confocal scanning laser ophthalmoscopy (cSLO),” BMC Ophthalmol.5(1), 8 (2005).
[CrossRef] [PubMed]

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci.46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

Bird, A. C.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci.46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

Brar, M.

M. Brar, I. Kozak, L. Cheng, D. U. Bartsch, R. Yuson, N. Nigam, S. F. Oster, F. Mojana, and W. R. Freeman, “Correlation between spectral-domain optical coherence tomography and fundus autofluorescence at the margins of geographic atrophy,” Am. J. Ophthalmol.148(3), 439–444, 444.e1 (2009).
[CrossRef] [PubMed]

Brinkmann, C. K.

S. Schmitz-Valckenberg, C. K. Brinkmann, F. Alten, P. Herrmann, N. K. Stratmann, A. P. Göbel, M. Fleckenstein, M. Diller, G. J. Jaffe, and F. G. Holz, “Semiautomated image processing method for identification and quantification of geographic atrophy in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.52(10), 7640–7646 (2011).
[CrossRef] [PubMed]

U. E. Wolf-Schnurrbusch, V. Enzmann, C. K. Brinkmann, and S. Wolf, “Morphologic changes in patients with geographic atrophy assessed with a novel spectral OCT-SLO combination,” Invest. Ophthalmol. Vis. Sci.49(7), 3095–3099 (2008).
[CrossRef] [PubMed]

Buch, H.

H. Buch, N. V. Nielsen, T. Vinding, G. B. Jensen, J. U. Prause, and M. la Cour, “14-year incidence, progression, and visual morbidity of age-related maculopathy: the Copenhagen City Eye Study,” Ophthalmology112(5), 787–798 (2005).
[CrossRef] [PubMed]

Burns, T. L.

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging28(9), 1436–1447 (2009).
[CrossRef] [PubMed]

Busuoic, M.

N. Lee, A. F. Laine, I. Barbazetto, M. Busuoic, and R. Smith, “Level set segmentation of geographic atrophy in macular autofluorescence images,” Invest. Ophthalmol. Vis. Sci.47, (2006).

Caselles, V.

V. Caselles, F. Catte, T. Coll, and F. Dibos, “A geometric model for active contours in image processing,” Numer. Math.66, 1–31 (1993).
[CrossRef]

Catte, F.

V. Caselles, F. Catte, T. Coll, and F. Dibos, “A geometric model for active contours in image processing,” Numer. Math.66, 1–31 (1993).
[CrossRef]

Charbel Issa, P.

S. Schmitz-Valckenberg, M. Fleckenstein, H. M. Helb, P. Charbel Issa, H. P. Scholl, and F. G. Holz, “In vivo imaging of foveal sparing in geographic atrophy secondary to age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.50(8), 3915–3921 (2009).
[CrossRef] [PubMed]

Chau, F. Y.

S. Bearelly, F. Y. Chau, A. Koreishi, S. S. Stinnett, J. A. Izatt, and C. A. Toth, “Spectral domain optical coherence tomography imaging of geographic atrophy margins,” Ophthalmology116(9), 1762–1769 (2009).
[CrossRef] [PubMed]

Chen, Q.

Q. Chen, T. Leng, L. L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal.17(8), 1058–1072 (2013).
[CrossRef] [PubMed]

Cheng, L.

M. Brar, I. Kozak, L. Cheng, D. U. Bartsch, R. Yuson, N. Nigam, S. F. Oster, F. Mojana, and W. R. Freeman, “Correlation between spectral-domain optical coherence tomography and fundus autofluorescence at the margins of geographic atrophy,” Am. J. Ophthalmol.148(3), 439–444, 444.e1 (2009).
[CrossRef] [PubMed]

Cheung, C. Y. L.

S. Lu, C. Y. L. Cheung, J. Liu, J. H. Lim, C. K. S. Leung, and T. Y. Wong, “Automated layer segmentation of optical coherence tomography images,” IEEE Trans. Biomed. Eng.57(10), 2605–2608 (2010).
[CrossRef] [PubMed]

Chia, E. M.

J. J. Wang, E. Rochtchina, A. J. Lee, E. M. Chia, W. Smith, R. G. Cumming, and P. Mitchell, “Ten-year incidence and progression of age-related maculopathy: the blue Mountains Eye Study,” Ophthalmology114(1), 92–98 (2007).
[CrossRef] [PubMed]

Chiu, S. J.

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci.53(1), 53–61 (2012).
[CrossRef] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18(18), 19413–19428 (2010).
[CrossRef] [PubMed]

S. Farsiu, S. J. Chiu, R. V. O’Cornell, F. A. Folgar, E. Yuan, J. A. Izatt, and C. A. Toth, “Quantitative classification of Eyes with and without intermediate age-related macular degeneration using optical coherence tomography,” Ophthalmologyin press.

Coll, T.

V. Caselles, F. Catte, T. Coll, and F. Dibos, “A geometric model for active contours in image processing,” Numer. Math.66, 1–31 (1993).
[CrossRef]

Cumming, R. G.

J. J. Wang, E. Rochtchina, A. J. Lee, E. M. Chia, W. Smith, R. G. Cumming, and P. Mitchell, “Ten-year incidence and progression of age-related maculopathy: the blue Mountains Eye Study,” Ophthalmology114(1), 92–98 (2007).
[CrossRef] [PubMed]

Dandekar, S. S.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci.46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

de Jong, P. T.

J. R. Vingerling, I. Dielemans, A. Hofman, D. E. Grobbee, M. Hijmering, C. F. Kramer, and P. T. de Jong, “The prevalence of age-related maculopathy in the Rotterdam Study,” Ophthalmology102(2), 205–210 (1995).
[CrossRef] [PubMed]

de Sisternes, L.

Q. Chen, T. Leng, L. L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal.17(8), 1058–1072 (2013).
[CrossRef] [PubMed]

Deckert, A.

A. Deckert, S. Schmitz-Valckenberg, J. Jorzik, A. Bindewald, F. G. Holz, and U. Mansmann, “Automated analysis of digital fundus autofluorescence images of geographic atrophy in advanced age-related macular degeneration using confocal scanning laser ophthalmoscopy (cSLO),” BMC Ophthalmol.5(1), 8 (2005).
[CrossRef] [PubMed]

Dibos, F.

V. Caselles, F. Catte, T. Coll, and F. Dibos, “A geometric model for active contours in image processing,” Numer. Math.66, 1–31 (1993).
[CrossRef]

Dielemans, I.

J. R. Vingerling, I. Dielemans, A. Hofman, D. E. Grobbee, M. Hijmering, C. F. Kramer, and P. T. de Jong, “The prevalence of age-related maculopathy in the Rotterdam Study,” Ophthalmology102(2), 205–210 (1995).
[CrossRef] [PubMed]

Diller, M.

S. Schmitz-Valckenberg, C. K. Brinkmann, F. Alten, P. Herrmann, N. K. Stratmann, A. P. Göbel, M. Fleckenstein, M. Diller, G. J. Jaffe, and F. G. Holz, “Semiautomated image processing method for identification and quantification of geographic atrophy in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.52(10), 7640–7646 (2011).
[CrossRef] [PubMed]

Dolar-Szczasny, J.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci.46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

Dreyhaupt, J.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci.46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

Einbock, W.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci.46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

Enzmann, V.

U. E. Wolf-Schnurrbusch, V. Enzmann, C. K. Brinkmann, and S. Wolf, “Morphologic changes in patients with geographic atrophy assessed with a novel spectral OCT-SLO combination,” Invest. Ophthalmol. Vis. Sci.49(7), 3095–3099 (2008).
[CrossRef] [PubMed]

Farsiu, S.

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci.53(1), 53–61 (2012).
[CrossRef] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18(18), 19413–19428 (2010).
[CrossRef] [PubMed]

S. Farsiu, S. J. Chiu, R. V. O’Cornell, F. A. Folgar, E. Yuan, J. A. Izatt, and C. A. Toth, “Quantitative classification of Eyes with and without intermediate age-related macular degeneration using optical coherence tomography,” Ophthalmologyin press.

Feuer, W.

R. P. Nunes, G. Gregori, Z. Yehoshua, P. F. Stetson, W. Feuer, A. A. Moshfeghi, and P. J. Rosenfeld, “Predicting the progression of geographic atrophy in age-related macular degeneration with SD-Oct en face imaging of the outer retina,” Ophthalmic Surg. Lasers Imaging Retina44(4), 344–359 (2013).

Feuer, W. J.

Z. Yehoshua, C. A. A. Garcia Filho, F. M. Penha, G. Gregori, P. F. Stetson, W. J. Feuer, and P. J. Rosenfeld, “Comparison of geographic atrophy measurements from the OCT fundus image and the sub-RPE slab image,” Ophthalmic Surg Lasers Imaging Retina44(2), 127–132 (2013).
[CrossRef] [PubMed]

Fitzke, F. W.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci.46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

Fleckenstein, M.

S. Schmitz-Valckenberg, C. K. Brinkmann, F. Alten, P. Herrmann, N. K. Stratmann, A. P. Göbel, M. Fleckenstein, M. Diller, G. J. Jaffe, and F. G. Holz, “Semiautomated image processing method for identification and quantification of geographic atrophy in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.52(10), 7640–7646 (2011).
[CrossRef] [PubMed]

S. Schmitz-Valckenberg, M. Fleckenstein, H. M. Helb, P. Charbel Issa, H. P. Scholl, and F. G. Holz, “In vivo imaging of foveal sparing in geographic atrophy secondary to age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.50(8), 3915–3921 (2009).
[CrossRef] [PubMed]

Folgar, F. A.

S. Farsiu, S. J. Chiu, R. V. O’Cornell, F. A. Folgar, E. Yuan, J. A. Izatt, and C. A. Toth, “Quantitative classification of Eyes with and without intermediate age-related macular degeneration using optical coherence tomography,” Ophthalmologyin press.

Fox, M. D.

C. Li, C. Xu, C. Gui, and M. D. Fox, “Level set evolution without re-initialization: a new variational formulation,” InProc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2005) 1, pp. 430–436.

Franke, T.

R. Klein, B. E. Klein, and T. Franke, “The relationship of cardiovascular disease and its risk factors to age-related maculopathy. The Beaver Dam Eye Study,” Ophthalmology100(3), 406–414 (1993).
[PubMed]

Freeman, W. R.

M. Brar, I. Kozak, L. Cheng, D. U. Bartsch, R. Yuson, N. Nigam, S. F. Oster, F. Mojana, and W. R. Freeman, “Correlation between spectral-domain optical coherence tomography and fundus autofluorescence at the margins of geographic atrophy,” Am. J. Ophthalmol.148(3), 439–444, 444.e1 (2009).
[CrossRef] [PubMed]

Gangnon, R. E.

R. Klein, B. E. Klein, M. D. Knudtson, S. M. Meuer, M. Swift, and R. E. Gangnon, “Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study,” Ophthalmology114(2), 253–262 (2007).
[CrossRef] [PubMed]

Garcia Filho, C. A. A.

Z. Yehoshua, C. A. A. Garcia Filho, F. M. Penha, G. Gregori, P. F. Stetson, W. J. Feuer, and P. J. Rosenfeld, “Comparison of geographic atrophy measurements from the OCT fundus image and the sub-RPE slab image,” Ophthalmic Surg Lasers Imaging Retina44(2), 127–132 (2013).
[CrossRef] [PubMed]

Garvin, M. K.

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging28(9), 1436–1447 (2009).
[CrossRef] [PubMed]

Göbel, A. P.

S. Schmitz-Valckenberg, C. K. Brinkmann, F. Alten, P. Herrmann, N. K. Stratmann, A. P. Göbel, M. Fleckenstein, M. Diller, G. J. Jaffe, and F. G. Holz, “Semiautomated image processing method for identification and quantification of geographic atrophy in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.52(10), 7640–7646 (2011).
[CrossRef] [PubMed]

Golbaz, I.

C. Schütze, C. Ahlers, S. Sacu, G. Mylonas, R. Sayegh, I. Golbaz, G. Matt, G. Stock, and U. Schmidt-Erfurth, “Performance of OCT segmentation procedures to assess morphology and extension in geographic atrophy,” Acta Ophthalmol. (Copenh.)89(3), 235–240 (2011).
[CrossRef] [PubMed]

Green, W. R.

W. R. Green and S. N. Key, “Senile macular degeneration: a histopathologic study,” Trans. Am. Ophthalmol. Soc.75, 180–254 (1977).
[PubMed]

Gregori, G.

Z. Yehoshua, C. A. A. Garcia Filho, F. M. Penha, G. Gregori, P. F. Stetson, W. J. Feuer, and P. J. Rosenfeld, “Comparison of geographic atrophy measurements from the OCT fundus image and the sub-RPE slab image,” Ophthalmic Surg Lasers Imaging Retina44(2), 127–132 (2013).
[CrossRef] [PubMed]

R. P. Nunes, G. Gregori, Z. Yehoshua, P. F. Stetson, W. Feuer, A. A. Moshfeghi, and P. J. Rosenfeld, “Predicting the progression of geographic atrophy in age-related macular degeneration with SD-Oct en face imaging of the outer retina,” Ophthalmic Surg. Lasers Imaging Retina44(4), 344–359 (2013).

S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express13(2), 444–452 (2005).
[CrossRef] [PubMed]

Grobbee, D. E.

J. R. Vingerling, I. Dielemans, A. Hofman, D. E. Grobbee, M. Hijmering, C. F. Kramer, and P. T. de Jong, “The prevalence of age-related maculopathy in the Rotterdam Study,” Ophthalmology102(2), 205–210 (1995).
[CrossRef] [PubMed]

Gui, C.

C. Li, C. Xu, C. Gui, and M. D. Fox, “Level set evolution without re-initialization: a new variational formulation,” InProc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2005) 1, pp. 430–436.

Helb, H. M.

S. Schmitz-Valckenberg, M. Fleckenstein, H. M. Helb, P. Charbel Issa, H. P. Scholl, and F. G. Holz, “In vivo imaging of foveal sparing in geographic atrophy secondary to age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.50(8), 3915–3921 (2009).
[CrossRef] [PubMed]

Herrmann, P.

S. Schmitz-Valckenberg, C. K. Brinkmann, F. Alten, P. Herrmann, N. K. Stratmann, A. P. Göbel, M. Fleckenstein, M. Diller, G. J. Jaffe, and F. G. Holz, “Semiautomated image processing method for identification and quantification of geographic atrophy in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.52(10), 7640–7646 (2011).
[CrossRef] [PubMed]

Hijmering, M.

J. R. Vingerling, I. Dielemans, A. Hofman, D. E. Grobbee, M. Hijmering, C. F. Kramer, and P. T. de Jong, “The prevalence of age-related maculopathy in the Rotterdam Study,” Ophthalmology102(2), 205–210 (1995).
[CrossRef] [PubMed]

Hirvelä, H.

H. Hirvelä, H. Luukinen, E. Läärä, and L. Laatikainen, “Risk factors of age-related maculopathy in a population 70 years of age or older,” Ophthalmology103(6), 871–877 (1996).
[CrossRef] [PubMed]

Hofman, A.

J. R. Vingerling, I. Dielemans, A. Hofman, D. E. Grobbee, M. Hijmering, C. F. Kramer, and P. T. de Jong, “The prevalence of age-related maculopathy in the Rotterdam Study,” Ophthalmology102(2), 205–210 (1995).
[CrossRef] [PubMed]

Holz, F. G.

S. Schmitz-Valckenberg, C. K. Brinkmann, F. Alten, P. Herrmann, N. K. Stratmann, A. P. Göbel, M. Fleckenstein, M. Diller, G. J. Jaffe, and F. G. Holz, “Semiautomated image processing method for identification and quantification of geographic atrophy in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.52(10), 7640–7646 (2011).
[CrossRef] [PubMed]

S. Schmitz-Valckenberg, M. Fleckenstein, H. M. Helb, P. Charbel Issa, H. P. Scholl, and F. G. Holz, “In vivo imaging of foveal sparing in geographic atrophy secondary to age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.50(8), 3915–3921 (2009).
[CrossRef] [PubMed]

A. Deckert, S. Schmitz-Valckenberg, J. Jorzik, A. Bindewald, F. G. Holz, and U. Mansmann, “Automated analysis of digital fundus autofluorescence images of geographic atrophy in advanced age-related macular degeneration using confocal scanning laser ophthalmoscopy (cSLO),” BMC Ophthalmol.5(1), 8 (2005).
[CrossRef] [PubMed]

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci.46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

Huang, X.

Izatt, J. A.

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci.53(1), 53–61 (2012).
[CrossRef] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18(18), 19413–19428 (2010).
[CrossRef] [PubMed]

S. Bearelly, F. Y. Chau, A. Koreishi, S. S. Stinnett, J. A. Izatt, and C. A. Toth, “Spectral domain optical coherence tomography imaging of geographic atrophy margins,” Ophthalmology116(9), 1762–1769 (2009).
[CrossRef] [PubMed]

S. Farsiu, S. J. Chiu, R. V. O’Cornell, F. A. Folgar, E. Yuan, J. A. Izatt, and C. A. Toth, “Quantitative classification of Eyes with and without intermediate age-related macular degeneration using optical coherence tomography,” Ophthalmologyin press.

Jaffe, G. J.

S. Schmitz-Valckenberg, C. K. Brinkmann, F. Alten, P. Herrmann, N. K. Stratmann, A. P. Göbel, M. Fleckenstein, M. Diller, G. J. Jaffe, and F. G. Holz, “Semiautomated image processing method for identification and quantification of geographic atrophy in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.52(10), 7640–7646 (2011).
[CrossRef] [PubMed]

Jensen, G. B.

H. Buch, N. V. Nielsen, T. Vinding, G. B. Jensen, J. U. Prause, and M. la Cour, “14-year incidence, progression, and visual morbidity of age-related maculopathy: the Copenhagen City Eye Study,” Ophthalmology112(5), 787–798 (2005).
[CrossRef] [PubMed]

Jiao, S.

Jorzik, J.

A. Deckert, S. Schmitz-Valckenberg, J. Jorzik, A. Bindewald, F. G. Holz, and U. Mansmann, “Automated analysis of digital fundus autofluorescence images of geographic atrophy in advanced age-related macular degeneration using confocal scanning laser ophthalmoscopy (cSLO),” BMC Ophthalmol.5(1), 8 (2005).
[CrossRef] [PubMed]

Jorzik, J. J.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci.46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

Keilhauer, C.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci.46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

Key, S. N.

W. R. Green and S. N. Key, “Senile macular degeneration: a histopathologic study,” Trans. Am. Ophthalmol. Soc.75, 180–254 (1977).
[PubMed]

Kiss, C.

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy,” Ophthalmology118(9), 1844–1851 (2011).
[CrossRef] [PubMed]

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy,” Ophthalmology118(9), 1844–1851 (2011).
[CrossRef] [PubMed]

Klein, B. E.

R. Klein, B. E. Klein, M. D. Knudtson, S. M. Meuer, M. Swift, and R. E. Gangnon, “Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study,” Ophthalmology114(2), 253–262 (2007).
[CrossRef] [PubMed]

R. Klein, B. E. Klein, and T. Franke, “The relationship of cardiovascular disease and its risk factors to age-related maculopathy. The Beaver Dam Eye Study,” Ophthalmology100(3), 406–414 (1993).
[PubMed]

Klein, R.

R. Klein, B. E. Klein, M. D. Knudtson, S. M. Meuer, M. Swift, and R. E. Gangnon, “Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study,” Ophthalmology114(2), 253–262 (2007).
[CrossRef] [PubMed]

R. Klein, B. E. Klein, and T. Franke, “The relationship of cardiovascular disease and its risk factors to age-related maculopathy. The Beaver Dam Eye Study,” Ophthalmology100(3), 406–414 (1993).
[PubMed]

Knighton, R.

Knudtson, M. D.

R. Klein, B. E. Klein, M. D. Knudtson, S. M. Meuer, M. Swift, and R. E. Gangnon, “Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study,” Ophthalmology114(2), 253–262 (2007).
[CrossRef] [PubMed]

Koreishi, A.

S. Bearelly, F. Y. Chau, A. Koreishi, S. S. Stinnett, J. A. Izatt, and C. A. Toth, “Spectral domain optical coherence tomography imaging of geographic atrophy margins,” Ophthalmology116(9), 1762–1769 (2009).
[CrossRef] [PubMed]

Kozak, I.

M. Brar, I. Kozak, L. Cheng, D. U. Bartsch, R. Yuson, N. Nigam, S. F. Oster, F. Mojana, and W. R. Freeman, “Correlation between spectral-domain optical coherence tomography and fundus autofluorescence at the margins of geographic atrophy,” Am. J. Ophthalmol.148(3), 439–444, 444.e1 (2009).
[CrossRef] [PubMed]

Kramer, C. F.

J. R. Vingerling, I. Dielemans, A. Hofman, D. E. Grobbee, M. Hijmering, C. F. Kramer, and P. T. de Jong, “The prevalence of age-related maculopathy in the Rotterdam Study,” Ophthalmology102(2), 205–210 (1995).
[CrossRef] [PubMed]

Kreil, D. P.

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy,” Ophthalmology118(9), 1844–1851 (2011).
[CrossRef] [PubMed]

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy,” Ophthalmology118(9), 1844–1851 (2011).
[CrossRef] [PubMed]

Kutzscher, L.

Q. Chen, T. Leng, L. L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal.17(8), 1058–1072 (2013).
[CrossRef] [PubMed]

la Cour, M.

H. Buch, N. V. Nielsen, T. Vinding, G. B. Jensen, J. U. Prause, and M. la Cour, “14-year incidence, progression, and visual morbidity of age-related maculopathy: the Copenhagen City Eye Study,” Ophthalmology112(5), 787–798 (2005).
[CrossRef] [PubMed]

Läärä, E.

H. Hirvelä, H. Luukinen, E. Läärä, and L. Laatikainen, “Risk factors of age-related maculopathy in a population 70 years of age or older,” Ophthalmology103(6), 871–877 (1996).
[CrossRef] [PubMed]

Laatikainen, L.

H. Hirvelä, H. Luukinen, E. Läärä, and L. Laatikainen, “Risk factors of age-related maculopathy in a population 70 years of age or older,” Ophthalmology103(6), 871–877 (1996).
[CrossRef] [PubMed]

Laine, A. F.

N. Lee, A. F. Laine, I. Barbazetto, M. Busuoic, and R. Smith, “Level set segmentation of geographic atrophy in macular autofluorescence images,” Invest. Ophthalmol. Vis. Sci.47, (2006).

N. Lee, A. F. Laine, and R. T. Smith, “A hybrid segmentation approach for geographic atrophy in fundus auto-fluorescence images for diagnosis of age-related macular degeneration,” Proceeding of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2007), pp. 4965–4968.
[CrossRef]

Lee, A. J.

J. J. Wang, E. Rochtchina, A. J. Lee, E. M. Chia, W. Smith, R. G. Cumming, and P. Mitchell, “Ten-year incidence and progression of age-related maculopathy: the blue Mountains Eye Study,” Ophthalmology114(1), 92–98 (2007).
[CrossRef] [PubMed]

Lee, N.

N. Lee, A. F. Laine, I. Barbazetto, M. Busuoic, and R. Smith, “Level set segmentation of geographic atrophy in macular autofluorescence images,” Invest. Ophthalmol. Vis. Sci.47, (2006).

N. Lee, A. F. Laine, and R. T. Smith, “A hybrid segmentation approach for geographic atrophy in fundus auto-fluorescence images for diagnosis of age-related macular degeneration,” Proceeding of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2007), pp. 4965–4968.
[CrossRef]

Leng, T.

Q. Chen, T. Leng, L. L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal.17(8), 1058–1072 (2013).
[CrossRef] [PubMed]

Leung, C. K. S.

S. Lu, C. Y. L. Cheung, J. Liu, J. H. Lim, C. K. S. Leung, and T. Y. Wong, “Automated layer segmentation of optical coherence tomography images,” IEEE Trans. Biomed. Eng.57(10), 2605–2608 (2010).
[CrossRef] [PubMed]

Li, C.

C. Li, C. Xu, C. Gui, and M. D. Fox, “Level set evolution without re-initialization: a new variational formulation,” InProc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2005) 1, pp. 430–436.

Li, X. T.

Lim, J. H.

S. Lu, C. Y. L. Cheung, J. Liu, J. H. Lim, C. K. S. Leung, and T. Y. Wong, “Automated layer segmentation of optical coherence tomography images,” IEEE Trans. Biomed. Eng.57(10), 2605–2608 (2010).
[CrossRef] [PubMed]

Liu, J.

S. Lu, C. Y. L. Cheung, J. Liu, J. H. Lim, C. K. S. Leung, and T. Y. Wong, “Automated layer segmentation of optical coherence tomography images,” IEEE Trans. Biomed. Eng.57(10), 2605–2608 (2010).
[CrossRef] [PubMed]

Lois, N.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci.46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

Lu, S.

S. Lu, C. Y. L. Cheung, J. Liu, J. H. Lim, C. K. S. Leung, and T. Y. Wong, “Automated layer segmentation of optical coherence tomography images,” IEEE Trans. Biomed. Eng.57(10), 2605–2608 (2010).
[CrossRef] [PubMed]

Luukinen, H.

H. Hirvelä, H. Luukinen, E. Läärä, and L. Laatikainen, “Risk factors of age-related maculopathy in a population 70 years of age or older,” Ophthalmology103(6), 871–877 (1996).
[CrossRef] [PubMed]

Ma, J.

Q. Chen, T. Leng, L. L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal.17(8), 1058–1072 (2013).
[CrossRef] [PubMed]

Maguire, P.

P. Maguire and A. K. Vine, “Geographic atrophy of the retinal pigment epithelium,” Am. J. Ophthalmol.102(5), 621–625 (1986).
[PubMed]

Malladi, R.

R. Malladi, J. A. Sethian, and B. C. Vemuri, “Shape modeling with front propagation: a level set approach,” IEEE Trans. Pattern Anal. Mach. Intell.17(2), 158–175 (1995).
[CrossRef]

Manduchi, R.

C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” Proceedings of the International Conference on Computer Vision (ICCV) (1998), pp. 839–846.
[CrossRef]

Mansmann, U.

A. Deckert, S. Schmitz-Valckenberg, J. Jorzik, A. Bindewald, F. G. Holz, and U. Mansmann, “Automated analysis of digital fundus autofluorescence images of geographic atrophy in advanced age-related macular degeneration using confocal scanning laser ophthalmoscopy (cSLO),” BMC Ophthalmol.5(1), 8 (2005).
[CrossRef] [PubMed]

Matt, G.

C. Schütze, C. Ahlers, S. Sacu, G. Mylonas, R. Sayegh, I. Golbaz, G. Matt, G. Stock, and U. Schmidt-Erfurth, “Performance of OCT segmentation procedures to assess morphology and extension in geographic atrophy,” Acta Ophthalmol. (Copenh.)89(3), 235–240 (2011).
[CrossRef] [PubMed]

McDonald, H. R.

H. Schatz and H. R. McDonald, “Atrophic macular degeneration. Rate of spread of geographic atrophy and visual loss,” Ophthalmology96(10), 1541–1551 (1989).
[PubMed]

Meuer, S. M.

R. Klein, B. E. Klein, M. D. Knudtson, S. M. Meuer, M. Swift, and R. E. Gangnon, “Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study,” Ophthalmology114(2), 253–262 (2007).
[CrossRef] [PubMed]

Mitchell, P.

J. J. Wang, E. Rochtchina, A. J. Lee, E. M. Chia, W. Smith, R. G. Cumming, and P. Mitchell, “Ten-year incidence and progression of age-related maculopathy: the blue Mountains Eye Study,” Ophthalmology114(1), 92–98 (2007).
[CrossRef] [PubMed]

Mlynski, J.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci.46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

Mojana, F.

M. Brar, I. Kozak, L. Cheng, D. U. Bartsch, R. Yuson, N. Nigam, S. F. Oster, F. Mojana, and W. R. Freeman, “Correlation between spectral-domain optical coherence tomography and fundus autofluorescence at the margins of geographic atrophy,” Am. J. Ophthalmol.148(3), 439–444, 444.e1 (2009).
[CrossRef] [PubMed]

Montuoro, A.

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy,” Ophthalmology118(9), 1844–1851 (2011).
[CrossRef] [PubMed]

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy,” Ophthalmology118(9), 1844–1851 (2011).
[CrossRef] [PubMed]

Moshfeghi, A. A.

R. P. Nunes, G. Gregori, Z. Yehoshua, P. F. Stetson, W. Feuer, A. A. Moshfeghi, and P. J. Rosenfeld, “Predicting the progression of geographic atrophy in age-related macular degeneration with SD-Oct en face imaging of the outer retina,” Ophthalmic Surg. Lasers Imaging Retina44(4), 344–359 (2013).

Mylonas, G.

C. Schütze, C. Ahlers, S. Sacu, G. Mylonas, R. Sayegh, I. Golbaz, G. Matt, G. Stock, and U. Schmidt-Erfurth, “Performance of OCT segmentation procedures to assess morphology and extension in geographic atrophy,” Acta Ophthalmol. (Copenh.)89(3), 235–240 (2011).
[CrossRef] [PubMed]

Nicholas, P.

Nielsen, N. V.

H. Buch, N. V. Nielsen, T. Vinding, G. B. Jensen, J. U. Prause, and M. la Cour, “14-year incidence, progression, and visual morbidity of age-related maculopathy: the Copenhagen City Eye Study,” Ophthalmology112(5), 787–798 (2005).
[CrossRef] [PubMed]

Nigam, N.

M. Brar, I. Kozak, L. Cheng, D. U. Bartsch, R. Yuson, N. Nigam, S. F. Oster, F. Mojana, and W. R. Freeman, “Correlation between spectral-domain optical coherence tomography and fundus autofluorescence at the margins of geographic atrophy,” Am. J. Ophthalmol.148(3), 439–444, 444.e1 (2009).
[CrossRef] [PubMed]

Nunes, R. P.

R. P. Nunes, G. Gregori, Z. Yehoshua, P. F. Stetson, W. Feuer, A. A. Moshfeghi, and P. J. Rosenfeld, “Predicting the progression of geographic atrophy in age-related macular degeneration with SD-Oct en face imaging of the outer retina,” Ophthalmic Surg. Lasers Imaging Retina44(4), 344–359 (2013).

O’Connell, R. V.

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci.53(1), 53–61 (2012).
[CrossRef] [PubMed]

O’Cornell, R. V.

S. Farsiu, S. J. Chiu, R. V. O’Cornell, F. A. Folgar, E. Yuan, J. A. Izatt, and C. A. Toth, “Quantitative classification of Eyes with and without intermediate age-related macular degeneration using optical coherence tomography,” Ophthalmologyin press.

Oster, S. F.

M. Brar, I. Kozak, L. Cheng, D. U. Bartsch, R. Yuson, N. Nigam, S. F. Oster, F. Mojana, and W. R. Freeman, “Correlation between spectral-domain optical coherence tomography and fundus autofluorescence at the margins of geographic atrophy,” Am. J. Ophthalmol.148(3), 439–444, 444.e1 (2009).
[CrossRef] [PubMed]

Otsu, N.

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern.9(1), 62–66 (1979).
[CrossRef]

Pauleikhoff, D.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci.46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

Penha, F. M.

Z. Yehoshua, C. A. A. Garcia Filho, F. M. Penha, G. Gregori, P. F. Stetson, W. J. Feuer, and P. J. Rosenfeld, “Comparison of geographic atrophy measurements from the OCT fundus image and the sub-RPE slab image,” Ophthalmic Surg Lasers Imaging Retina44(2), 127–132 (2013).
[CrossRef] [PubMed]

Prause, J. U.

H. Buch, N. V. Nielsen, T. Vinding, G. B. Jensen, J. U. Prause, and M. la Cour, “14-year incidence, progression, and visual morbidity of age-related maculopathy: the Copenhagen City Eye Study,” Ophthalmology112(5), 787–798 (2005).
[CrossRef] [PubMed]

Prünte, C.

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy,” Ophthalmology118(9), 1844–1851 (2011).
[CrossRef] [PubMed]

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy,” Ophthalmology118(9), 1844–1851 (2011).
[CrossRef] [PubMed]

Puliafito, C.

Rochtchina, E.

J. J. Wang, E. Rochtchina, A. J. Lee, E. M. Chia, W. Smith, R. G. Cumming, and P. Mitchell, “Ten-year incidence and progression of age-related maculopathy: the blue Mountains Eye Study,” Ophthalmology114(1), 92–98 (2007).
[CrossRef] [PubMed]

Rosenfeld, P. J.

Z. Yehoshua, C. A. A. Garcia Filho, F. M. Penha, G. Gregori, P. F. Stetson, W. J. Feuer, and P. J. Rosenfeld, “Comparison of geographic atrophy measurements from the OCT fundus image and the sub-RPE slab image,” Ophthalmic Surg Lasers Imaging Retina44(2), 127–132 (2013).
[CrossRef] [PubMed]

R. P. Nunes, G. Gregori, Z. Yehoshua, P. F. Stetson, W. Feuer, A. A. Moshfeghi, and P. J. Rosenfeld, “Predicting the progression of geographic atrophy in age-related macular degeneration with SD-Oct en face imaging of the outer retina,” Ophthalmic Surg. Lasers Imaging Retina44(4), 344–359 (2013).

Rubin, D. L.

Q. Chen, T. Leng, L. L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal.17(8), 1058–1072 (2013).
[CrossRef] [PubMed]

Russell, S. R.

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging28(9), 1436–1447 (2009).
[CrossRef] [PubMed]

Sacu, S.

C. Schütze, C. Ahlers, S. Sacu, G. Mylonas, R. Sayegh, I. Golbaz, G. Matt, G. Stock, and U. Schmidt-Erfurth, “Performance of OCT segmentation procedures to assess morphology and extension in geographic atrophy,” Acta Ophthalmol. (Copenh.)89(3), 235–240 (2011).
[CrossRef] [PubMed]

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy,” Ophthalmology118(9), 1844–1851 (2011).
[CrossRef] [PubMed]

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy,” Ophthalmology118(9), 1844–1851 (2011).
[CrossRef] [PubMed]

Sayegh, R.

C. Schütze, C. Ahlers, S. Sacu, G. Mylonas, R. Sayegh, I. Golbaz, G. Matt, G. Stock, and U. Schmidt-Erfurth, “Performance of OCT segmentation procedures to assess morphology and extension in geographic atrophy,” Acta Ophthalmol. (Copenh.)89(3), 235–240 (2011).
[CrossRef] [PubMed]

Sayegh, R. G.

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy,” Ophthalmology118(9), 1844–1851 (2011).
[CrossRef] [PubMed]

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy,” Ophthalmology118(9), 1844–1851 (2011).
[CrossRef] [PubMed]

Schatz, H.

H. Schatz and H. R. McDonald, “Atrophic macular degeneration. Rate of spread of geographic atrophy and visual loss,” Ophthalmology96(10), 1541–1551 (1989).
[PubMed]

Scheschy, U.

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy,” Ophthalmology118(9), 1844–1851 (2011).
[CrossRef] [PubMed]

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy,” Ophthalmology118(9), 1844–1851 (2011).
[CrossRef] [PubMed]

Schmidt-Erfurth, U.

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy,” Ophthalmology118(9), 1844–1851 (2011).
[CrossRef] [PubMed]

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy,” Ophthalmology118(9), 1844–1851 (2011).
[CrossRef] [PubMed]

C. Schütze, C. Ahlers, S. Sacu, G. Mylonas, R. Sayegh, I. Golbaz, G. Matt, G. Stock, and U. Schmidt-Erfurth, “Performance of OCT segmentation procedures to assess morphology and extension in geographic atrophy,” Acta Ophthalmol. (Copenh.)89(3), 235–240 (2011).
[CrossRef] [PubMed]

Schmitz-Valckenberg, S.

S. Schmitz-Valckenberg, C. K. Brinkmann, F. Alten, P. Herrmann, N. K. Stratmann, A. P. Göbel, M. Fleckenstein, M. Diller, G. J. Jaffe, and F. G. Holz, “Semiautomated image processing method for identification and quantification of geographic atrophy in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.52(10), 7640–7646 (2011).
[CrossRef] [PubMed]

S. Schmitz-Valckenberg, M. Fleckenstein, H. M. Helb, P. Charbel Issa, H. P. Scholl, and F. G. Holz, “In vivo imaging of foveal sparing in geographic atrophy secondary to age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.50(8), 3915–3921 (2009).
[CrossRef] [PubMed]

A. Deckert, S. Schmitz-Valckenberg, J. Jorzik, A. Bindewald, F. G. Holz, and U. Mansmann, “Automated analysis of digital fundus autofluorescence images of geographic atrophy in advanced age-related macular degeneration using confocal scanning laser ophthalmoscopy (cSLO),” BMC Ophthalmol.5(1), 8 (2005).
[CrossRef] [PubMed]

Scholl, H. P.

S. Schmitz-Valckenberg, M. Fleckenstein, H. M. Helb, P. Charbel Issa, H. P. Scholl, and F. G. Holz, “In vivo imaging of foveal sparing in geographic atrophy secondary to age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.50(8), 3915–3921 (2009).
[CrossRef] [PubMed]

Schütze, C.

C. Schütze, C. Ahlers, S. Sacu, G. Mylonas, R. Sayegh, I. Golbaz, G. Matt, G. Stock, and U. Schmidt-Erfurth, “Performance of OCT segmentation procedures to assess morphology and extension in geographic atrophy,” Acta Ophthalmol. (Copenh.)89(3), 235–240 (2011).
[CrossRef] [PubMed]

Sethian, J. A.

R. Malladi, J. A. Sethian, and B. C. Vemuri, “Shape modeling with front propagation: a level set approach,” IEEE Trans. Pattern Anal. Mach. Intell.17(2), 158–175 (1995).
[CrossRef]

D. Adalsteinsson and J. A. Sethian, “A fast level set method for propagating interfaces,” J. Comput. Phys.118(2), 269–277 (1995).
[CrossRef]

Simader, C.

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy,” Ophthalmology118(9), 1844–1851 (2011).
[CrossRef] [PubMed]

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy,” Ophthalmology118(9), 1844–1851 (2011).
[CrossRef] [PubMed]

Smith, R.

N. Lee, A. F. Laine, I. Barbazetto, M. Busuoic, and R. Smith, “Level set segmentation of geographic atrophy in macular autofluorescence images,” Invest. Ophthalmol. Vis. Sci.47, (2006).

Smith, R. T.

N. Lee, A. F. Laine, and R. T. Smith, “A hybrid segmentation approach for geographic atrophy in fundus auto-fluorescence images for diagnosis of age-related macular degeneration,” Proceeding of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2007), pp. 4965–4968.
[CrossRef]

Smith, W.

J. J. Wang, E. Rochtchina, A. J. Lee, E. M. Chia, W. Smith, R. G. Cumming, and P. Mitchell, “Ten-year incidence and progression of age-related maculopathy: the blue Mountains Eye Study,” Ophthalmology114(1), 92–98 (2007).
[CrossRef] [PubMed]

Sonka, M.

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging28(9), 1436–1447 (2009).
[CrossRef] [PubMed]

Staurenghi, G.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci.46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

Stetson, P. F.

Z. Yehoshua, C. A. A. Garcia Filho, F. M. Penha, G. Gregori, P. F. Stetson, W. J. Feuer, and P. J. Rosenfeld, “Comparison of geographic atrophy measurements from the OCT fundus image and the sub-RPE slab image,” Ophthalmic Surg Lasers Imaging Retina44(2), 127–132 (2013).
[CrossRef] [PubMed]

R. P. Nunes, G. Gregori, Z. Yehoshua, P. F. Stetson, W. Feuer, A. A. Moshfeghi, and P. J. Rosenfeld, “Predicting the progression of geographic atrophy in age-related macular degeneration with SD-Oct en face imaging of the outer retina,” Ophthalmic Surg. Lasers Imaging Retina44(4), 344–359 (2013).

Stinnett, S. S.

S. Bearelly, F. Y. Chau, A. Koreishi, S. S. Stinnett, J. A. Izatt, and C. A. Toth, “Spectral domain optical coherence tomography imaging of geographic atrophy margins,” Ophthalmology116(9), 1762–1769 (2009).
[CrossRef] [PubMed]

Stock, G.

C. Schütze, C. Ahlers, S. Sacu, G. Mylonas, R. Sayegh, I. Golbaz, G. Matt, G. Stock, and U. Schmidt-Erfurth, “Performance of OCT segmentation procedures to assess morphology and extension in geographic atrophy,” Acta Ophthalmol. (Copenh.)89(3), 235–240 (2011).
[CrossRef] [PubMed]

Stratmann, N. K.

S. Schmitz-Valckenberg, C. K. Brinkmann, F. Alten, P. Herrmann, N. K. Stratmann, A. P. Göbel, M. Fleckenstein, M. Diller, G. J. Jaffe, and F. G. Holz, “Semiautomated image processing method for identification and quantification of geographic atrophy in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.52(10), 7640–7646 (2011).
[CrossRef] [PubMed]

Sunness, J. S.

J. S. Sunness, “The natural history of geographic atrophy, the advanced atrophic form of age-related macular degeneration,” Mol. Vis.5, 25 (1999).
[PubMed]

Swift, M.

R. Klein, B. E. Klein, M. D. Knudtson, S. M. Meuer, M. Swift, and R. E. Gangnon, “Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study,” Ophthalmology114(2), 253–262 (2007).
[CrossRef] [PubMed]

Tomasi, C.

C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” Proceedings of the International Conference on Computer Vision (ICCV) (1998), pp. 839–846.
[CrossRef]

Toth, C. A.

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci.53(1), 53–61 (2012).
[CrossRef] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18(18), 19413–19428 (2010).
[CrossRef] [PubMed]

S. Bearelly, F. Y. Chau, A. Koreishi, S. S. Stinnett, J. A. Izatt, and C. A. Toth, “Spectral domain optical coherence tomography imaging of geographic atrophy margins,” Ophthalmology116(9), 1762–1769 (2009).
[CrossRef] [PubMed]

S. Farsiu, S. J. Chiu, R. V. O’Cornell, F. A. Folgar, E. Yuan, J. A. Izatt, and C. A. Toth, “Quantitative classification of Eyes with and without intermediate age-related macular degeneration using optical coherence tomography,” Ophthalmologyin press.

Vemuri, B. C.

R. Malladi, J. A. Sethian, and B. C. Vemuri, “Shape modeling with front propagation: a level set approach,” IEEE Trans. Pattern Anal. Mach. Intell.17(2), 158–175 (1995).
[CrossRef]

Vinding, T.

H. Buch, N. V. Nielsen, T. Vinding, G. B. Jensen, J. U. Prause, and M. la Cour, “14-year incidence, progression, and visual morbidity of age-related maculopathy: the Copenhagen City Eye Study,” Ophthalmology112(5), 787–798 (2005).
[CrossRef] [PubMed]

Vine, A. K.

P. Maguire and A. K. Vine, “Geographic atrophy of the retinal pigment epithelium,” Am. J. Ophthalmol.102(5), 621–625 (1986).
[PubMed]

Vingerling, J. R.

J. R. Vingerling, I. Dielemans, A. Hofman, D. E. Grobbee, M. Hijmering, C. F. Kramer, and P. T. de Jong, “The prevalence of age-related maculopathy in the Rotterdam Study,” Ophthalmology102(2), 205–210 (1995).
[CrossRef] [PubMed]

Wang, J. J.

J. J. Wang, E. Rochtchina, A. J. Lee, E. M. Chia, W. Smith, R. G. Cumming, and P. Mitchell, “Ten-year incidence and progression of age-related maculopathy: the blue Mountains Eye Study,” Ophthalmology114(1), 92–98 (2007).
[CrossRef] [PubMed]

Winter, K. P.

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci.53(1), 53–61 (2012).
[CrossRef] [PubMed]

Wolf, S.

U. E. Wolf-Schnurrbusch, V. Enzmann, C. K. Brinkmann, and S. Wolf, “Morphologic changes in patients with geographic atrophy assessed with a novel spectral OCT-SLO combination,” Invest. Ophthalmol. Vis. Sci.49(7), 3095–3099 (2008).
[CrossRef] [PubMed]

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci.46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

Wolf-Schnurrbusch, U. E.

U. E. Wolf-Schnurrbusch, V. Enzmann, C. K. Brinkmann, and S. Wolf, “Morphologic changes in patients with geographic atrophy assessed with a novel spectral OCT-SLO combination,” Invest. Ophthalmol. Vis. Sci.49(7), 3095–3099 (2008).
[CrossRef] [PubMed]

Wong, T. Y.

S. Lu, C. Y. L. Cheung, J. Liu, J. H. Lim, C. K. S. Leung, and T. Y. Wong, “Automated layer segmentation of optical coherence tomography images,” IEEE Trans. Biomed. Eng.57(10), 2605–2608 (2010).
[CrossRef] [PubMed]

Wu, X.

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging28(9), 1436–1447 (2009).
[CrossRef] [PubMed]

Xu, C.

C. Li, C. Xu, C. Gui, and M. D. Fox, “Level set evolution without re-initialization: a new variational formulation,” InProc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2005) 1, pp. 430–436.

Yehoshua, Z.

R. P. Nunes, G. Gregori, Z. Yehoshua, P. F. Stetson, W. Feuer, A. A. Moshfeghi, and P. J. Rosenfeld, “Predicting the progression of geographic atrophy in age-related macular degeneration with SD-Oct en face imaging of the outer retina,” Ophthalmic Surg. Lasers Imaging Retina44(4), 344–359 (2013).

Z. Yehoshua, C. A. A. Garcia Filho, F. M. Penha, G. Gregori, P. F. Stetson, W. J. Feuer, and P. J. Rosenfeld, “Comparison of geographic atrophy measurements from the OCT fundus image and the sub-RPE slab image,” Ophthalmic Surg Lasers Imaging Retina44(2), 127–132 (2013).
[CrossRef] [PubMed]

Yuan, E.

S. Farsiu, S. J. Chiu, R. V. O’Cornell, F. A. Folgar, E. Yuan, J. A. Izatt, and C. A. Toth, “Quantitative classification of Eyes with and without intermediate age-related macular degeneration using optical coherence tomography,” Ophthalmologyin press.

Yuson, R.

M. Brar, I. Kozak, L. Cheng, D. U. Bartsch, R. Yuson, N. Nigam, S. F. Oster, F. Mojana, and W. R. Freeman, “Correlation between spectral-domain optical coherence tomography and fundus autofluorescence at the margins of geographic atrophy,” Am. J. Ophthalmol.148(3), 439–444, 444.e1 (2009).
[CrossRef] [PubMed]

Zheng, L. L.

Q. Chen, T. Leng, L. L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal.17(8), 1058–1072 (2013).
[CrossRef] [PubMed]

Acta Ophthalmol. (Copenh.) (1)

C. Schütze, C. Ahlers, S. Sacu, G. Mylonas, R. Sayegh, I. Golbaz, G. Matt, G. Stock, and U. Schmidt-Erfurth, “Performance of OCT segmentation procedures to assess morphology and extension in geographic atrophy,” Acta Ophthalmol. (Copenh.)89(3), 235–240 (2011).
[CrossRef] [PubMed]

Am. J. Ophthalmol. (2)

M. Brar, I. Kozak, L. Cheng, D. U. Bartsch, R. Yuson, N. Nigam, S. F. Oster, F. Mojana, and W. R. Freeman, “Correlation between spectral-domain optical coherence tomography and fundus autofluorescence at the margins of geographic atrophy,” Am. J. Ophthalmol.148(3), 439–444, 444.e1 (2009).
[CrossRef] [PubMed]

P. Maguire and A. K. Vine, “Geographic atrophy of the retinal pigment epithelium,” Am. J. Ophthalmol.102(5), 621–625 (1986).
[PubMed]

BMC Ophthalmol. (1)

A. Deckert, S. Schmitz-Valckenberg, J. Jorzik, A. Bindewald, F. G. Holz, and U. Mansmann, “Automated analysis of digital fundus autofluorescence images of geographic atrophy in advanced age-related macular degeneration using confocal scanning laser ophthalmoscopy (cSLO),” BMC Ophthalmol.5(1), 8 (2005).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (1)

S. Lu, C. Y. L. Cheung, J. Liu, J. H. Lim, C. K. S. Leung, and T. Y. Wong, “Automated layer segmentation of optical coherence tomography images,” IEEE Trans. Biomed. Eng.57(10), 2605–2608 (2010).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (1)

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging28(9), 1436–1447 (2009).
[CrossRef] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

R. Malladi, J. A. Sethian, and B. C. Vemuri, “Shape modeling with front propagation: a level set approach,” IEEE Trans. Pattern Anal. Mach. Intell.17(2), 158–175 (1995).
[CrossRef]

IEEE Trans. Syst. Man Cybern. (1)

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern.9(1), 62–66 (1979).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (6)

S. Schmitz-Valckenberg, M. Fleckenstein, H. M. Helb, P. Charbel Issa, H. P. Scholl, and F. G. Holz, “In vivo imaging of foveal sparing in geographic atrophy secondary to age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.50(8), 3915–3921 (2009).
[CrossRef] [PubMed]

S. J. Chiu, J. A. Izatt, R. V. O’Connell, K. P. Winter, C. A. Toth, and S. Farsiu, “Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images,” Invest. Ophthalmol. Vis. Sci.53(1), 53–61 (2012).
[CrossRef] [PubMed]

N. Lee, A. F. Laine, I. Barbazetto, M. Busuoic, and R. Smith, “Level set segmentation of geographic atrophy in macular autofluorescence images,” Invest. Ophthalmol. Vis. Sci.47, (2006).

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, and S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci.46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

S. Schmitz-Valckenberg, C. K. Brinkmann, F. Alten, P. Herrmann, N. K. Stratmann, A. P. Göbel, M. Fleckenstein, M. Diller, G. J. Jaffe, and F. G. Holz, “Semiautomated image processing method for identification and quantification of geographic atrophy in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.52(10), 7640–7646 (2011).
[CrossRef] [PubMed]

U. E. Wolf-Schnurrbusch, V. Enzmann, C. K. Brinkmann, and S. Wolf, “Morphologic changes in patients with geographic atrophy assessed with a novel spectral OCT-SLO combination,” Invest. Ophthalmol. Vis. Sci.49(7), 3095–3099 (2008).
[CrossRef] [PubMed]

J. Comput. Phys. (1)

D. Adalsteinsson and J. A. Sethian, “A fast level set method for propagating interfaces,” J. Comput. Phys.118(2), 269–277 (1995).
[CrossRef]

Med. Image Anal. (1)

Q. Chen, T. Leng, L. L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal.17(8), 1058–1072 (2013).
[CrossRef] [PubMed]

Mol. Vis. (1)

J. S. Sunness, “The natural history of geographic atrophy, the advanced atrophic form of age-related macular degeneration,” Mol. Vis.5, 25 (1999).
[PubMed]

Numer. Math. (1)

V. Caselles, F. Catte, T. Coll, and F. Dibos, “A geometric model for active contours in image processing,” Numer. Math.66, 1–31 (1993).
[CrossRef]

Ophthalmic Surg Lasers Imaging Retina (1)

Z. Yehoshua, C. A. A. Garcia Filho, F. M. Penha, G. Gregori, P. F. Stetson, W. J. Feuer, and P. J. Rosenfeld, “Comparison of geographic atrophy measurements from the OCT fundus image and the sub-RPE slab image,” Ophthalmic Surg Lasers Imaging Retina44(2), 127–132 (2013).
[CrossRef] [PubMed]

Ophthalmic Surg. Lasers Imaging Retina (1)

R. P. Nunes, G. Gregori, Z. Yehoshua, P. F. Stetson, W. Feuer, A. A. Moshfeghi, and P. J. Rosenfeld, “Predicting the progression of geographic atrophy in age-related macular degeneration with SD-Oct en face imaging of the outer retina,” Ophthalmic Surg. Lasers Imaging Retina44(4), 344–359 (2013).

Ophthalmology (11)

S. Farsiu, S. J. Chiu, R. V. O’Cornell, F. A. Folgar, E. Yuan, J. A. Izatt, and C. A. Toth, “Quantitative classification of Eyes with and without intermediate age-related macular degeneration using optical coherence tomography,” Ophthalmologyin press.

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy,” Ophthalmology118(9), 1844–1851 (2011).
[CrossRef] [PubMed]

R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, and U. Schmidt-Erfurth, “A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy,” Ophthalmology118(9), 1844–1851 (2011).
[CrossRef] [PubMed]

R. Klein, B. E. Klein, and T. Franke, “The relationship of cardiovascular disease and its risk factors to age-related maculopathy. The Beaver Dam Eye Study,” Ophthalmology100(3), 406–414 (1993).
[PubMed]

J. R. Vingerling, I. Dielemans, A. Hofman, D. E. Grobbee, M. Hijmering, C. F. Kramer, and P. T. de Jong, “The prevalence of age-related maculopathy in the Rotterdam Study,” Ophthalmology102(2), 205–210 (1995).
[CrossRef] [PubMed]

H. Hirvelä, H. Luukinen, E. Läärä, and L. Laatikainen, “Risk factors of age-related maculopathy in a population 70 years of age or older,” Ophthalmology103(6), 871–877 (1996).
[CrossRef] [PubMed]

H. Schatz and H. R. McDonald, “Atrophic macular degeneration. Rate of spread of geographic atrophy and visual loss,” Ophthalmology96(10), 1541–1551 (1989).
[PubMed]

J. J. Wang, E. Rochtchina, A. J. Lee, E. M. Chia, W. Smith, R. G. Cumming, and P. Mitchell, “Ten-year incidence and progression of age-related maculopathy: the blue Mountains Eye Study,” Ophthalmology114(1), 92–98 (2007).
[CrossRef] [PubMed]

R. Klein, B. E. Klein, M. D. Knudtson, S. M. Meuer, M. Swift, and R. E. Gangnon, “Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study,” Ophthalmology114(2), 253–262 (2007).
[CrossRef] [PubMed]

H. Buch, N. V. Nielsen, T. Vinding, G. B. Jensen, J. U. Prause, and M. la Cour, “14-year incidence, progression, and visual morbidity of age-related maculopathy: the Copenhagen City Eye Study,” Ophthalmology112(5), 787–798 (2005).
[CrossRef] [PubMed]

S. Bearelly, F. Y. Chau, A. Koreishi, S. S. Stinnett, J. A. Izatt, and C. A. Toth, “Spectral domain optical coherence tomography imaging of geographic atrophy margins,” Ophthalmology116(9), 1762–1769 (2009).
[CrossRef] [PubMed]

Opt. Express (2)

Trans. Am. Ophthalmol. Soc. (1)

W. R. Green and S. N. Key, “Senile macular degeneration: a histopathologic study,” Trans. Am. Ophthalmol. Soc.75, 180–254 (1977).
[PubMed]

Other (4)

C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” Proceedings of the International Conference on Computer Vision (ICCV) (1998), pp. 839–846.
[CrossRef]

C. Li, C. Xu, C. Gui, and M. D. Fox, “Level set evolution without re-initialization: a new variational formulation,” InProc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2005) 1, pp. 430–436.

N. Lee, A. F. Laine, and R. T. Smith, “A hybrid segmentation approach for geographic atrophy in fundus auto-fluorescence images for diagnosis of age-related macular degeneration,” Proceeding of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2007), pp. 4965–4968.
[CrossRef]

N. Lee, R. T. Smith, and A. F. Laine, “Interactive segmentation for geographic atrophy in retinal fundus images,” The 42nd Asilomar Conference on Signals, Systems and Computers (2008), 42, pp. 655–658.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Flowchart of the proposed algorithm

Fig. 2
Fig. 2

B-scan from SD-OCT volume scans of the retina. The RPE layer and GA region are marked with red and blue lines, respectively. The presence of GA appears as bright pixels in choroid coat (the region underneath the RPE layer) due to the loss of the RPE layer and subsequent increased reflections from the underlying choroid.

Fig. 3
Fig. 3

(a) and (c): SVP and RSVP projection for visualizing GA lesions. The red lines correspond to the cross section of retina visualized in the B-scan shown (b). The top boundary and the lower boundary of the projection sub-volume are marked with two parallel yellow dash lines in (b).

Fig. 4
Fig. 4

Construction of the adaptive coefficient. (a) A signed distance function generated with the initial object contour (yellow curve). The blue curve represents the current evolving curve. (b) The evolving direction of each point in the narrow band depends on the maximum image gradient in its eight-neighbor directions (gray pixels) and itself (red pixel).

Fig. 5
Fig. 5

GA segmentation results on RSVP images for the right eye of an 88 year old female patient. The imaging dates of (a)-(f) are 3/14/2008, 9/26/2008, 4/3/2009, 2/17/2010, 6/16/2010, 12/8/2010, respectively.

Fig. 6
Fig. 6

GA segmentation results on RSVP images for the right eye of a 76 year old female patient. The imaging dates of (a)-(j) are 8/21/2008, 1/6/2010/, 4/7/2010, 7/13/2010, 8/17/2010, 9/14/2010, 10/12/2010, 11/15/2010, 12/20/2010, 1/24/2011, respectively.

Fig. 7
Fig. 7

GA area vs. time for segmentation of GA lesions obtained from twelve eyes in eight patients. The results of two experts (blue and magenta lines) and our method (red line) are marked as shown in (a). Four patients have the results of the right/left eyes, namely (b)/(c), (e)/(f), (h)/(i) and (k)/(l). Other four patients only have the results of one eye, namely (a), (d), (g) and (j).

Fig. 8
Fig. 8

The worst segmentation result of patient #1. (a) Expert 1. (b) Expert 2. (c) Our segmentation algorithm.

Fig. 9
Fig. 9

The worst segmentation result of patient #2. (a) Expert 1. (b) Expert 2. (c) Our segmentation algorithm.

Fig. 10
Fig. 10

B-scan corresponding to the red dash line of Fig. 9.

Fig. 11
Fig. 11

FAF and RSVP composite images displaying the overlapping segmentations drawn by hand by an expert in the FAF images (red), our proposed algorithm (green) and commercial software (blue). The composite image was obtained by manual registration to align retinal blood vessels. (a) Patient 1. (b), Patient 2. (c), Patient 3. (d), Patient 4. (e), Patient 5.

Tables (3)

Tables Icon

Table 1 Within-expert and between-expert correlation coefficients (cc), paired U-test p-values, absolute GA area differences and overlap ratio evaluation between the manual segmentations

Tables Icon

Table 2 Correlation coefficients (cc), paired U-test p-values, absolute GA area differences and overlap ratio between our segmentation method (Our Seg.) and expert segmentations

Tables Icon

Table 3 Correlation coefficients (cc), paired Mann-Whitney U-test p-values, absolute differences and overlap ratio in areas of GA between our segmentation method (Our Seg.), commercial software segmentation (Com. Sw. Seg.), and expert segmentations in FAF images

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

E( ϕ )=μP( ϕ )+ E m ( ϕ ),
P( ϕ )= 1 2 Ω ( | ϕ |1 ) 2 dxdy.
E m ( ϕ )=λ L g ( ϕ )+ν A g ( ϕ )=λ Ω g( I )δ( ϕ )| ϕ |dxdy+ν Ω g( I )H( ϕ )dxdy,
ϕ t =μ[ Δϕdiv( ϕ | ϕ | ) ]+λδ( ϕ )div[ g( I ) ϕ | ϕ | ]+νg( ϕ )δ( ϕ ).
δ ε ( x )= 1 π ε ε 2 + x 2 , lim ε0 δ ε ( x )=δ( x ),
ϕ( 0,x,y )={ ρ, ( x,y )ω 0, ( x,y )ω ρ, ( x,y )Ω\ω ,
ν( I,ϕ )=ϕ ϕ I , ˜
ϕ I ˜ ( x,y )=ϕ( x+rx,y+ry ), rx,ry{ 1,0,1 },
{ rx=0,ry=0 max I o I o rx=0,ry=1 max I o =max I 1 o rx=1,ry=1 max I o =max I 2 o rx=1,ry=0 max I o =max I 3 o rx=1,ry=1 max I o =max I 4 o rx=0,ry=1 max I o =max I 5 o rx=1,ry=1 max I o =max I 6 o rx=1,ry=0 max I o =max I 7 o rx=1,ry=1 max I o =max I 8 o ,
E( ϕ )= μ 2 Ω ( | ϕ |1 ) 2 dxdy+ λ Ω g( I )δ( ϕ )| ϕ |dxdy+ Ω ν( I,ϕ )g( I )H( ϕ )dxdy,
ϕ t =μ[ Δϕdiv( ϕ | ϕ | ) ]+λδ( ϕ )div[ g( I ) ϕ | ϕ | ]+ν( I,ϕ )g( ϕ )δ( ϕ ).
ϕ x = ϕ x = ϕ i+1,j ϕ i1,j 2h , ϕ y = ϕ y = ϕ i,j+1 ϕ i,j1 2h , ϕ t = ϕ t = ϕ i,j n+1 ϕ i,j n Δt , ϕ xx = 2 ϕ x 2 = ϕ i+1,j + ϕ i1,j 2 ϕ i,j h 2 , ϕ yy = 2 ϕ y 2 = ϕ i,j+1 + ϕ i,j1 2 ϕ i,j h 2 .
κ=div( ϕ | ϕ | )= ϕ xx ϕ y 2 2 ϕ x ϕ y ϕ xy + ϕ yy ϕ x 2 ( ϕ x 2 + ϕ y 2 ) 3 2 , div[ g( I ) ϕ | ϕ | ]= x ( g ϕ x | ϕ | )+ y ( g ϕ y | ϕ | ) = g x ϕ x ϕ x 2 + ϕ y 2 + g y ϕ y ϕ x 2 + ϕ y 2 +gκ.
ϕ i,j n+1 ϕ i,j n Δt =Ent( ϕ i,j n ),
ϕ i,j n+1 = ϕ i,j n +ΔtE( ϕ i,j n ).
AAD ¯ ( X;Y )= 1 K k=1 K | Area( X k )Area( Y k ) |,
std( AAD )( X;Y )= 1 K k=1 K ( | Area( X k )Area( Y k ) | AAD ¯ ( X;Y ) ) 2 ,
OR ¯ ( X;Y )= 1 K k=1 K X k Y k X k Y k ,
std( OR )( X;Y )= 1 K k=1 K ( X k Y k X k Y k OR ¯ ( X;Y ) ) 2 ,

Metrics